An apparatus, a method and a recording medium for optical near-field recording are proposed. The apparatus includes a light source for generating a reading light beam, which is illuminated onto a near-field optical recording medium. The apparatus further includes a detector for generating a gap error signal from a light beam returning from the near-field optical recording medium. A data signal is derived from an output signal of the detector by a signal processor.
|
4. A method for reading from a near-field optical recording medium, the method comprising:
generating a reading light beam,
illuminating the near-field optical recording medium with the reading light beam with a reading lens system comprising an objective lens and a solid immersion lens;
detecting an output signal from a light beam returning from the near-field optical recording medium with a detector;
deriving a gap error signal from the output signal of the detector; and
deriving a data signal from the output signal of the detector;
wherein the reading light beam is an annular light beam wherein an inner radius ri of the reading light beam is ri=f/nsil and an outer radius ro of the reading light beam is ro=f*NA where f is the focal length of the reading lens system NA is the numerical aperture of the reading lens system and nsil is the refractive index of the solid immersion lens.
1. An apparatus for reading from a near-field optical recording medium, the apparatus comprising:
a light source for generating a reading light beam;
a reading lens system comprising an objective lens and a solid immersion lens for illuminating the near-field optical recording medium with the reading light beam;
a detector for generating an output signal from a light beam returning from the near-field optical recording medium; and
a signal processor for deriving a gap error signal and a data signal from the output signal of the detector;
wherein the reading light beam is an annular light beam wherein an inner radius ri, of the reading light beam is ri=f/nsil and an outer radius ro of the reading light beam is ro=f*NA where f is the focal length of the reading lens system, NA is the numerical aperture of the reading lens system, and nsil is the refractive index of the solid immersion lens.
2. The apparatus according to
3. The apparatus according to
5. The method according to
6. The method according to
|
This application claims the benefit, under 35 U.S.C. §119 of European Patent Application 09305846.9, filed Sep. 15, 2009.
The present invention relates to a method and an apparatus for optical near-field recording. The invention further relates to a near-field optical recording medium suitable for the near-field optical recording method and apparatus.
Optical data storage is generally limited by the optical resolution of the read/write-system. Straightforward methods of increasing the optical resolution include using a shorter wavelength and a larger numerical aperture NA, at the costs of lens complexity. Further approaches are narrowing the allowable tilt margins for the optical storage media or reducing the wavelength of the scanning laser into the blue or near-UV range. A different approach for reducing the focus spot size in an optical data storage system is using near-field optics with a high numerical aperture (NA>1). This high numerical aperture is generally achieved by help of a solid immersion lens (SIL). While conventional systems like CD, DVD or BD operate in the optical far-field regime, which is described by classical optics, the aforementioned new systems work in the optical near-field regime, which is described by near-field optics. For conventional systems the working distance, i.e. the air gap between the surface of the optical storage medium and the first optical surface of the read/write-head, usually the objective lens, is in the scale of 100 μm. In contrast, systems making use of near-field optics need a very small working distance or air gap, which is in the scale of 50 nm or less. The small air gap is necessary to ensure that evanescent waves may couple into optical storage medium. To control the distance between the read/write-head and the optical storage medium a so-called gap error signal (GES) is generated. This control method makes use of the fact that the amount of reflected light due to total internal reflection in the solid immersion lens is proportional to the size of the air gap at least in the size range used for near-field storage. An optical storage system making use of near-field optics and the gap error signal is disclosed in US 2009/0168633. Similar systems are disclosed in F. Zijp et al.: “High-Density Near-Field Optical Recording With a Solid Immersion Lens, Conventional Actuator, and a Robust Air Gap Servo”, IEEE Trans. Mag. Vol. 41 (2005), pp. 1042-1046, and C. A. Verschuren et al.: “Near-Field Recording with a Solid Immersion Lens on Polymer Cover-layer Protected Discs”, Jap. J. Appl. Phys. Vol. 45 (2006), pp. 1325-1331.
It is an object of the invention to propose a simplified solution for reading from a near-field optical recording medium, as well as an optical recording medium adapted to this simplified solution.
According to a first aspect of the invention, an apparatus for reading from a near-field optical recording medium has a light source for generating a reading light beam and a detector for generating a gap error signal from a light beam returning from the near-field optical recording medium. The apparatus includes a signal processor for deriving a data signal from an output signal of the detector.
Similarly, according to a further aspect of the invention, a method for reading from a near-field optical recording medium has the steps of:
The invention proposes to use the gap error signal, which is generated in any case for focus control, to detect the pits on the near-field optical recording medium, i.e. to derive a data signal. The amount of light that is totally reflected at the bottom of a solid immersion lens used for illuminating the near-field optical recording medium with the reading light beam depends on the distance between this lens and the surface of the near-field optical recording medium. If the pits are close to the solid immersion lens, a part of the light that would otherwise be totally reflected is coupled into the pit and continues to propagate into the near-field optical recording medium. Consequently, a part of the energy is lost. The sequence of pits and lands (gaps) thus results in a HF modulation of the gap error signal, which corresponds to the data signal. This HF modulation is derived from the output signal of the detector with a signal processor. Only a small modification of the apparatus is necessary for this purpose. At the same time, a dedicated optical path for obtaining the data signal can be omitted.
Preferably, the signal processor is a high-pass filter. As the data signal is a high-frequency modulation of the gap error signal, it can easily be derived from the gap error signal by a high-pass filter. An additional low-pass filter is advantageously provided for deriving the gap error signal from the output signal of the detector. This allows to use the gap error signal for focus control.
Favorably, the reading light beam is an annular light beam. The modulation caused by the pits does primarily affect the fraction of the reading light beam that is totally reflected at the bottom of the solid immersion lens. This reflected fraction forms an annular cone. Therefore, an annular shaped reading light beam further improves the signal modulation. In addition, annular beams allow to generate a smaller focal spot than full beams, which enables to further increase the data capacity. The generation of annular or doughnut-shaped light beams is described, for example, in H. Kawauchi et al.: “Simultaneous generation of helical beams with linear and radial polarization by use of a segmented half-wave plate”, Opt. Lett. Vol. 33 (2008), pp. 399-401, and S. Quabis et al.: “Generation of a radially polarized doughnut mode of high quality”, Appl. Phys. B Vol. 81 (2005), pp. 597-600.
Preferably, an inner radius ri of the reading light beam is ri=f/nsil and an outer radius ro of the reading light beam is ro=f*NA, where f is the focal length of a reading lens system having an objective lens and a solid immersion lens, NA is the numerical aperture of the reading lens system, and nsil is the refractive index of the solid immersion lens. If these conditions are fulfilled, the modulation due to the evanescent coupling of the pits and the near-field is maximized.
According to still a further aspect of the invention, a near-field optical recording medium with pits is provided, which are formed by elevations or depressions of the surface of the optical recording medium. Favorably the pits have a height or a depth between 10 nm and 30 nm. As the pits are arranged at the surface of the optical recording medium, they lead to a modulation of the gap error signal. The proposed height or depth is sufficient to generate a reliably detectable modulation of the gap error signal. At the same time the small height or depth simplifies the manufacturing of the near-field optical recording medium.
Advantageously, the pits have a particularly large width, preferably larger than 0.5λ/NA, where λ is a wavelength used for readout and NA is a numerical aperture used for readout. For example, for a reading wavelength of 405 nm and a numerical aperture of 1.5 the width of the pits is larger than 270 nm. In this way the pits cover a large portion of the reading light spot, which improves the coupling of the evanescent waves into the pit. In addition, the particularly wide pits further facilitate manufacturing of the near-field optical recording medium.
Favorably, the near-field optical recording medium does not have a reflective coating. The detection mechanism based on coupling of evanescent waves allows to use a near-field optical recording medium without any reflective coating. A simple molded plastic substrate is sufficient. Apparently this reduces the number of manufacturing steps for the near-field optical recording medium, and hence the manufacturing cost.
For a better understanding the invention shall now be explained in more detail in the following description with reference to the figures. It is understood that the invention is not limited to this exemplary embodiment and that specified features can also expediently be combined and/or modified without departing from the scope of the present invention as defined in the appended claims. In the figures:
A typical dependency of the gap error signal GES on the gap size as determined by F. Zijp et al. in “High-Density Near-Field Optical Recording With a Solid Immersion Lens, Conventional Actuator, and a Robust Air Gap Servo”, IEEE Trans. Mag. Vol. 41 (2005), pp. 1042-1046, is depicted in
An apparatus 1 for reading from a near-field optical recording medium is illustrated in
An apparatus 1 according to the invention for reading from a near-field optical recording medium 13 is depicted in
As explained before the modulation caused by the pits does primarily affect the fraction of the reading light beam that is totally reflected at the bottom of the solid immersion lens. An annular shaped reading light beam further improves the signal modulation. Preferentially, the inner radius ri of the reading light beam is ri=f/nsil and the outer radius ro of the reading light beam is ro=f*NA, where f is the focal length of the lens system, NA is the numerical aperture of the lens system (including the solid immersion lens) and nsil is the refractive index of the solid immersion lens. If these conditions are fulfilled, the modulation due to the evanescent coupling of the pits and the near-field is maximized. Also, it is known that under certain conditions annular beams have a smaller focal spot than full beams. This fact can be used to further increase the data capacity.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5946282, | Jul 24 1997 | Kabushiki Kaisha Toshiba | Optical recording/reproducing apparatus |
20020054561, | |||
20050190666, | |||
20060187773, | |||
20080089210, | |||
20090059741, | |||
20090067302, | |||
20090168633, | |||
20090180372, | |||
20090185306, | |||
20090190453, | |||
20090290456, | |||
JP2000206411, | |||
JP2002319153, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 11 2010 | KNITTEL, JOACHIM | Thomson Licensing | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025027 | /0056 | |
Sep 14 2010 | Thomson Licensing | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Oct 09 2015 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 06 2020 | REM: Maintenance Fee Reminder Mailed. |
Jun 22 2020 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
May 15 2015 | 4 years fee payment window open |
Nov 15 2015 | 6 months grace period start (w surcharge) |
May 15 2016 | patent expiry (for year 4) |
May 15 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 15 2019 | 8 years fee payment window open |
Nov 15 2019 | 6 months grace period start (w surcharge) |
May 15 2020 | patent expiry (for year 8) |
May 15 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 15 2023 | 12 years fee payment window open |
Nov 15 2023 | 6 months grace period start (w surcharge) |
May 15 2024 | patent expiry (for year 12) |
May 15 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |