A method of integrating a permanent bias magnet within a magnetoresistance sensor comprising depositing an alternating pattern of a metal material and a semiconductor material on or within a surface of an insulating substrate; depositing a mask on the surface of the insulating substrate to create an opening above the alternating pattern of metal material and semiconductor material; applying a magnetic paste within the opening above the alternating pattern of metal material and semiconductor material; curing the magnetic paste to form a hardened bias magnet; removing the mask; and magnetizing the hardened bias magnet by applying a strong magnetic field to the hardened bias magnet at a desired orientation.
|
1. A method of integrating a permanent bias magnet within a magnetoresistance sensor comprising:
depositing an alternating pattern of a metal material and a semiconductor material on or within a surface of an insulating substrate;
depositing a mask on the surface of the insulating substrate to create an opening above the alternating pattern of the metal material and the semiconductor material;
applying a magnetic paste within the opening above the alternating pattern of the metal material and the semiconductor material;
curing the magnetic paste to form a hardened bias magnet;
removing the mask; and
magnetizing the hardened bias magnet by applying a strong magnetic field to the hardened bias magnet at a desired orientation.
11. A method of producing an integrated magnetoresistance sensor assembly including a permanent bias magnet comprising:
depositing an alternating pattern of a metal material and a semiconductor material on or within a surface of an insulating substrate;
depositing a photoresist mask on the surface of the insulating substrate in a pattern that covers the surface of the insulating substrate, but does not cover the alternating pattern of the metal material and the semiconductor material, leaving an opening above the alternating pattern of the metal material and the semiconductor material;
applying a magnetic paste over a surface of the photoresist mask and filling the opening above the alternating pattern of the metal material and the semiconductor material with the magnetic paste;
removing the magnetic paste from the surface of the photoresist mask;
curing the magnetic paste within the opening above the alternating pattern of the metal material and the semiconductor material to form a hardened bias magnet;
removing the photoresist mask from around the hardened bias magnet; and
applying a strong magnetic field to the hardened bias magnet at a desired orientation to magnetize the hardened bias magnet.
5. The method of
6. The method of
8. The method of
9. The method of
10. The method of
12. The method of
14. The method of
15. The method of
16. The method of
|
This disclosure relates generally to magnetic sensors, and more particularly to the low cost integration of micron-scale permanent magnets with magnetic sensors for generating a large, relatively uniform perpendicular bias field that may be used to maximize the sensitivity of semiconductor magnetoresistance sensors.
Semiconductor magnetoresistance sensors are a promising class of solid-state magnetic sensors. These sensors consist of a substrate of patterned, high mobility semiconducting films. Some non-limiting examples of patterned, high mobility semiconducting films include indium antimonide (InSb), indium arsenide (InAs), gallium antimonide (GaSb), gallium arsenide (GaAs) and grapheme. The application of a perpendicular magnetic field to the substrate of a patterned, high mobility semiconducting film deflects the current in the substrate of the patterned, high mobility semiconducting film, resulting in an increased path length and hence an increased resistance. By optimizing the geometry of the semiconductor magnetoresistance sensor, the sensitivity can be maximized.
While magnetoresistance sensors have been developed for some time, they have not had broad commercial applicability, due in part to the need to apply a large perpendicular magnetic bias field (approximately 0.1 to 0.2 Tesla) to achieve high sensitivity. For certain applications such as clearance sensors for automotive applications, macroscopic permanent magnets are either already present or can be easily integrated into a desired location. Thus, magnetoresistance sensors have been intensively investigated for automotive applications.
However, a much larger range of magnetic sensor applications require that the entire assembly (sensor and magnet) must be compact. Examples include surface mount semiconductor packages and electromagnetic tracking devices for medical instruments, such as needles, catheters and guidewires, etc.
Macroscopic permanent magnets are typically fabricated by pressure sintering permanent magnet powder (e.g., neodymium iron boron (NdFeB)) into a desired form. While these magnets are capable of achieving very large magnetic fields on their faces (approximately 0.5 Tesla) they cannot be shrunk down to less than approximately 1 mm3 volumes needed for space constrained applications. In addition, as each magnet is fabricated separately, precise placement and bonding of the magnet within the magnetoresistance sensor is very difficult.
Alternatively, perpendicular magnetic bias fields can be generated using magnetic thin films with perpendicular anisotropy. Examples include iron gadolinium terbium (FeGdTb) alloys and a cobolt platinum (CoPt) multilayer. Unfortunately, however, to generate a large (approximately 0.1 to 0.2 Tesla) uniform magnetic field over the front face requires that the thickness of the film be approximately as large as the base (dependent upon the detailed magnetic properties of the material). Thus, a magnetic sensor with an active area of approximately 0.25 mm×0.25 mm would require a permanent magnet material that is at least approximately 0.15 mm thick (dependent upon the detailed magnetic properties of the material). At this film thickness, traditional thin film process techniques such as sputtering, evaporation or chemical vapor deposition are not feasible. While electroplating has been used to create magnetic films of thicknesses up to approximately 30 μm, the magnetic properties are too poor for magnetic field values needed for magnetoresistance sensors.
Therefore, there is a need for low cost integration of micron-scale permanent magnets within magnetic sensors for generating a large, relatively uniform perpendicular magnetic bias field that may be used to maximize the sensitivity of semiconductor magnetoresistance sensors.
In accordance with an aspect of the disclosure, a method of integrating a permanent bias magnet within a magnetoresistance sensor comprising depositing an alternating pattern of a metal material and a semiconductor material on or within a surface of an insulating substrate; depositing a mask on the surface of the insulating substrate to create an opening above the alternating pattern of metal material and semiconductor material; applying a magnetic paste within the opening above the alternating pattern of metal material and semiconductor material; curing the magnetic paste to form a hardened bias magnet; removing the mask; and magnetizing the hardened bias magnet by applying a strong magnetic field to the hardened bias magnet at a desired orientation.
In accordance with an aspect of the disclosure, a method of producing an integrated magnetoresistance sensor assembly including a permanent bias magnet comprising depositing an alternating pattern of a metal material and a semiconductor material on or within a surface of an insulating substrate; depositing a photoresist mask on the surface of the insulating substrate in a pattern that covers the surface of the insulating substrate, but leaves an opening above the alternating pattern of metal material and semiconductor material; applying a magnetic paste over the photoresist mask and the opening above the alternating pattern of metal material and semiconductor material; removing the magnetic paste from above the photoresist mask, but leaving the magnetic paste within the opening above the alternating pattern of metal material and semiconductor material; curing the magnetic paste within the opening above the alternating pattern of metal material and semiconductor material to form a hardened bias magnet; removing the photoresist mask from around the hardened bias magnet; and applying a strong magnetic field to the hardened bias magnet at a desired orientation to magnetize the hardened bias magnet.
Various other features, aspects, and advantages will be made apparent to those skilled in the art from the accompanying drawings and detailed description thereof.
Referring now to the drawings,
The semiconductor material 16 may be series connected to increase the magnetoresistance sensor 10 resistance. In an exemplary embodiment, the semiconductor material 16 may be comprised of a single semiconductor element. The bias magnet material 20 subjects the semiconductor material 16 to a magnetic field required to achieve required sensitivity. The magnetoresistance sensor 10 provides a signal in response to the strength and direction of a magnetic field. The magnetic field may be approximately 0.1 to 0.2 Tesla.
The application of a magnetic field confines the electrons to the semiconductor material 16, resulting in an increased path length. Increasing the path length, increases the sensitivity of the magnetoresistance sensor 10. The magnetic field also increases the resistance of the magnetoresistance sensor 10. In the geometry disclosed in
Many new clinical applications include tracking of a variety of devices including catheters, guidewires, and other endovascular instruments that require sensors to be very small in size (millimeter dimensions or smaller). The form factor of the magnetoresistance sensor 10 may be scaled to sizes less than 0.1 mm x 0.1 mm.
In an exemplary embodiment, the magnetoresistance sensor may be built with various architectures and geometries, including, giant magnetoresistance (GMR) sensors, and extraordinary magnetoresistance (EMR) sensors.
The magnetoresistance sensor 10 provides a very small form factor, excellent signal-to-noise ratio (low noise operation), and excellent low frequency response. Low noise combined with wide dynamic range enables the magnetoresistance sensor 10 to be used for position and orientation tracking. The low frequency response of the magnetoresistance sensor 10 allows a position and orientation tracking system to operate at very low frequencies where metal tolerance is maximized.
In an exemplary embodiment, a stencil or a screen printed mask may be used instead of a photoresist mask, to define the areas where the permanent magnets are to be formed.
In an exemplary embodiment, a subtractive process such as laser ablation, diamond sawing or chemical etching may be used to define the areas where the permanent magnets are to be formed.
In an exemplary embodiment, the permanent bias magnets may be fabricated on a separate substrate and then bonded (including the separate substrate) to the magnetoresistance sensor substrate.
In an exemplary embodiment, the permanent bias magnet 20 footprint may be approximately 0.25 mm×0.25 mm. This footprint may be controlled by the photoresist mask opening 34. In an exemplary embodiment, the permanent bias magnet 20 height may be approximately 0.2 mm. This height may be controlled by photoresist mask 32 thickness.
The present disclosure provides a method for low-cost integration of micron-scale permanent bias magnets within magnetoresistance sensors. In addition, the present disclosure provides a method for generating a strong, relatively uniform perpendicular magnetic bias field for magnetoresistance sensors. The perpendicular magnetic bias field may be used to maximize the sensitivity of the magnetoresistance sensors.
While the disclosure has been described with reference to various embodiments, those skilled in the art will appreciate that certain substitutions, alterations and omissions may be made to the embodiments without departing from the spirit of the disclosure. Accordingly, the foregoing description is meant to be exemplary only, and should not limit the scope of the disclosure as set forth in the following claims.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3892603, | |||
5729129, | Jun 07 1995 | Biosense, Inc | Magnetic location system with feedback adjustment of magnetic field generator |
5752513, | Jun 07 1995 | Biosense, Inc | Method and apparatus for determining position of object |
5782765, | Apr 25 1996 | DROGO IP LLC | Medical positioning system |
5893206, | Feb 04 1997 | Eastman Kodak Company | Method for the formation and polarization of micromagnets |
5982177, | Aug 08 1997 | Florida State University | Magnetoresistive sensor magnetically biased in a region spaced from a sensing region |
6172499, | Oct 29 1999 | Ascension Technology Corporation; ROPER ASCENSION ACQUISITION, INC | Eddy current error-reduced AC magnetic position measurement system |
6211666, | Feb 27 1996 | Biosense, Inc. | Object location system and method using field actuation sequences having different field strengths |
6241671, | Nov 03 1998 | STEREOTAXIS, INC | Open field system for magnetic surgery |
6246231, | Jul 29 1999 | Ascension Technology Corporation; ROPER ASCENSION ACQUISITION, INC | Magnetic field permeable barrier for magnetic position measurement system |
6427079, | Aug 09 1999 | CorMedica Corporation | Position and orientation measuring with magnetic fields |
6493573, | Oct 28 1999 | SURGICAL NAVIGATION TECHNOLOGIES, INC | Method and system for navigating a catheter probe in the presence of field-influencing objects |
6528991, | Jul 03 2001 | Ascension Technology Corporation; ROPER ASCENSION ACQUISITION, INC | Magnetic position measurement system with field containment means |
6636757, | Jun 04 2001 | Surgical Navigation Technologies, Inc. | Method and apparatus for electromagnetic navigation of a surgical probe near a metal object |
6676813, | Mar 19 2001 | Los Alamos National Security, LLC | Technology for fabrication of a micromagnet on a tip of a MFM/MRFM probe |
6690963, | Jan 24 1995 | Biosense, Inc | System for determining the location and orientation of an invasive medical instrument |
6701179, | Oct 28 1999 | SURGICAL NAVIGATION TECHNOLOGIES, INC | Coil structures and methods for generating magnetic fields |
6784660, | Mar 18 2002 | NORTHERN DIGITAL, INC | Magnetic position and orientation measurement system with magnetic field permeable attenuator |
6789043, | Sep 23 1998 | Johns Hopkins University, The | Magnetic sensor system for fast-response, high resolution, high accuracy, three-dimensional position measurements |
6812842, | Dec 20 2001 | Varian Medical Systems, Inc | System for excitation of a leadless miniature marker |
6822570, | Dec 20 2001 | Varian Medical Systems, Inc | System for spatially adjustable excitation of leadless miniature marker |
6838990, | Dec 20 2001 | Varian Medical Systems, Inc | System for excitation leadless miniature marker |
6856823, | Jun 18 2002 | NORTHERN DIGITAL, INC | Spiral magnetic transmitter for position measurement system |
7174202, | Jan 27 1993 | British Telecommunications | Medical navigation apparatus |
7176798, | Dec 20 2001 | Varian Medical Systems, Inc | System for spatially adjustable excitation of leadless miniature marker |
7324915, | Jul 14 2005 | Biosense Webster, Inc | Data transmission to a position sensor |
7373271, | Sep 20 2004 | NORTHERN DIGITAL, INC | System and method for measuring position and orientation using distortion-compensated magnetic fields |
7402996, | Mar 31 2004 | Japan Science and Technology Agency | Instrument and method for measuring three-dimensional motion |
20030011359, | |||
20030173953, | |||
20030233042, | |||
20050245821, | |||
20050261566, | |||
20060023369, | |||
20070078334, | |||
20080001756, | |||
20080269596, | |||
EP42707, | |||
JP2002365010, | |||
WO32179, | |||
WO9960370, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 21 2009 | General Electric Company | (assignment on the face of the patent) | / | |||
Jan 13 2010 | HUBER, WILLIAM HULLINGER | General Electric Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023981 | /0676 | |
Dec 06 2017 | General Electric Company | STRYKER EUROPEAN HOLDINGS I, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 046020 | /0621 | |
Feb 26 2019 | STRYKER EUROPEAN HOLDINGS III, LLC | Stryker European Operations Holdings LLC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 056969 | /0893 | |
Feb 19 2021 | STRYKER EUROPEAN HOLDINGS I, LLC | STRYKER EUROPEAN HOLDINGS III, LLC | NUNC PRO TUNC ASSIGNMENT SEE DOCUMENT FOR DETAILS | 056969 | /0771 |
Date | Maintenance Fee Events |
Nov 09 2015 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 24 2019 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 25 2023 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
May 08 2015 | 4 years fee payment window open |
Nov 08 2015 | 6 months grace period start (w surcharge) |
May 08 2016 | patent expiry (for year 4) |
May 08 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 08 2019 | 8 years fee payment window open |
Nov 08 2019 | 6 months grace period start (w surcharge) |
May 08 2020 | patent expiry (for year 8) |
May 08 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 08 2023 | 12 years fee payment window open |
Nov 08 2023 | 6 months grace period start (w surcharge) |
May 08 2024 | patent expiry (for year 12) |
May 08 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |