A liquid crystal display device includes a first substrate, a second substrate, a first vertical electrode, a second vertical electrode, a first pixel electrode, a first counter electrode, and a liquid crystal layer. The second substrate is disposed to be opposite to the first substrate, the liquid crystal layer is interposed between the first and second substrates. The liquid crystal layer includes polymer stabilized positive blue phase liquid crystal. The first vertical electrode is at an inner side of the first substrate, and faces the second substrate. The second vertical electrode is at an inner side surface of the second substrate and faces the first vertical electrode. The second vertical electrode and the first vertical electrode have different electrical potentials thus form a vertical electric field perpendicular to the first substrate and the second substrate. The first pixel electrode is at the inner side of the first substrate and faces the second substrate. The first counter electrode is at an inner side of the first substrate. The first pixel electrode and the first counter electrode have different electrical potentials. The first pixel electrode and the first counter electrode provide a horizontal electric field parallel to the first substrate and the second substrate.
|
1. A liquid crystal display device, comprising:
a first substrate;
a second substrate, disposed to be opposite to the first substrate;
a first vertical electrode, disposed at an inner side of the first substrate and facing the second substrate;
a second vertical electrode, disposed at an inner side of the second substrate and facing the first vertical electrode, the electrical potentials of the second vertical electrode and the first vertical electrode being different thereby generating a vertical electric field perpendicular to the first substrate and the second substrate;
a first pixel electrode, disposed at an inner side of the first substrate and facing the second substrate;
a first counter electrode, disposed at the inner side of the first substrate, the electrical potentials of the first pixel electrode and the first electrode being different thereby generating a horizontal electric field between the first pixel electrode and the first counter electrode, the horizontal electric field being parallel to the first and second substrates; and
a liquid crystal layer, disposed between the first and second substrate, the liquid crystal layer comprising a polymer stabilized positive blue phase liquid crystal.
20. A liquid crystal display device, comprising:
a first substrate;
a second substrate, dispose to be opposite to the first substrate;
a first pixel electrode, disposed at an inner side of the first substrate and facing the second substrate;
a first counter electrode, disposed at the inner side of the first substrate, the first pixel electrode and the first counter electrode having different electrical potentials, the first pixel electrode and the first counter electrode providing a horizontal electric field parallel to surfaces of the first and second substrates;
a second pixel electrode, disposed at an inner side of the second substrate and facing the first substrate;
a second counter electrode, disposed at the inner side of the second substrate and facing the first substrate, the second pixel electrode and the second counter electrode having different electrical potentials, and the horizontal electric field comprising an electric field generated between the second pixel electrode and the second counter electrode,
the second pixel electrode being disposed corresponding to the first counter electrode, the second counter electrode being disposed corresponding to the first pixel electrode, the second pixel electrode and the first counter electrode, and the second counter electrode and the first pixel electrode respectively generating a vertical electrical field perpendicular to the first and second substrates; and
a liquid crystal layer, disposed between the first and the second substrate, the liquid crystal layer comprising a polymer stabilized positive blue phase liquid crystal.
2. The liquid crystal display device of
3. The liquid crystal display device of
4. The liquid crystal display device of
5. The liquid crystal display device of
6. The liquid crystal display device of
a second pixel electrode, disposed at an inner side of the second substrate and facing the first substrate; and
a second counter electrode, disposed at the inner side of the second substrate and facing the first substrate, wherein the electrical potentials of the second pixel electrode and the second counter electrode being different, the horizontal electric field comprising an electrical field generated between the second pixel electrode and the second counter electrode.
7. The liquid crystal display device of
8. The liquid crystal display device of
9. The liquid crystal display device of
10. The liquid crystal display device of
11. The liquid crystal display device of
12. The liquid crystal display device of
13. The liquid crystal display device of
14. The liquid crystal display device of
15. The liquid crystal display device of
16. The liquid crystal display device of
17. The liquid crystal display device of
18. The liquid crystal display device of
19. The liquid crystal display device of
21. The liquid crystal display device of
22. The liquid crystal display device of
23. The liquid crystal display device of
|
This application claims the right of priority based on Taiwan Patent Application No. 098142983 entitled “Liquid Crystal Display Device”, filed on Dec. 15, 2009, which is incorporated herein by reference and assigned to the assignee herein.
1. Technical Field
The present invention relates to liquid crystal display devices, and in particular to a liquid crystal display device having a blue phase liquid crystal layer.
2. Related Art
Liquid crystal display devices have become the mainstream of development of display devices in recent years due to the advantages of low operation voltage, no radiation scattering, light weight and small size. Conventional liquid crystal display devices usually employ nematic crystal to change polarizing direction or status of the passing light, and employ a polarizer plate to convert the different polarizing status into bright/dark contrast for displaying; and thus the response time is relatively long.
On the other hand, response time of blue phase liquid crystal material is short, and thus the blue phase liquid crystal material begins to receive attention. Blue phase is liquid crystal phase between isotropic and cholesteric phase, and itself can be sorted into three phases: the first blue phase BPI, the second blue phase BPII, and the third blue phase BPIII. The third blue phase which has highest existing temperature is amorphous, and the first and second blue phases have cubic structure. Referring to
As shown in
However, blue phase liquid crystal is unstable, and thus can only exist in a very narrow temperature range having a width of about 1° C. Therefore, blue phase liquid crystal can not be easily applied in a common apparatus. To increase the operation temperature range of the blue phase liquid crystal, conventional methods include adding reactive monomer or forming light curable polymer stabilized blue phase liquid crystal by changing the ingredient for synthesizing thereof, which can stabilize the blue phase.
Referring to
Ideally, when there is no electric applied the polymer stabilized positive blue phase liquid crystal 34 should demonstrate the characteristic of optically isotropic. However, in practice, conventional polymer stabilized positive blue phase liquid crystal 34 can not demonstrate perfect isotropic property when there is no voltage applied; that is, the birefringence rate is greater than zero (Δn=n//−n⊥>0), and thus usually cause the problem of light leakage in dark state resulting in decreasing of the contrast ratio of display devices. Referring to
The present invention provides a liquid crystal display device, which is capable of solving the problem of light leakage in dark state of polymer stabilized positive blue phase liquid crystal.
The present invention provides a liquid crystal display device, which includes a first substrate, a second substrate, a first vertical electrode, a second vertical electrode, a first pixel electrode, a first counter electrode, and a liquid crystal layer. The second substrate is disposed to be opposite to the first substrate, the liquid crystal layer is interposed between the first and second substrates. The liquid crystal layer includes polymer stabilized positive blue phase liquid crystal. The first vertical electrode is at an inner side of the first substrate, and faces the second substrate. The second vertical electrode is at an inner side surface of the second substrate and faces the first vertical electrode. The second vertical electrode and the first vertical electrode have different electrical potentials thus form a vertical electric field perpendicular to the first substrate and the second substrate. The first pixel electrode in at an inner side of the first substrate and faces the second substrate. The first counter electrode is at an inner side of the first substrate. The first pixel electrode and the first counter electrode have different electrical potentials. The first pixel electrode and the first counter electrode provide a horizontal electric field parallel to the first substrate and the second substrate.
The present invention also provides a liquid crystal display device, which includes a first substrate, a second substrate, a first vertical electrode, a second vertical electrode, a first pixel electrode, a first counter electrode, a second pixel electrode, a second counter electrode, and a liquid crystal layer. The second substrate is disposed to be opposite to the first substrate, the liquid crystal layer is interposed between the first and second substrates. The liquid crystal layer includes polymer stabilized positive blue phase liquid crystal. The first pixel electrode and the first counter electrode are both at an inner side of the first substrate, and face the second substrate. The first pixel electrode and the first counter electrode have different electrical potentials. The first pixel electrode and the first counter electrode provide a horizontal electric field parallel to the surfaces of the first substrate and the second substrate. The second vertical electrode and the second counter electrode are both at an inner side surface of the second substrate and face the first substrate. The second pixel electrode and the second counter electrode have different electrical potentials. The horizontal electric field includes the electric field generated by the second pixel electrode and the second counter electrode. The second pixel electrode is disposed to corresponding to the first counter electrode; the second counter electrode is disposed to corresponding to the first pixel electrode. The second pixel electrode and the first counter electrode, the second counter electrode and the first pixel electrode respectively generate vertical electric fields perpendicular to the first and second substrates.
Accordingly, the present invention employs at least one pair of electrodes to provide a horizontal electric field for driving the polymer stabilized positive blue phase liquid crystal to increase the light transmittance thereby controlling the brightness of liquid crystal display devices. In addition, the present invention also employs at least one pair of electrodes to provide a vertical electric field for compensating the optical isotropy of the polymer stabilized positive blue phase liquid crystal such that the polymer stabilized positive blue phase liquid crystal have excellent optical isotropy characteristic when there is no horizontal electric field is applied. As a result, light leakage in the dark state is greatly reduced.
Other aspects, details, and advantages of the present display device are further described accompanying with preferred embodiments and figures as follows.
These and other features and advantages of the various embodiments disclosed herein will be better understood with respect to the following description and drawings, in which like numbers refer to like parts throughout, and in which:
The present invention utilizes the double-sided electrode design to produce horizontal and vertical electric fields in liquid crystal cell. The horizontal electric field enables the liquid crystal cell to display an excellent bright state, and the vertical electric field enables the liquid crystal cell to display an excellent dark state. Hereinafter, the liquid crystal display device of the present invention will be described in detail referring to embodiments accompanying with figures. However, the illustrated embodiments are not intended to be used to limit the scope of the present invention, and the description of the structure and operating procedure are not intended to be used to limit the operation procedure of the present invention. Any structure obtained from re-assembling the features and having equivalent functions are both the scope of the present invention. The figures are illustrative and are not drawn according to actual scales.
The first vertical electrode 104, the first pixel electrode 106 and the first counter electrode 108 can all be at an inner side of the first transparent substrate 102, and face the second transparent substrate 112. In addition, thin film transistor (TFT) and related circuit structure (not shown) such as scanning lines, gate insulator, channel layer, data lines, drain electrodes, protective layer can be formed on the first transparent substrate 102. Accordingly, the first transparent substrate 102, the first vertical electrode 104, the first pixel electrode 106, the first counter electrode 108, and the TFT and the related circuit structure form a TFT array substrate 122.
The second vertical electrode 114 is at an inner side of the second transparent substrate 112, and faces the first vertical electrode 104. The second vertical electrode 114, for example, can include a plane shaped conductive layer spanning across the first pixel electrode 106 and the first counter electrode 108. A black matrix (BM, not shown) is formed on the second transparent substrate 112 to define the area corresponding to a pixel region and mask the portion other than the display area for avoiding light leakage at the side. As such, the second transparent substrate 112, the color filter layer 130, the second vertical electrode 114, and the BM on the second transparent substrate 112 form the color filter substrate 124. In other embodiments, as known by one of ordinary skill in the art, the color filter layer 130 and the BM can also be formed on the first transparent substrate 102 to achieve light filtering effect. During the operation of the liquid crystal display device 100, the second vertical electrode 114 can be provided with a constant electrical potential, for example, can be provided with a positive electrical potential such that there is no need to use the TFT to switch signals corresponding to individual pixel area. For example, the second vertical electrode 114 can be the common electrode. Therefore, it is not necessary to employ a TFT array in the color filter substrate 124 of the liquid crystal display device 100, and thus the liquid crystal display device 100 has simplified structure, manufacturing process, and operating manner. In addition, the first counter electrode 108 has different electrical potential with the second vertical electrode 114. For example, the first counter electrode 108 can be provided with a negative electrical potential. However, it is not limited to do so.
Because the second vertical electrode 114 and the first vertical electrode 104 have different electrical potentials thus a vertical electrical field is generated between the second vertical electrode 114 and the first vertical electrode 104. The vertical electric field of the present invention is perpendicular to the first transparent substrate 102 and the second transparent substrate 112, and is used to compensate the optical isotropic characteristic of the polymer stabilized positive blue phase liquid crystal such that the polymer stabilized positive blue phase liquid crystal has excellent optical isotropic characteristic when there is no horizontal electric field is applied thereby efficiently reducing the light leakage in dark state.
When the liquid crystal display device 100 works, the first counter electrode 108 does not need to use TFT to switch signals corresponding to individual pixel area. For example, the first counter electrode 108 can be, but not limited to be, a common electrode. More specifically, the first vertical electrode 104 can include a plane shaped conductive layer, and is at an outer side of the fist pixel electrode 106 and the first counter electrode 108. The first vertical electrode 104 spans across the first pixel electrode 106 and the first counter electrode 108. The first vertical electrode 104 can be provided with a negative, but not limited to negative, electrical potential. The first pixel electrode 106 and the first counter electrode 108 can be between the second vertical electrode 114 and the first vertical electrode 104. The first pixel electrode 106 and the first counter electrode 108 have the same or similar distance from the liquid crystal layer. For example, the first pixel electrode 106 and the first counter electrode 108 can be formed with a conductive layer by a same patterning process. The first pixel electrode 106 and the first counter electrode 108 can respectively include finger shaped electrode, and are alternately arranged. The first pixel electrode 106 and the first counter electrode 108 have different electrical potentials. For example, in the present embodiment, the first pixel electrode 106 and the first counter electrode 108 can be respectively provided with negative electrical potential and positive electrical potential.
Because the first pixel electrode 106 and the first counter electrode 108 can provide a horizontal electric field, and thus the liquid crystal display device 100 can have an in-plane switch typed horizontal electric field. Referring together to
According to the position of the electrodes in
As shown in
Referring to
According to the liquid crystal display device and the driving manner of the present embodiment, the present embodiment mainly utilizes the double-sided electrode design to produce horizontal and vertical electric fields in liquid crystal cells thereby efficiently controlling the light transmittance of the polymer stabilized positive blue phase liquid crystal, and thus the structure of the liquid crystal display device is not limited as aforementioned. Referring to
As shown in
When the liquid crystals display device 200 works, the first counter electrode 208 and the second counter electrode 218 can be continuously provided with constant electrical potentials. For example, in the present embodiment, the first counter electrode 208 and the second counter electrode 218 can be both provided with positive, but not limited to positive, electrical potentials such that it is not necessary to employ TFT to switch signals corresponding to individual pixel area. The liquid crystal display device 200 utilizes the TFT in the TFT array substrate 222 to control whether to electrically conduct the first pixel electrode 206, and the color filter substrate 224 can also include additional TFT to control whether the second pixel electrode 216 is electrically conducted. When electrically conducted, the first pixel electrode 206 and the second pixel electrode 216, for example, can be provided with negative electrical potentials.
The second counter electrode 218 is disposed to corresponding to the first pixel electrode 206, and the second pixel electrode is disposed to corresponding to the first counter electrode 208. Because the second counter electrode 218 and the first pixel electrode 206 have different electric potentials, and the first counter electrode 208 and the second pixel electrode 216 also have different electrical potentials. Vertical electric fields are respectively generated between the first counter electrode 208 and the second pixel electrode 216, and between the second counter electrode 218 and the first pixel electrode 206.
On the other hand, because the first pixel electrode 206 and the first counter electrode 208 can have different electrical potentials, and the second pixel electrode 216 and the second counter electrode 218 can also have different electrical potentials. Horizontal electric fields can be respectively generated between the first pixel electrode 206 and the first counter electrode 208, and between the second pixel electrode 216 and the second counter electrode 218. Thus, the double sided electrode design can also improve the transmittance of the polymer stabilized positive blue phase liquid crystal.
As shown in
Vertical electric fields can be respectively generated between the first vertical electrode 304 and the second vertical electrode 314, between the second pixel electrode 316 and the first counter electrode 308, and between the second counter electrode 318 and the first pixel electrode 306. Horizontal electric fields can be respectively generated between the first vertical electrode 304 and the first counter electrode 308, between the second vertical electrode 314 and the second counter electrode 318, between the first pixel electrode 306 and the first counter electrode 308, and between the second pixel electrode 316 and the second counter electrode 318.
As shown in
As such, vertical electric fields can be generated between the first vertical electrode 404 and the second vertical electrode 414, between the second pixel electrode 416 and the first counter electrode 408, and between the second counter electrode 418 and the first pixel electrode 406; horizontal electric fields can be generated between the first vertical electrode 404 and the first counter electrode 408, between the vertical electrode 414 and the second counter electrode 418, between the first pixel electrode 406 and the first counter electrode 408, and between the second pixel electrode 416 and the second counter electrode 418.
In addition, the structure and the driving manner of the present invention are not limited as above embodiments. For example, in other embodiments, the voltage, shape, or position of the first vertical electrode, the second vertical electrode, the first pixel electrode, the first counter electrode, the second pixel electrode and the second counter electrode can be varied according to practical requirements.
In summary, the present invention employs the design of electrode structure to produce vertical electrical fields and horizontal electrical fields to compensate the optical isotropic characteristic of the polymer stabilized positive blue phase liquid crystal. As the intensity of the horizontal electric fields increases, light leakage in the dark state is reduced and the contrast ratio is improved. As such, the liquid crystal display device of the present invention not only has the advantage of the polymer stabilized positive blue phase liquid crystal such as fast response time and wide working temperature range, but also can reduce light leakage in the dark state of the polymer stabilized positive blue phase liquid crystal such that the contrast ratio can be improved. Therefore, the display effect of the liquid crystal display device is efficiently improved.
The above description is given by way of example, and not limitation. Given the above disclosure, one skilled in the art could devise variations that are within the scope and spirit of the invention disclosed herein, including configurations ways of the recessed portions and materials and/or designs of the attaching structures. Further, the various features of the embodiments disclosed herein can be used alone, or in varying combinations with each other and are not intended to be limited to the specific combination described herein. Thus, the scope of the claims is not to be limited by the illustrated embodiments.
Tsai, Cheng-Yeh, Chen, Po-Lun, Huang, Tai-Hsiang
Patent | Priority | Assignee | Title |
10317717, | Mar 22 2013 | Semiconductor Energy Laboratory Co., Ltd. | Liquid crystal display device |
10901255, | Mar 22 2013 | Semiconductor Energy Laboratory Co., Ltd. | Liquid crystal display device |
8983240, | Dec 08 2011 | Universitaet Stuttgart | Electro-optical phase modulator with an optically isotropic material which becomes optically anisotropic under an electric field |
9500925, | Apr 01 2013 | OPTRONIC SCIENCES LLC | Tri-state liquid crystal display panel |
9513515, | Sep 09 2013 | Samsung Display Co., Ltd. | Liquid crystal display having improved response speed |
9581849, | Mar 22 2013 | SEMICONDUCTOR ENERGY LABORATORY CO , LTD | Liquid crystal display device |
9891459, | Mar 22 2013 | Semiconductor Energy Laboratory Co., Ltd. | Liquid crystal display device |
Patent | Priority | Assignee | Title |
6924876, | Feb 25 2000 | Sharp Kabushiki Kaisha | Liquid crystal display device |
7342632, | Jan 16 2004 | Sharp Kabushiki Kaisha | Display element and display device |
7369204, | Jul 21 2006 | Research Foundation of the University of Central Florida | Fast response liquid crystal mode |
8045117, | Dec 22 2003 | Sharp Kabushiki Kaisha | Display element and display device |
20050185105, | |||
20080129901, | |||
20090079919, | |||
20110234562, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 11 2010 | TSAI, CHENG-YEH | AU Optronics Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024338 | /0645 | |
Feb 11 2010 | HUANG, TAI-HSIANG | AU Optronics Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024338 | /0645 | |
Feb 11 2010 | CHEN, PO-LUN | AU Optronics Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024338 | /0645 | |
May 05 2010 | AU Optronics Corp. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
May 05 2015 | ASPN: Payor Number Assigned. |
Oct 28 2015 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 31 2019 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Nov 01 2023 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
May 15 2015 | 4 years fee payment window open |
Nov 15 2015 | 6 months grace period start (w surcharge) |
May 15 2016 | patent expiry (for year 4) |
May 15 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 15 2019 | 8 years fee payment window open |
Nov 15 2019 | 6 months grace period start (w surcharge) |
May 15 2020 | patent expiry (for year 8) |
May 15 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 15 2023 | 12 years fee payment window open |
Nov 15 2023 | 6 months grace period start (w surcharge) |
May 15 2024 | patent expiry (for year 12) |
May 15 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |