A blow head mechanism for an I.S. machine wherein the blow head has a final blow tube. The final blow tube is supported for vertical displacement between an up position where the open end of the final blow tube is proximate the top of a blown parison and a down position where the open end of the final blow tube is proximate the bottom of a blown parison. The final blow tube is oscillated a plurality of times during the time when the blow head is “on.”
|
10. A method of operating a blow head mechanism, the blow head mechanism including support means for supporting a blow head assembly, a blow tube selectively displaceable between an up position and a down position, and displacement means for displacing the blow head assembly and the blow tube, the method comprising:
displacing the blow head assembly between a remote “off” position and an advanced “on” position;
displacing the blow tube from its up position down to its down position and then back up to its up position;
displacing the support means by first displacement means to displace the blow head assembly between its remote “off” position and its advanced “on” position;
displacing the blow tube by second displacement means including a profiled displacement actuator; and
controlling the profiled displacement actuator in accordance with a displacement profile so as to reciprocate the blow tube from its up position down to its down position at least twice during the time that the blow head assembly is at its “on” position.
1. A method of operating a blow head mechanism, the blow head mechanism including support means for supporting a blow head assembly, a blow tube selectively displaceable between an up position and a down position, and displacement means for displacing the blow head assembly and the blow tube, the method comprising:
displacing the blow head assembly between a remote “off” position and an advanced “on” position;
displacing the blow tube from its up position down to its down position and then back up to its up position;
displacing the support means by first displacement means to displace the blow head assembly between its remote “off” position and its advanced “on” position;
displacing the blow tube by second displacement means including a profiled displacement actuator; and
controlling the profiled displacement actuator in accordance with a displacement profile so as to displace the blow tube from its up position down to its down position and then back up to its up position a plurality of times during the time that the blow head assembly is at its “on” position.
6. A method of operating a blow head mechanism, comprising:
supporting a blow head from a support element with the blow head being located above a blow mold;
displacing the blow head between an “off” position wherein the blow head is located above and displaced from the blow mold and an “on” position wherein the blow head is located on the blow mold which is closed with a parison supported therein;
when the blow head is on top of the closed blow mold, supplying the blow head with pressurized air to form the parison into a bottle and, following bottle formation, to cool the interior surface of the formed bottle prior to the blow mold being opened and the bottle removed therefrom;
a blow tube having an opening at a bottom end thereof, the blow tube being selectively displaceable between up and down positions while the blow head is on top of the closed blow mold, wherein in its up position the bottom opening of the blow tube is located proximate the top of a blown parison supported within the closed blow mold and in its down position the blow tube is located proximate the bottom of the blown parison supported within the closed blow mold; and
when the blow head is on top of the closed blow mold following a parison in the blow mold being blown, reciprocating the blow tube according to a displacement profile from said up position to a first down position, from said first down position to a second up position, from said second up position to a second down position, from said second down position to a third up position.
2. The method according to
3. The method according to
blowing a parison having an upper neck portion and a lower body portion; and
controlling the profiled displacement actuator in accordance with the displacement profile so as to displace the blow tube from its up position to the location where the upper neck portion meets the lower body portion at an average velocity higher than the average velocity at which the blow tube is displaced from the location where the upper neck portion meets the lower body portion to its down position at the bottom of the container.
4. The method according to
maintaining the blow tube proximate the bottom of the container for a selected period of time.
5. The method according to
controlling the profiled displacement actuator in accordance with the displacement profile to displace the blow tube from its down position to the location where the upper neck portion meets the lower body portion at a first average velocity; and
displacing the blow tube from the location where the upper neck portion meets the lower body portion to its up position at a second average velocity;
wherein the second average velocity is greater than said first average velocity.
7. The method according to
8. The method according to
9. The method according to
11. The method according to
12. The method according to
blowing a parison having an upper neck portion and a lower body portion; and
controlling the profiled displacement actuator in accordance with the displacement profile so as to displace the blow tube from its up position to the location where the upper neck portion meets the lower body portion at an average velocity higher than the average velocity at which the blow tube is displaced from the location where the upper neck portion meets the lower body portion to its down position at the bottom of the container.
13. The method according to
maintaining the blow tube proximate the bottom of the container for a selected period of time.
14. The method according to
controlling the profiled displacement actuator in accordance with the displacement profile to displace the blow tube from its down position to the location where the upper neck portion meets the lower body portion at a first average velocity; and
displacing the blow tube from the location where the upper neck portion meets the lower body portion to its up position at a second average velocity;
wherein the second average velocity is greater than said first average velocity.
|
This application is a continuation of U.S. patent application Ser. No. 11/890,056, filed on Aug. 3, 2007, now U.S. Pat. No. 7,779,649, granted on Aug. 24, 2010, which is entitled “Glass Container Forming Machine,” which patent application is assigned to the assignees of the present invention, which is a continuation of U.S. patent application Ser. No. 10/005,567, filed on Dec. 5, 2001, entitled Glass Container Forming Machine, now abandoned, both of which patent applications are hereby incorporated herein by reference in its entirety.
The present invention relates generally to a blow head mechanism for an I.S. machine, and more particularly to a blow head mechanism having a final blow tube supported for vertical movement between an up position proximate the top of a blown parison and a down position proximate the bottom of a blown parison, wherein the final blow tube is oscillated a plurality of times.
The blowing operation is effected by a blow head. Conventionally the blow head is brought into position on top of (engaging) a blow mold at the blow station and provides air (“final blow”) under pressure through a downwardly extending blow tube to the interior of the parison to blow the parison into contact with the interior of the blow mold. The parison could also be formed with vacuum or with a vacuum assist. The blown parison must then be formed into a bottle, i.e., cooled to the point where it is rigid enough to be gripped and removed from the blow station by a takeout mechanism. The outer surface of the blown parison is cooled by cooling the blow molds and the inner surface of the blown parison is cooled by the final blow air which continues to flow into the blown parison. U.S. Pat. No. 4,726,833, to Foster, which is assigned to the Assignee of the present patent application, discloses a state of the art blow head. Conventionally the cooling air escapes from the interior of the bottle through a permanently open exhaust. The size of the exhaust will be defined as a balance between inlet and outlet.
Before a conventional takeout can be displaced from a remote location to a pick up location proximate the top of the formed bottle, the blow head, including the blow tube, must be displaced away from the blow mold. This displacement must be at least to a position where it will not interfere with an inwardly moving takeout mechanism. To speed up these steps, U.S. Pat. No. 5,807,419, to Rodriguez-Wong et al., proposes a combined blow head and takeout mechanism. This mechanism permits the operation of takeout jaws as soon as the blow head, which engages the top of the blow mold during final blow, is slightly elevated, with the blow tube remaining fully extended and operating, following the formation of the bottle. The blow tube also provides internal cooling air to the bottle when the bottle is removed from the blow mold and carried to a dead plate on which it will be deposited. The cooling of the outer surface of the formed bottle stops with the opening of the blow mold.
U.S. Pat. No. 4,508,557, to Fenton, which is assigned to the Assignee of the present patent application, discloses a dead plate arrangement for blowing cooling air around the bottle to provide additional outer surface cooling on the deadplate. U.S. Pat. No. 4,892,183, to Fenton, which is assigned to the Assignee of the present patent application, discloses a dual take-out mechanism which functions to alternately remove bottles from the blow station placing half on one output conveyor and the other half on a second output conveyor.
In all of these systems, the bottles once removed from the deadplate, will be conveyed into a Lehr which utilizes a series of burners to immediately reheat the bottles to a uniform higher temperature and then allows the bottles to cool slowly before being discharged from the Lehr.
Formed bottles have also been tempered in separate machinery by reheating the bottles and then simultaneously cooling the inner and outer glass surfaces (see for example, U.S. Pat. No. 2,309,290, to Aksomitas).
It is desirable to provide an I.S. machine which more effectively removes heat from the blown parison/formed bottle.
The disadvantages and limitations of the background art discussed above are overcome by the present invention. With this invention, an I.S. machine is provided which more effectively removes heat from the blown parison/formed bottle.
A final blow tube is supported from a blow head for vertical displacement between an up position wherein the open end of the final blow tube is proximate the top of a blown parison and a down position wherein the open end of the final blow tube is proximate the bottom of a blown parison. The final blow tube is oscillated a plurality of times during the time when the blow head is “on.”
These and other advantages of the present invention are best understood with reference to the drawings, in which:
A blow head 18 is shown diagrammatically, in section, in
Referring to
Alternatively the control can “Determine T2” 56 by determining the location of the negative peak (a local minimum) at P2 (this negative peak may be slightly delayed from the instant when the bottle is fully blown and a correction could then be applied). In practice T2 could be periodically determined with the control receiving updated T2 input. The operator may also reduce T2 if he finds that the blowing of the parison will not be affected. With the parison blown, the control will “Raise The Blow Head “X” And Set Blow Head Air Pressure To “Internal Cooling” Pressure” 58 (distance “X” and “Internal Cooling” Pressure can be selectively set). This second “on” position is the escape position.
The cooling flow is no longer limited by the size of the blow head exhaust. The volume of cooling flow for the remaining second or more before the blow head is turned “off” will be very substantially increased. “Internal Cooling” air, can be supplied at a pressure which is substantially higher than final blow air. For example internal cooling air can be supplied at 45 PSI since this is a commonly available air supply. Internal cooling air will be supplied at a pressure sufficient to maintain at least a minimum desired pressure within the bottle. This cooling flow could continue until time T3 (until the query “Has Time T3 Passed?” 60) is answered in the affirmative, whereupon the control will “Displace The Blow Head To The “Off” Position” 62.
When the blow head is lifted the vertical distance “X” to the escape position (
Each blow head (
Located within each distribution leg is the top portion 90 of a drive member 92 having a threaded internal diameter 94 extending downwardly through the top portion, through a driven gear portion 96, and then through a lower portion 98 which extends downwardly through the blow head mounting assembly 100. The outside diameter of the drive member 92 is rotatably supported by three bearings 102. The internal thread of the drive member inside diameter threadedly receives the threaded top end portion 76 of the blow tube, and vertical displacement of the blow tube will accordingly result whenever the driven gear portion 96 is rotated. Rotation will be controlled by an electronic motor 104 coupled to a drive gear 106. The drive gear engages adjacent driven gear portions of the left two driven gear portions to drive the left two drive members 92, and an idler gear 108 between the right hand pair of driven gear portions 96 drives the right hand drive member.
The bottom of the blow tube 36 (
The displacement profile will be selected to achieve the desired cooling of the inner surface of the blown parison, i.e., the motion profile is configured to coordinate with the cooling requirements of the bottle or other container. This coordination can be a coordination based on the heat times the mass of the bottle. As shown in
While the blown parison/formed bottle is in the blow mold external cooling will be effected by blowing cooling air through a series of circumferentially located cooling holes 19 (
A takeout mechanism is schematically illustrated in
The takeout assembly has, at each bottle location, a blow tube 36 (
The takeout assembly also has a manifold housing 141 including an overhead distribution manifold 142 and three air distribution legs 143 which depend vertically from the overhead distribution manifold. Final blow (this includes air for final blow and/or internal cooling depending on how the parison is being formed) air F.B./144 is supplied to the distribution manifold via a selectively controlled valve 145.
The base 164 of the manifold housing 141 is bolted onto the top wall 33 of the gripper housing 134 with a number of screws 165 with the driven gear portions 96, the drive gear 106, and the idler 108 located in a chamber located between the base of the manifold housing and the top wall of the gripper housing. The manifold housing has a pair of guide tubes 166 extending vertically upwardly from the top of the manifold housing which receive vertical guide rods 168 which are part of the Z axis drive 20.
As can be seen from
Secured within each of a pair of through holes 173 which extend through the gripper housing from the front to the back of the housing is a double acting cylinder 181 including opposed piston and rod assemblies 182. A pair of screws 183 connect each gripper bar to the piston rods 184 on the side of the gripper bar and compression springs 186, located between the piston and the cylinder housing will normally maintain the gripper bars at the closed position. A locating plate 187 is secured to the front panel of the gripper bracket with a rod receiving hole 188 to locate the axis of the rod. Air under pressure is supplied via a valve 191 from a source of gripper air G.A./192 to the center of each cylinder to open the gripper bars. The gripper bars may have selectively sized semicircular inserts (not shown) so that the closed gripper bars will grip the formed bottles on the finish of the bottles.
The takeout assembly 140 is shown in
The gripped bottles, removed from the blow station, if not rejected, are supported next to open doorways or openings in associated enclosures comprising cooling chambers or canisters, termed cans 220 (this open condition being represented automatically by open semicircles) which are supported on a deadplate mechanism 240 which is at its park position in
The takeout assembly 140 and the deadplate mechanism 240 then conjointly horizontally transversely move to a third or conveyor location adjacent a first, right side conveyor 15 (
The takeout assembly is then returned to the up position and the deadplate mechanism and the takeout assembly will then be conjointly transversely displaced back to their initial positions shown in
With the first batch of bottles (Bottles No. 1) removed from the blow station (
During the time when the first takeout assembly 140 is at the initial or second deadplate position (
Before the first takeout assembly and first deadplate mechanism are displaced conjointly to the third conveyor location adjacent the first conveyor (
The basic cycle now repeats with the roles reversed for the first takeout assembly/deadplate mechanisms and the second takeout assembly/deadplate mechanism with the first takeout assembly/deadplate assembly returning to their start locations to receive the next formed bottles (Bottles No. 3). While the displacement of the takeout arm from the conveyor position to the pick up position is shown with sequential X and Y movements, it should be understood that such movements could occur simultaneously.
The interior surface of a can is configured so that cooling air admitted into the can through the bottom inlet holes 198 in the top surface of the plenum chamber will follow the surface of the bottle during its passage to the exit hole 103. Air flow to a can will occur as desired to achieve the cooling of the bottle, but in the preferred embodiment air flow is continuous from the time a bottle enters a can to the time a bottle leaves the can.
A temperature sensor 125 secured to one or more of the cans provides temperature data which should be stable over time (data would be compared at the same point in the cycle). With reference to
The blow tube will be oscillated between the up and down positions with a displacement profile matched to the cooling requirements of the bottle from the moment the takeout assembly is lowered to its bottle gripping position until the gripped bottle is deposited onto the conveyor. As with the blow head a convenient algorithm for defining this oscillation is shown in
Referring to
As can be seen from
Although the foregoing description of the present invention has been shown and described with reference to particular embodiments and applications thereof, it has been presented for purposes of illustration and description and is not intended to be exhaustive or to limit the invention to the particular embodiments and applications disclosed. It will be apparent to those having ordinary skill in the art that a number of changes, modifications, variations, or alterations to the invention as described herein may be made, none of which depart from the spirit or scope of the present invention. The particular embodiments and applications were chosen and described to provide the best illustration of the principles of the invention and its practical application to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such changes, modifications, variations, and alterations should therefore be seen as being within the scope of the present invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled.
Hyre, Matthew R., Fenton, F. Alan
Patent | Priority | Assignee | Title |
D754911, | Mar 05 2015 | Bocci Design and Manufacturing Inc | Glass pendant for decorative light fixtures |
Patent | Priority | Assignee | Title |
2309290, | |||
2347181, | |||
4508557, | Jul 09 1982 | Emhart Industries, Inc. | Dead plate arrangement of a glassware forming machine |
4726833, | Nov 08 1985 | GLASS MACHINERY INC A CORPORATION OF DE | Blowhead for use in the manufacture of glass containers |
4892183, | Aug 25 1988 | EMHART U K LIMITED A CORP OF ENGLAND | Take-out mechanism for a glass container forming machine |
5807419, | Dec 14 1993 | VITRO, S A B DE C V | Apparatus for the shaping and transferring of glass articles or other materials |
20030101751, | |||
FR1350353, | |||
FR2147020, | |||
RU272503, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 08 2002 | HYRE, MATTHEW R | EMHART GLASS S A | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024880 | /0477 | |
Jan 08 2002 | FENTON, F ALAN | EMHART GLASS S A | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024880 | /0477 | |
Aug 24 2010 | Emhart Glass S.A. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Sep 28 2015 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Nov 18 2019 | REM: Maintenance Fee Reminder Mailed. |
May 04 2020 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 27 2015 | 4 years fee payment window open |
Sep 27 2015 | 6 months grace period start (w surcharge) |
Mar 27 2016 | patent expiry (for year 4) |
Mar 27 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 27 2019 | 8 years fee payment window open |
Sep 27 2019 | 6 months grace period start (w surcharge) |
Mar 27 2020 | patent expiry (for year 8) |
Mar 27 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 27 2023 | 12 years fee payment window open |
Sep 27 2023 | 6 months grace period start (w surcharge) |
Mar 27 2024 | patent expiry (for year 12) |
Mar 27 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |