The present invention relates generally to the field of coal flow in the outlet portion of a coal pulverizer, and in particular to a new and useful system/apparatus, method and drive means for controlling the position of one or more coal flow vanes in the upper portion of a coal pulverizer. The system and/or apparatus in accordance with the present invention utilizes a “cartridge” which is insertable into a turret at the top portion of a coal pulverizer, the present invention permitting the control of one or more coal flow vanes via an internal control system/means. In certain embodiments, the “cartridge” in accordance with the present invention encircles the raw coal inlet pipe, and is insertable into a turret at the top portion of a coal pulverizer, the present invention again permitting the control of one or more coal flow vanes via an internal control system/means.
|
1. A system for controlling one or more coal flow vanes in a coal pulverizer via an internal control system, the internal control system comprising:
a cartridge assembly designed to operatively engage and/or be positioned in an upper portion of a coal pulverizer, the cartridge assembly comprising:
at least two coal flow vanes; and
at least one drive, or actuating, means per coal flow vane, wherein the at least one drive, or actuating, means is operatively coupled to a coal flow vane,
wherein the location of the cartridge assembly is selected so that each of the at least two coal flow vanes can affect the output of pulverized coal in at least one outlet pipe of the coal pulverizer.
8. A system for controlling one or more coal flow vanes in a coal pulverizer via an internal control system, the internal control system comprising:
a cartridge assembly designed to operatively engage and/or be positioned in an upper portion of a coal pulverizer, the cartridge assembly comprising:
at least two coal flow vanes; and
at least one drive, or actuating, means per coal flow vane, wherein the at least one drive, or actuating, means is operatively coupled to a coal flow vane,
wherein the location of the cartridge assembly is selected so that each of the at least two coal flow vanes can affect the output of pulverized coal in at least one outlet pipe of the coal pulverizer, and wherein the at least two coal flow vanes are positioned at equal intervals around an external surface of a coal inlet pipe of the coal pulverizer.
15. A method for controlling the output of coal in a plurality of coal outlet pipes in a coal pulverizer, the method comprising the steps of:
modifying, or retrofitting, a portion of a coal pulverizer with a cartridge assembly designed to operatively engage and/or be positioned in an upper portion of a coal pulverizer, the cartridge assembly comprising:
at least two coal flow vanes; and
at least one drive, or actuating, means per coal flow vane, wherein the at least one drive, or actuating, means is operatively coupled to a coal flow vane; and
controlling either independently, or in combination, the at least two coal flow vanes so as to modify, or control, the amount of coal exiting at least one coal outlet pipe in a coal pulverizer,
wherein the location of the cartridge assembly is selected so that each of the at least two coal flow vanes can affect the output of pulverized coal in at least one outlet pipe of the coal pulverizer.
2. The system of
3. The system of
4. The system of
6. The system of
7. The system of
9. The system of
10. The system of
11. The system of
13. The system of
14. The system of
16. The method of
17. The method of
18. The method of
20. The method of
21. The method of
|
1. Field of the Invention
The present invention relates generally to the field of coal flow in the outlet portion of a coal pulverizer, and in particular to a new and useful system/apparatus, method and drive means for controlling the position of one or more coal flow vanes in the upper portion of a coal pulverizer. The system and/or apparatus in accordance with the present invention utilizes a “cartridge” which is insertable into a turret at the top portion of a coal pulverizer, the present invention permitting the control of one or more coal flow vanes via an internal control system/means. In certain embodiments, the “cartridge” in accordance with the present invention encircles the raw coal inlet pipe, and is insertable into a turret at the top portion of a coal pulverizer, the present invention again permitting the control of one or more coal flow vanes via an internal control system/means.
2. Description of the Related Art
Semi-stationary devices (e.g., vanes) have long been used inside coal pulverizers for deflecting and distributing the pulverized coal/air stream. But to date, any system and/or method that permits control of such semi-stationary devices entails controlling the devices themselves from the surface thereof that is closest to the external surface of a coal pulverizer. While such systems are adequate for most instances, in the case of low turret, or no turret, pulverizers access from the external radial perimeter is often limited, or impossible.
Given the above, a need exists in the art for a control system, or means, that permits various coal flow devices (e.g., vanes) to be controlled via an internal surface located, for example, around the raw coal inlet pipe.
The present invention relates generally to the field of coal flow in the outlet portion of a coal pulverizer, and in particular to a new and useful system/apparatus, method and drive means for controlling the position of one or more coal flow vanes in the upper portion of a coal pulverizer. The system and/or apparatus in accordance with the present invention utilizes a “cartridge” which is insertable into a turret at the top portion of a coal pulverizer, the present invention permitting the control of one or more coal flow vanes via an internal control system/means. In certain embodiments, the “cartridge” in accordance with the present invention encircles the raw coal inlet pipe, and is insertable into a turret at the top portion of a coal pulverizer, the present invention again permitting the control of one or more coal flow vanes via an internal control system/means.
Accordingly, one aspect of the present invention is drawn to a system for controlling one or more coal flow vanes via an internal control system, the internal control system comprising: a cartridge assembly designed to operatively engage and/or be positioned in an upper portion of a coal pulverizer, the cartridge assembly comprising: at least one coal flow vane; and at least one drive, or actuating, means per coal flow vane, wherein the at least one drive, or actuating, means is operatively coupled to a coal flow vane, wherein the location of the cartridge assembly is selected so that the at least one coal flow vane can affect the output of pulverized coal in at least one outlet pipe of the coal pulverizer.
In yet another aspect of the present invention, there is provided a system for controlling one or more coal flow vanes via an internal control system, the internal control system comprising: a cartridge assembly designed to operatively engage and/or be positioned in an upper portion of a coal pulverizer, the cartridge assembly comprising: at least two coal flow vanes; and at least one drive, or actuating, means per coal flow vane, wherein the at least one drive, or actuating, means is operatively coupled to a coal flow vane, wherein the location of the cartridge assembly is selected so that the at least one coal flow vane can affect the output of pulverized coal in at least one outlet pipe of the coal pulverizer, and wherein the at least two coal flow vanes are positioned at equal intervals around an external surface of a coal inlet pipe of the coal pulverizer.
In yet another aspect of the present invention, there is provided a method for controlling the output of coal in a plurality of coal outlet pipes in a coal pulverizer, the method comprising the steps of: modifying, or retrofitting, a portion of a coal pulverizer with a cartridge assembly designed to operatively engage and/or be positioned in an upper portion of a coal pulverizer, the cartridge assembly comprising: at least one coal flow vane; and at least one drive, or actuating, means per coal flow vane, wherein the at least one drive, or actuating, means is operatively coupled to a coal flow vane; and controlling either independently, or in combination, the at least one coal flow vane so as to modifying, or control, the amount of coal exiting at least one coal outlet pipe in a coal pulverizer, wherein the location of the cartridge assembly is selected so that the at least one coal flow vane can affect the output of pulverized coal in at least one outlet pipe of the coal pulverizer.
The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific benefits attained by its uses, reference is made to the accompanying drawings and descriptive matter in which exemplary embodiments of the invention are illustrated.
The present invention relates generally to the field of coal flow in the outlet portion of a coal pulverizer, and in particular to a new and useful system/apparatus, method and drive means for controlling the position of one or more coal flow vanes in the upper portion of a coal pulverizer. The system and/or apparatus in accordance with the present invention utilizes a “cartridge” which is insertable into a turret at the top portion of a coal pulverizer, the present invention permitting the control of one or more coal flow vanes via an internal control system/means. In certain embodiments, the “cartridge” in accordance with the present invention encircles the raw coal inlet pipe, and is insertable into a turret at the top portion of a coal pulverizer, the present invention again permitting the control of one or more coal flow vanes via an internal control system/means.
Referring to the Figures where like reference numerals refer to like parts, and in particular to
As can be seen in
In one embodiment, cartridge assembly 108 is designed to be fitted, either initially or retroactively, around the external surface of coal inlet pipe 110 with the cartridge assembly 108 extending from just above the external surface of top plate 112 of swing valve housing 104 to a suitable point below the internal bottom extent of swing valve housing 104 (see
In additional to the one or more vanes 114, cartridge assembly 108 comprises at least one drive, or actuating, means 116 per vane. In one embodiment, as illustrated in
In one embodiment, cartridge assembly 108 is designed to be fitted around the external surface of coal inlet pipe 110 and has only a generally concentric cartridge assembly pipe 130 having an internal surface that is spaced slightly apart from the external surface of coal inlet pipe 110. The amount of space formed between concentric cartridge assembly pipe 130 and the external surface of coal inlet pipe 110 should be of sufficient amount to permit the installation and operation of the one or more drive, or actuating, means 116 for each vane 114. In one embodiment, the space 132 (see
In another embodiment, cartridge assembly 108 can be formed by two concentric cartridge assembly pipes. In this embodiment, cartridge assembly 108 has an internal concentric cartridge assembly pipe designed to fit around the external surface of coal inlet pipe 110 and an external concentric cartridge assembly pipe designed to be separated by a suitable amount of space from the external surface of the internal concentric cartridge assembly pipe. The space formed between should be of suitable size to permit the installation and operation of the one or more drive, or actuating, means 116 for each vane 114. In this embodiment the bottom portion of cartridge assembly 108 can be sealed by a flat plate rather than cover cone 134.
Turning to
Turning to
Regarding
Turning to
As explained above, several externally adjustable vanes 114 are arrayed between the classifier and the outlet of a pulverizer (see, e.g.,
Turning to
Altering the coal dust loading per volume of primary air allows altering the coal flow to each burner without altering the primary air flow. Primary air flow is important to both the velocity at which the air/coal mixture exits the burner fuel nozzle, and to the distribution of total air at the burner. Both are important to optimize combustion.
With regard to the above embodiments, the present invention permits the elimination of any potential interference, or conflict, between the drive means for one or more coal flow vanes and any swing valves that are present in the upper internal portion of the coal pulverizer (i.e., the turret). As would also be appreciated by those of skill in the art, the present invention is not solely limited to low, or no, turret coal pulverizers. Rather, the present invention can be applied to any coal pulverizer where it is desirable to control one or more coal flow vanes from an internally located surface.
Additionally, the present invention can be retrofitted to existing coal pulverizers to permit the systematic, or individual, control of coal to one or more coal outlet pipes in a coal pulverizer via the positioning of the one or more coal flow vanes.
While specific embodiments of the present invention have been shown and described in detail to illustrate the application and principles of the invention, it will be understood that it is not intended that the present invention be limited thereto and that the invention may be embodied otherwise without departing from such principles. In some embodiments of the invention, certain features of the invention may sometimes be used to advantage without a corresponding use of the other features. Accordingly, all such changes and embodiments properly fall within the scope of the following claims.
Martin, William N., Fuller, Eric D.
Patent | Priority | Assignee | Title |
10363564, | Feb 29 2016 | GENERAL ELECTRIC TECHNOLOGY GMBH | System, method and apparatus for controlling the flow distribution of solid particles |
10493463, | Feb 29 2016 | GENERAL ELECTRIC TECHNOLOGY GMBH | System, method and apparatus for controlling the flow distribution of solid particles |
10773261, | Feb 29 2016 | General Electric Company | System, method and apparatus for controlling the flow distribution of solid particles |
8657221, | Jan 24 2008 | MITSUBISHI HEAVY INDUSTRIES, LTD | Roller mill structure |
8915373, | Mar 24 2011 | Babcock Power Services, Inc.; BABCOCK POWER SERVICES, INC | Coal flow distribution controllers for coal pulverizers |
9200806, | Mar 24 2011 | Babcock Power Services, Inc. | Coal flow distribution controllers for coal pulverizers |
9689568, | Jan 13 2012 | BABCOCK POWER SERVICES, INC | Adjustable division plate for classifier coal flow control |
Patent | Priority | Assignee | Title |
5003891, | Mar 03 1989 | Mitsubishi Jukogyo Kabushiki Kaisha | Pulverized coal combustion method |
5788169, | Jun 07 1995 | Modular shear shredder | |
6347757, | Mar 16 2000 | Hitachi, Ltd. | Coal mill and reduction gear used therefor |
6789488, | Apr 24 2000 | Adjustable flow control elements for balancing pulverized coal flow at coal pipe splitter junctions | |
6966508, | Dec 23 2002 | On-line control of coal flow | |
7013815, | Apr 24 2000 | Adjustable air foils for balancing pulverized coal flow at a coal pipe splitter junction | |
7549382, | Apr 24 2000 | On-line coal flow control mechanism for vertical spindle mills | |
20040084556, | |||
20100000450, | |||
GB1585410, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 03 2010 | BABCOCK & WILCOX POWER GENERATION GROUP, INC F K A THE BABCOCK & WILCOX COMPANY | BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENT | NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS | 025066 | /0080 | |
Jun 22 2010 | Babcock & Wilcox Power Generation Group, Inc. | (assignment on the face of the patent) | / | |||
Jun 22 2010 | MARTIN, WILLIAM N | BABCOCK & WILCOX POWER GENERATION GROUP, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024575 | /0236 | |
Jun 22 2010 | FULLER, ERIC D | BABCOCK & WILCOX POWER GENERATION GROUP, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024575 | /0236 | |
Jun 24 2014 | BABCOCK & WILCOX POWER GENERATION GROUP, INC | BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENT | SECURITY INTEREST | 033380 | /0744 | |
Jun 30 2015 | BABCOCK & WILCOX POWER GENERATION GROUP, INC TO BE RENAMED THE BABCOCK AND WILCOX COMPANY | BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 036201 | /0598 | |
Jun 30 2015 | BABCOCK & WILCOX POWER GENERATION GROUP, INC | The Babcock & Wilcox Company | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 036675 | /0434 | |
Aug 09 2017 | BABCOCK & WILCOX UNIVERSAL, INC | LIGHTSHIP CAPITAL LLC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 043515 | /0001 | |
Aug 09 2017 | BABCOCK & WILCOX TECHNOLOGY, LLC | LIGHTSHIP CAPITAL LLC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 043515 | /0001 | |
Aug 09 2017 | MEGTEC TURBOSONIC TECHNOLOGIES, INC | LIGHTSHIP CAPITAL LLC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 043515 | /0001 | |
Aug 09 2017 | Babcock & Wilcox MEGTEC, LLC | LIGHTSHIP CAPITAL LLC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 043515 | /0001 | |
Aug 09 2017 | DIAMOND POWER INTERNATIONAL, LLC | LIGHTSHIP CAPITAL LLC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 043515 | /0001 | |
Aug 09 2017 | The Babcock & Wilcox Company | LIGHTSHIP CAPITAL LLC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 043515 | /0001 | |
May 04 2018 | LIGHTSHIP CAPITAL LLC | BABCOCK & WILCOX TECHNOLOGY, LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 046182 | /0829 | |
May 04 2018 | LIGHTSHIP CAPITAL LLC | BABCOCK & WILCOX UNIVERSAL, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 046182 | /0829 | |
May 04 2018 | LIGHTSHIP CAPITAL LLC | MEGTEC TURBOSONIC TECHNOLOGIES, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 046182 | /0829 | |
May 04 2018 | LIGHTSHIP CAPITAL LLC | Babcock & Wilcox MEGTEC, LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 046182 | /0829 | |
May 04 2018 | LIGHTSHIP CAPITAL LLC | DIAMOND POWER INTERNATIONAL, LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 046182 | /0829 | |
May 04 2018 | LIGHTSHIP CAPITAL LLC | The Babcock & Wilcox Company | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 046182 | /0829 | |
May 04 2018 | LIGHTSHIP CAPITAL LLC | BABCOCK & WILCOX ENTERPRISES, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 046182 | /0829 | |
Jun 30 2021 | BANK OF AMERICA, N A | SOFCO-EFS Holdings LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 057337 | /0823 | |
Jun 30 2021 | BANK OF AMERICA, N A | BABCOCK & WILCOX TECHNOLOGY, LLC F K A MCDERMOTT TECHNOLOGY, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 057337 | /0823 | |
Jun 30 2021 | BANK OF AMERICA, N A | BABCOCK & WILCOX SPIG, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 057337 | /0823 | |
Jun 30 2021 | BANK OF AMERICA, N A | THE BABCOCK & WILCOX COMPANY F K A BABCOCK & WILCOX POWER GENERATION GROUP, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 057337 | /0823 | |
Jun 30 2021 | BANK OF AMERICA, N A | MEGTEC TURBOSONIC TECHNOLOGIES, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 057337 | /0823 | |
Jun 30 2021 | BANK OF AMERICA, N A | DIAMOND POWER INTERNATIONAL, LLC F K A DIAMOND POWER INTERNATIONAL, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 057337 | /0823 | |
Jun 30 2021 | BANK OF AMERICA, N A | Babcock & Wilcox MEGTEC, LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 057337 | /0823 |
Date | Maintenance Fee Events |
Sep 21 2015 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Nov 11 2019 | REM: Maintenance Fee Reminder Mailed. |
Apr 27 2020 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 20 2015 | 4 years fee payment window open |
Sep 20 2015 | 6 months grace period start (w surcharge) |
Mar 20 2016 | patent expiry (for year 4) |
Mar 20 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 20 2019 | 8 years fee payment window open |
Sep 20 2019 | 6 months grace period start (w surcharge) |
Mar 20 2020 | patent expiry (for year 8) |
Mar 20 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 20 2023 | 12 years fee payment window open |
Sep 20 2023 | 6 months grace period start (w surcharge) |
Mar 20 2024 | patent expiry (for year 12) |
Mar 20 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |