Methods and systems of operating a communication system are provided. One method comprises establishing at least one communication link between a mobile-to-mobile communication network of mobile nodes and at least one route computing system via gateway node. The gateway node is one of the mobile nodes that is in communication with a wireless network. Moreover, the route computing system is in communication with a terrestrial network that is also in communication with the wireless network. The at least one established communication link is then used to communicate messages.

Patent
   8190147
Priority
Jun 20 2008
Filed
Jun 20 2008
Issued
May 29 2012
Expiry
Jan 22 2031
Extension
946 days
Assg.orig
Entity
Large
36
146
all paid
1. A method of operating an aircraft communication system, the method comprising:
establishing a connection between at least one aircraft that is a member of an air-to-air communication network of aircraft and a ground station that is a part of a wireless network;
using the connection to communicate messages between an aircraft in the air-to-air communication network and a terrestrial end system;
in response to establishing the connection between the aircraft and the ground station, sending a register message and topology information from the aircraft to a route computing system, wherein the register message and topology information are sent via the wireless network and a terrestrial network that is in communication with the wireless network;
in response to establishing the connection between the aircraft and the ground station, advertising by the aircraft to other aircraft in the air-to-air communication network that the aircraft is available as a gateway node between the air-to-air communication network and the wireless network; and
dynamically updating topology information maintained by the route computing system based on the topology information received from the aircraft.
8. An aircraft communication system for use in an aircraft, the system comprising:
a communication transceiver configured to communicate messages between aircraft in an associated ad-hoc air-to-air communication network;
a wireless network transceiver configured to establish a connection with a wireless network; and
a communication management function configured to switch the aircraft communication system into a gateway mode when the wireless network transceiver has established the connection with the wireless network, wherein the communication management function is configured to, in response to the connection with the wireless network being established, use the wireless network transceiver to send a register message and topology information to a route computing system, wherein the register message and topology information are sent via the wireless network and a terrestrial network that is in communication with the wireless network, and wherein topology information maintained by the route computing system is dynamically updated based on the topology information sent from the aircraft; and
wherein the communication management function is configured to, in response to the connection with the wireless network being established, use the communication transceiver to advertise to other aircraft in the associated ad-hoc air-to-air communication network that the advertising aircraft is available as a gateway node between the associated ad-hoc air-to-air communication network and the wireless network.
12. A communication system comprising:
a ground station controller in communication with at least one wireless network; and
at least one ad-hoc air-to-air communication network, each ad-hoc communication network made up of a plurality of aircraft in communication with each other, at least one of the plurality of aircraft within the radio range of the wireless network being designated as a gateway to the ad-hoc air-to-air communication network, each gateway including,
a communication transceiver configured to communicate messages between aircraft,
a wireless network transceiver configured to communicate with the wireless network, and
a communication management function configured to switch the aircraft communication system into a gateway mode when the wireless network transceiver has established the connection with the wireless network;
wherein the communication management function is configured to, in response to the connection with the wireless network being established, use the wireless network transceiver to send a register message and topology information to the ground station controller, wherein the register message and topology information are sent via the wireless network and a terrestrial network that is in communication with the wireless network, and wherein topology information maintained by the ground station controller is dynamically updated based on the topology information sent from the aircraft; and
wherein the communication management function is configured to, in response to the connection with the wireless network being established, use the communication transceiver to advertise to other aircraft in the ad-hoc air-to-air communication network that the advertising aircraft is available as a gateway node between the ad-hoc air-to-air communication network and the wireless network.
2. The method of claim 1, further comprising:
routing messages to a select aircraft in the air-to-air communication network via the gateway based on the then current topology information of the air-to-air communication network and on position information of the air-to-air communication network.
3. The method of claim 1, further comprising:
translating network addresses of downlink messages from aircraft in the air-to-air communication network to network addresses that can be sent over the wireless network; and
translating network addresses of uplink messages received over the wireless network to network addresses that can be sent over the air-to-air communication network.
4. The method of claim 1, further comprising:
registering the gateway with the route computing system.
5. The method of claim 4, further comprising:
upon at least one of prior to leaving and upon leaving the radio range of the wireless network, sending an unregister signal to the route computing system to unregister the gateway and advertising to the other aircraft in the air-to-air network that the designated gateway will cease to provide gateway functions.
6. The method of claim 1, further comprising:
advertising to any aircraft in the air-to-air communication networks of the status of their associated gateway.
7. The method of claim 1, further comprising:
providing a protocol specific address for the gateway and a communication peer based on a supplied node identifier.
9. The system of claim 8, further comprising:
a surveillance transceiver: and
surveillance equipment in communication with the surveillance transceiver, the surveillance equipment and the surveillance transceiver used at least in part by the communication management function to determine the topology of the associated ad-hoc air-to-air communication network.
10. The system of claim 8, wherein the communication management function is further configured to encapsulate downlink messages with protocol specific addresses and extracting messages from uplink messages having protocol specific addresses.
11. The system of claim 8, wherein the communication management function is configured to implement optimal route algorithms to direct messages to select aircraft in the associated ad-hoc air-to-air network.
13. The system of claim 12, further comprising:
a memory coupled to the ground station controller configured to store received topology information regarding the ad-hoc air-to-air communication networks, the ground station controller further configured to determine routes for messages based on the stored topology.
14. The system of claim 13, wherein the ground station controller is further configured to update the stored topology associated with the ad-hoc air-to-air communication network when a more current topology of the ad-hoc air-to-air communication network is received.
15. The system of claim 12, wherein the communication management function is further configured to encapsulate downlink messages into protocol specific messages for transmission by the wireless network transmitter and extract uplink messages from protocol specific messages received by the wireless network transmitter.

Existing aeronautical data link services based on VHF ground stations, which are installed across landmasses to provide line-of-sight air-to-ground data link communications, are relatively expensive for airspace users. This is in part due to capital equipment required to install the ground stations as well as on going maintenance costs. In particular, current domestic aeronautical data links (ACARS) use an expensive, in terms of both capital and maintenance, ground station network where the ground stations are spaced approximately every 150 miles, where 150 miles is the approximate radio range of VHF communications from an aircraft. This results in hundreds of ground stations, used only for aeronautical data link, in high density domestic airspaces in the US, Europe and other areas around the world. These ACARS networks work in a star configuration where ground stations are connected to a central processor which serves as the master router. The central processor knows the ground station used for a downlink from an aircraft and uses that same ground station for an uplink to the aircraft. If the aircraft does not respond to an uplink, the central processor sends the message out via adjacent ground stations until it finds the aircraft.

Air-to-air networking provides one possible solution which does not rely on capital intensive ground stations. In an air-to-air network, aircraft form mobile nodes capable of relaying messages from one aircraft to another aircraft or to a ground station at the intended destination which is beyond the communication range of the originating aircraft. Air-to-air networks, where the message is relayed entirely via the air-to-air network from the source to the destination, however, have a disadvantage when a message needs to be relayed over a long distance because they consume more radio frequency spectrum than direct air-to-ground communications.

For the reasons stated above and for other reasons stated below which will become apparent to those skilled in the art upon reading and understanding the present specification, there is a need in the art for a cost effective method for aeronautical communications.

The above-mentioned problems of current systems are addressed by embodiments of the present invention and will be understood by reading and studying the following specification. The following summary is made by way of example and not by way of limitation. It is merely provided to aid the reader in understanding some of the aspects of the invention.

In one embodiment, a method of operating a communication system is provided. The method comprises establishing at least one communication link between a mobile-to-mobile communication network of mobile nodes and at least one route computing system via gateway node. The gateway node is one of the mobile nodes that is in communication with a wireless network. Moreover, the route computing system is in communication with a terrestrial network that is also in communication with the wireless network. The at least one established communication link is then used to communicate messages.

The present invention can be more easily understood and further advantages and uses thereof more readily apparent, when considered in view of the detailed description and the following figures in which:

FIG. 1 illustrates a communication network of one embodiment of the present invention;

FIG. 2 illustrates a register and unregister flow diagram of one embodiment of the present invention;

FIG. 3A illustrates an uplink message flow diagram of one embodiment of the present invention;

FIG. 3B illustrates an uplink message flow diagram of another embodiment of the present invention;

FIG. 4 illustrates a downlink message flow diagram of one embodiment of the present invention; and

FIG. 5 is a block diagram of a vehicle communication system of one embodiment of the present invention.

In accordance with common practice, the various described features are not drawn to scale but are drawn to emphasize specific features relevant to the present invention. Reference characters denote like elements throughout Figures and text.

In the following detailed description, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration specific embodiments in which the inventions may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that logical, mechanical and electrical changes may be made without departing from the spirit and scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the claims and equivalents thereof.

Embodiments of the present invention utilize hybrid air-to-air and wireless networks to provide aeronautical communications. In particular, in embodiments, air-to-air networks are used until an aircraft comes within the range of a wireless network. This is possible, with the emergence of wireless networks with metropolitan coverage of approximately several kilometers up to 100 kilometers and beyond. The use of wireless networks provides a cost effective solution for aeronautical communications. Embodiments take advantage of commercially available wireless networks, such as but not limited to, WiMAX and Wireless Regional Area Networks (WRANs) which are emerging in the marketplace. Since WiMAX and WRAN can handle significantly more data traffic than ACARS and will have many more paying customers, the cost per kilobyte should be much less. The drawback is the shorter range. As discussed above, Wireless WiMAX will likely have ranges up to several km and WRANs perhaps up to 100 km. To communicate with aircraft further away from the WiMAX or WRAN access point or base station, this invention makes use of air-to-air networking, where the aircraft act as ad-hoc nodes. One element of the communication system of embodiments is a Ground Station Controller which is a router that maintains the routing topology of aircraft (mobile nodes) that are within communications range of a wireless access point (transceiver).

Referring to FIG. 1, an example of a communication network 100 of one embodiment is illustrated. As illustrated, this network 100 includes ground station controllers (GSC) 106 (1-N) and a terrestrial end system 104. Each GSC 106 can be generally referred to as a route computing system. As discussed above, each GSC 106 is a router that maintains the topology of aircraft that are within communication range of wireless access points in a memory 105. The network 100 also includes aircraft 102-1 through 102-11, ground stations 108-1 through 108-3 and an end system 104. In FIG. 1, some aircraft 102 include an indication of a radio range 110-1 through 110-6. For example, aircraft 102-2 has a radio range 110-1. The ground stations 108 also include an indication of a radio range 112-1 through 112-3. For example, ground station 108-1 has a radio range of 112-1. The ground stations 108 are in communication with the GSC 106 via communication links 114-1 through 114-3 which are part of a network such as but not limited to the internet. The network can be generally referred to as a terrestrial network. In embodiments, the aircraft 102 form ad-hoc communication networks to pass messages between communication peers in a communication network 100. The communication peers are made up of the aircrafts 102 and the end system 104. Although, embodiments of the present invention are described above and below as applying to air-to-air communication networks, other embodiments apply to any type of mobile-to-mobile communication network and the present invention is not limited to air-to-air communication networks.

As discussed above, embodiments establish communication paths through the communication network 100. That is, embodiments establish communication paths both to and from any airborne (mobile) node and a terrestrial node (one fixed, wired or wireless on a network such as an internet network) via an air-to-air network and a WiMAX, WRAN or similar wireless communication network (herein generally referred to as a Wireless Network (WN)). Referring to FIG. 2, a register and unregister flow diagram 200 is illustrated. It illustrates one method of registering and unregistering a gateway with a GSC as well as the topology information transfer. As illustrated, the process begins when an aircraft (node) establishes a connection with a WN (202). Once, a connection is established between the node (which will be the gateway) and the WN through a respective ground station 108, the node sends the topology information it has to the GSC over a terrestrial network such as but not limited to an internet protocol (IP) Network (204). The topology information relates to the connectivity status, location and identification of nodes (aircraft) that make up the air-to-air network with which the gateway node is associated. An example of a system that discovers the topology of the air-to-air network is provided in the commonly assigned patent application having an application Ser. No. 12/025,685, entitled “Use of Alternate Communication Networks to Complement an Ad-Hoc mobile node to Mobile Node Communication Network”, which is herein incorporated in its entirety. If the gateway node is not already registered with the GSC, it registers itself as a gateway to its associated air-to-air network with the GSC (204). The GSC dynamically updates topology information in the memory 105 associated with each registered gateway based on the received topology information (206). In embodiments, the gateway also initially advertises to its associated air-to-air network that it is available as a gateway to the ground (203). In embodiments, the gateway further periodically advertises to its associated air-to-air network that it is still available as a gateway to the ground. Further in embodiments, each gateway periodically sends its then current topology to the GSC (204). Examples of gateway nodes (or gateway aircraft) are aircraft 102-5, 102-6 and 102-11 of FIG. 1.

As also illustrated, in flow diagram 200 of FIG. 2, in embodiments, when a gateway node determines it is leaving the radio range of the WN (208), the gateway node sends an unregister message though the respective ground station to the GSC (210). The GSC then dynamically updates its topology information based on the received information (206). Different events can be used to trigger an unregister message. Examples of events include but are not limited to, an aircraft departing an airport which has a WN access point, the aircraft traveling a predetermined distance since it established connectivity with the WN access point as well as events determined by algorithms that indicate the gateway node is moving outside of the range of a peer receiver. By unregistering the gateway aircraft, the GSC is prevented from using the aircraft as an entry point to the air-to-air communication network after the aircraft has left the WN coverage. As FIG. 2 also illustrates, the node also advertises to its associated air-to-air network that it is no longer available as a gateway to the ground when it determines it is leaving the radio range of the WN (212).

FIG. 3A illustrates an uplink message flow diagram 300 of one embodiment of the present invention. In particular, it illustrates an example of one method of delivering a message to an aircraft through the communication network 100. In this example, an end system 104 wants to deliver a message to an aircraft. The end system 104 sends the uplink message to a GSC 106 (302). The GSC selects a specific aircraft gateway based on the then current topology information it has on the air-to-air networks in the communication network 100 (304). The GSC encapsulates the uplink information in a message having a protocol specific format used by the wireless network and addresses the message to the selected gateway (306). An example of a message protocol is an IP message having an IP address of the selected gateway. Although, the following description describes embodiments using IP messages and IP addresses, the present invention is not limited to IP messages. As stated above, any type of terrestrial network having its own protocol can be used. The GSC then transmits the protocol specific message to the selected gateway via the associated ground station 108 through the internet (308). Since a protocol specific message is used, basic routing used by the terrestrial network directs the delivery of the protocol specific message through the ground station (108) to the gateway aircraft (102). Once, the gateway receives the protocol specific message it extracts the uplink message (310). In embodiments, the encapsulated message contains addressing information used to determine routing of the message to the destination aircraft through the air-to-to air network. The addressing information may include but is not limited to, aircraft tail number, an International Civil Aviation Organization (ICAO) aircraft ID address or another type of address identification scheme. The gateway then uses the air-to-air network to deliver the uplink message to the destination aircraft (312) based on the then current topology of the air-to-air communication network.

Referring to FIG. 1, an example of the delivery of an uplink message is provided. In this example, end system 104 needs to deliver an uplink message to aircraft (node) 102-1. In this example, the end system 104 sends the uplink message to a GSC 106 which in this example is GSC 106-1. Once the GSC 106 receives the message, it determines where the destination aircraft is based on its then current topology information received via the gateway aircraft 102-5. In this example, GSC 106 will recognize based on the then current topology information that the destination aircraft 102-1 can be reached via gateway aircraft 102-5 through a WN of ground station 108-1 and the air-to air network made up of gateway aircraft 102-5, aircraft 102-4, aircraft 102-3, aircraft 102-2 and the destination aircraft 102-1. Communication link 114-1 (like connections 114-2 and 114-3) are available internet or private network connections. In one embodiment using an internet connection, an IP address of the gateway aircraft 102-5 is used to deliver the uplink message over communication link 114-1. Accordingly, based on this information, internet routers send the uplink message to ground station 108-1 via communication link 114-1. Ground station 108-1 then transmits the uplink message via the wireless network (WN) to gateway aircraft 102-5 that is within the radio range 112-1 of the WN. The uplink message is then passed to destination aircraft 102-1, via the path through the air-to air network made up of gateway aircraft 102-5, aircraft 102-4, aircraft 102-3, aircraft 102-2 and the destination aircraft 102-1.

FIG. 3B illustrates another upload message flow diagram (320) of another embodiment of the present invention. In this embodiment, the process starts when the end system 104 determines it needs to send a message to an aircraft 102. The end system 104 sends a message to the GSC 106 indicating the destination aircraft (322). Based on the then current topology information that it has, the GSC 106 determines which gateway 102-5, 102-6 or 102-11, provides an optimal communication link to the select aircraft (324). In one embodiment, a domain name server (DNS) like server is used to translate a host name of the gateway to a protocol specific address such as an IP address. The GSC 106 then provides the protocol specific address of the gateway 102-5, 102-6 or 102-11 to the end system 104 (326). The end system 104 then uses the IP address to communicate with the aircraft 102 via the select gateway 102-5, 102-6 or 102-11. For example, referring to FIG. 1, end system 104 wants to send a message to aircraft 102-10. In this embodiment, end system 104 tells GSC 106-1 (which can be referred to as a route computing system 106-1) that it wants to send a message to aircraft 102-10. GSC 106-1 checks its then current topology and determines that an optimal path to aircraft 102-10 is through gateway 102-11. GSC 106-1 then sends the protocol specific address of gateway 102-11 to the end system 104. End system 104 then sends its message to aircraft 102-10 using the protocol specific address for gateway 102-11. Gateway 102-11 then extracts the message and transmits it to the destination aircraft 102-10.

FIG. 4, illustrates a downlink message flow diagram 400 of one embodiment. In this example, a message is to be sent from an aircraft to the select end system. First the originating aircraft determines a gateway aircraft to use to deliver the downlink message. In one embodiment, an optimal path algorithm is applied to the topology of the air-to-air network associated with the aircraft to select the gateway aircraft (402). The downlink message is then passed through the air-to-air network to the gateway aircraft (404). The gateway aircraft then communicates the message over the WN where it is delivered to the terrestrial destination (406). In one embodiment, the gateway aircraft is configured with the terrestrial destination address and basic internet routing. In another embodiment, the source aircraft addresses the message to the end-system directly without the need to configure each gateway aircraft. If the downlink is addressed for multiple end destinations (multicast), at least one of the gateway aircraft and source aircraft has routing capabilities with multiple end-system addresses configured. As discussed above, the gateway aircraft, in response to a triggering event, will advertise to its associated air-to-air ad-hoc network that it is unavailable as a gateway to the ground. In one embodiment, a timeout is used for the gateway usage since the gateway aircraft is expected to periodically advertise its availability as a gateway to the air-to-air network as discussed above.

Referring to FIG. 1, an example of a downlink message is discussed. In this example, aircraft 102-8 needs to send a downlink message to end system 104. Once aircraft 102-8 determines that it needs to send the downlink message, it determines the best route to send the message to end system 104. In particular, aircraft 102-8 will apply an optimal path algorithm to select a path. In this case, aircraft 102-8 can use either gateway aircraft 102-6 or 102-11. Since, the path to gateway aircraft 102-6 is optimal, that is the path that will be chosen by the routing algorithm. This path consists of aircraft 102-7 and the gateway aircraft 102-6. As illustrated, the gateway aircraft 102-6 is within the radio range 112-2 of WN point of ground station 108-2. As described above, the gateway aircraft 102-6 encapsulates the downlink message in a protocol specific message directed to the destination end system 104. The gateway aircraft then transmits the protocol specific message to ground station 108-2 via the WN. Based on the message being addressed to destination end system 104, routers of the terrestrial network send the message to end system 104 through communication links 114-2.

It will be understood that, although the above examples discuss communicating messages between aircraft and terrestrial end systems, embodiments can exchange messages between aircraft using the communication network 100 as described above. For example, the GSC 106 and related WN can serve to offer a more spectrum efficient method to enable two mobile nodes 102 (one source and one destination) to communicate. In this embodiment, the message would originate in a mobile node, follow the optimal routing over the mobile-to-mobile network to a WN gateway 102-5, 102-6 or 102-11, then be transmitted over a terrestrial network to a WN gateway 102-5, 102-6 or 102-11 with optimal air-to-air routing to the destination mobile node 102.

FIG. 5 illustrates a vehicle communication system 500 block diagram of one embodiment of the present invention. The vehicle communication system 500 includes a communication management function (CMF) 510 that controls the communications of the communication system. In this embodiment, the vehicle communication system 500 includes two communication transceivers, an air-to-air network transceiver (HF, VHF, or other system) 514 and a wireless network (WN) transceiver (520). The air-to-air network transceiver 514 sends and receives signals via antenna 518 and WN transceiver 520 sends and receives signals via antenna 522. The air-to-air network transceiver 514 is used to send and receive air-to-air signals with other aircraft to form the ad-hoc air-to-air network. The WN transceiver 520 is used to send and receive wireless signals over a communication network such as WiMAX, WRAN or similar wireless communication scheme to allow access to the terrestrial network such as but not limited to the Internet or other private IP network. In embodiments, when the WN transceiver 520 is in communication with a WN, the CMF 510 enters into the gateway mode and directs the WN transceiver 520 to send register signals and unregister signals to a GSC as discussed above in regards to FIG. 2. Also illustrated in FIG. 5 are route and encapsulate algorithms 525 that are used by the CMF. The route algorithms are used to determine the optimal route to a select destination in the communication network. The encapsulate algorithms are used to encapsulate and extract downlink and uplink messages in protocol specific messages as discussed above. As further discussed above, in some embodiments the CMF addresses encapsulated downlink messages to the GSC. FIG. 5, further includes a surveillance transceiver 512 and an associated antenna 516 which in one embodiment is used in part for discovery of air-to-to air network of aircraft as is discussed in the commonly owned patent application Ser. No. 12/025,685.

Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement, which is calculated to achieve the same purpose, may be substituted for the specific embodiment shown. This application is intended to cover any adaptations or variations of the present invention. Therefore, it is manifestly intended that this invention be limited only by the claims and the equivalents thereof.

Kauffman, Donald C., Toth, Louis, Foster, Eric N.

Patent Priority Assignee Title
10103803, May 13 2015 Bridgewest Finance LLC Ground terminal and gateway beam pointing toward an unmanned aerial vehicle (UAV) for network access
10153829, May 13 2015 Bridgewest Finance LLC Ground terminal and UAV beam pointing in an unmanned aerial vehicle (UAV) for network access
10181893, Oct 16 2014 Bridgewest Finance LLC Unmanned aerial vehicle (UAV) beam forming and pointing toward ground coverage area cells for broadband access
10313686, Sep 20 2016 GoPro, Inc. Apparatus and methods for compressing video content using adaptive projection selection
10321461, May 06 2016 Bridgewest Finance LLC Unmanned aerial vehicle (UAV) beam pointing and data rate optimization for high throughput broadband access
10554499, Mar 09 2018 AALYRIA TECHNOLOGIES, INC Hybrid LEO/HAPs constellation for fixed broadband
10757423, Sep 20 2016 GoPro, Inc. Apparatus and methods for compressing video content using adaptive projection selection
10958528, Mar 09 2018 AALYRIA TECHNOLOGIES, INC Hybrid LEO/HAPS constellation for fixed broadband
11851177, May 06 2014 CITIBANK, N A Unmanned aerial vehicle launch system
11968022, Aug 18 2014 SUNLIGHT AEROSPACE INC Distributed airborne wireless communication services
8811265, Oct 19 2007 Honeywell International Inc.; Honeywell International Inc Ad-hoc secure communication networking based on formation flight technology
8897770, Aug 18 2014 SUNLIGHT AEROSPACE INC Apparatus for distributed airborne wireless communications
8983455, Aug 18 2014 SUNLIGHT AEROSPACE INC Apparatus for distributed airborne wireless communications
9083425, Aug 18 2014 SUNLIGHT AEROSPACE INC Distributed airborne wireless networks
9264126, Oct 19 2007 Honeywell International Inc. Method to establish and maintain an aircraft ad-hoc communication network
9301306, May 28 2013 Honeywell International Inc. Self-organizing OFDMA system for broadband communication
9302782, Aug 18 2014 SUNLIGHT AEROSPACE INC Methods and apparatus for a distributed airborne wireless communications fleet
9467221, Feb 04 2008 Honeywell International Inc. Use of alternate communication networks to complement an ad-hoc mobile node to mobile node communication network
9479964, Apr 17 2014 Bridgewest Finance LLC Methods and apparatus for mitigating fading in a broadband access system using drone/UAV platforms
9571180, Oct 16 2014 Bridgewest Finance LLC Unmanned aerial vehicle (UAV) beam forming and pointing toward ground coverage area cells for broadband access
9590720, May 13 2015 Bridgewest Finance LLC Ground terminal and gateway beam pointing toward an unmanned aerial vehicle (UAV) for network access
9596020, Aug 18 2014 SUNLIGHT AEROSPACE INC Methods for providing distributed airborne wireless communications
9614608, Jul 14 2014 Bridgewest Finance LLC Antenna beam management and gateway design for broadband access using unmanned aerial vehicle (UAV) platforms
9660718, May 13 2015 Bridgewest Finance LLC Ground terminal and UAV beam pointing in an unmanned aerial vehicle (UAV) for network access
9712228, Nov 06 2014 Bridgewest Finance LLC Beam forming and pointing in a network of unmanned aerial vehicles (UAVs) for broadband access
9800320, Nov 06 2014 Bridgewest Finance LLC Beam forming and pointing in a network of unmanned aerial vehicles (UAVs) for broadband access
9853713, May 06 2016 Bridgewest Finance LLC Unmanned aerial vehicle (UAV) beam pointing and data rate optimization for high throughput broadband access
9853715, Feb 17 2014 Bridgewest Finance LLC Broadband access system via drone/UAV platforms
9859972, Feb 17 2014 Bridgewest Finance LLC Broadband access to mobile platforms using drone/UAV background
9866312, Nov 06 2014 Bridgewest Finance LLC Beam forming and pointing in a network of unmanned aerial vehicles (UAVs) for broadband access
9885868, Jan 21 2014 CITIBANK, N A Eye imaging in head worn computing
9980267, May 06 2016 Bridgewest Finance LLC Unmanned aerial vehicle (UAV) beam pointing and data rate optimization for high throughput broadband access
9985718, Aug 18 2014 SUNLIGHT AEROSPACE INC Methods for providing distributed airborne wireless communications
D864959, Jan 04 2017 CITIBANK, N A Computer glasses
D918905, Jan 04 2017 Mentor Acquisition One, LLC Computer glasses
D947186, Jan 04 2017 Computer glasses
Patent Priority Assignee Title
4414661, Jul 02 1981 Trancom AB Apparatus for communicating with a fleet of vehicles
4901307, Oct 17 1986 QUALCOMM INCORPORATED A CORPORATION OF DELAWARE Spread spectrum multiple access communication system using satellite or terrestrial repeaters
5095480, Jun 16 1989 FENNER INVESTMENTS, LTD Message routing system for shared communication media networks
5530909, Apr 02 1993 Sextant Avionique Method for Radio transmitting information using aircrafts as open transmission relays
5710764, May 26 1995 NEC Corporation Method of signal transmission in a mobile communication system
5835059, Sep 01 1995 Lockheed Martin Corporation Data link and method
6018659, Oct 17 1996 The Boeing Company Airborne broadband communication network
6047165, Nov 14 1995 Harris Corporation Wireless, frequency-agile spread spectrum ground link-based aircraft data communication system
6064335, Jul 21 1997 Trimble Navigation Limited GPS based augmented reality collision avoidance system
6084870, Jul 22 1996 Omnitracs, LLC Method and apparatus for the remote monitoring and configuration of electronic control systems
6104712, Feb 22 1999 ROBERT, BRUNO G Wireless communication network including plural migratory access nodes
6108539, Mar 06 1992 GOGO LLC Non-terrestrial cellular mobile telecommunication station
6147980, Nov 28 1997 GENERAL DYNAMICS C4 SYSTEMS, INC Avionics satellite based data message routing and delivery system
6148179, Jun 25 1999 Harris Corporation Wireless spread spectrum ground link-based aircraft data communication system for engine event reporting
6154636, May 14 1999 Harris Corporation System and method of providing OOOI times of an aircraft
6160998, Jun 25 1999 Harris Corporation Wireless spread spectrum ground link-based aircraft data communication system with approach data messaging download
6163681, Jun 25 1999 Harris Corporation Wireless spread spectrum ground link-based aircraft data communication system with variable data rate
6173230, Apr 10 1997 Airbus Operations SAS Data link system between an aircraft and the ground and procedure for recovering from a failure
6181990, Jul 30 1998 TELEDYNE CONTROLS, LLC Aircraft flight data acquisition and transmission system
6195189, Oct 24 1997 FUJIFILM Corporation Light beam scanning system
6259379, Jul 29 1996 AlliedSignal Inc. Air-ground logic system and method for rotary wing aircraft
6262659, Mar 03 1998 General Electric Company Telemetry of diagnostic messages from a mobile asset to a remote station
6271768, Dec 30 1998 Honeywell INC Vertical speed indicator/traffic resolution advisory display for TCAS
6285878, Jun 12 1998 AIRBORNE WIRELESS NETWORK Broadband wireless communication systems provided by commercial airlines
6308044, May 14 1999 Harris Corporation System and method of providing OOOI times of an aircraft
6353779, Dec 18 1998 Thomson-CSF Sextant Method for managing communication modes for an aircraft
6438468, Nov 28 2000 Honeywell International Inc Systems and methods for delivering data updates to an aircraft
6477152, Dec 30 1998 Honeywell, Inc Apparatus and method for data communications
6606055, Dec 06 2000 Harris Corporation Phased array communication system providing airborne crosslink and satellite communication receive capability
6643274, Aug 31 2001 The Boeing Company Routing IP packets to an aircraft
6677888, Aug 09 2001 Honeywell International, Inc. Secure aircraft communications addressing and reporting system (ACARS)
6744396, Jul 20 2001 L-3 Communications Corporation Surveillance and collision avoidance system with compound symbols
6778825, May 08 2001 The Boeing Company Path discovery method for return link communications between a mobile platform and a base station
6781513, Mar 03 1998 General Electric Company Telemetry of diagnostic messages from a mobile asset to a remote station
6788935, Mar 06 1992 GOGO LLC Aircraft-based network for wireless subscriber stations
6795408, Dec 30 1998 Honeywell International Inc; HONEYWELL INTERNATIONAL, INC , A CORP OF DE Networking system for mobile data communications
6810527, Sep 27 1999 NEWS AMERICA, INCORPORATED, A CORPORATION OF DELAWARE System and method for distribution and delivery of media context and other data to aircraft passengers
6816728, Apr 24 2002 TELEDYNE CONTROLS, LLC Aircraft data communication system and method
6819670, Jun 16 1989 FENNER INVESTMENTS, LTD Data packet routing for mobile networks
6915189, Oct 17 2002 TELEDYNE CONTROLS, LLC Aircraft avionics maintenance diagnostics data download transmission system
6925088, Nov 12 1999 Airbus Operations GmbH Data transmission system for aircraft
6931248, Oct 03 2000 Thales Method for selecting a ground station within an aeronautical telecommunications network
6940832, Jan 17 2003 RESEARCH FOUNDATION OF THE CITY UNIVERSITY OF NEW YORK, THE Routing method for mobile infrastructureless network
6965816, Oct 01 2001 Kline & Walker, LLC PFN/TRAC system FAA upgrades for accountable remote and robotics control to stop the unauthorized use of aircraft and to improve equipment management and public safety in transportation
6970444, May 13 2002 ARRIS ENTERPRISES LLC System and method for self propagating information in ad-hoc peer-to-peer networks
6990319, Nov 14 1995 Harris Corporation Wireless, ground link-based aircraft data communication method
7027812, Jul 05 2000 Honeywell International Inc Channel selection in aircraft communications system by determining zone load and selecting alternate carrier
7072977, Apr 10 2001 DRS ADVANCED ISR, LLC Method and apparatus for creating links to extend a network
7085290, Sep 09 2003 STINGRAY IP SOLUTIONS LLC Mobile ad hoc network (MANET) providing connectivity enhancement features and related methods
7085562, May 22 2000 Honeywell International Inc Method, apparatus and computer program product for implementing and organizing an AD-HOC aviation data communication network
7116266, Jun 16 2004 Rockwell Collins, Inc. Traffic alert and collision avoidance system enhanced surveillance system and method
7177939, May 14 1999 AT&T MOBILITY II LLC Aircraft data communications services for users
7181160, Sep 17 1997 Aerosat Corporation Method and apparatus for providing a signal to passengers of a passenger vehicle
7187927, Jun 13 2005 Rockwell Collins, Inc.; Rockwell Collins, Inc Global cell phone system and method for aircraft
7343157, Jun 13 2005 BURRANA, INC ; Burrana IP and Assets, LLC Cell phone audio/video in-flight entertainment system
7454203, Sep 29 2005 NEXTEL COMMUNICATIONS, INC System and method for providing wireless services to aircraft passengers
7519014, Dec 16 2005 The Boeing Company Multi-network aircraft communication systems and methods
7599314, Dec 14 2007 NANT HOLDINGS IP, LLC Surface-space managed network fabric
7633873, Mar 15 2000 Xylon LLC Method and system for communication of data via an optimum data path in a network
7643426, Apr 27 2006 Hewlett Packard Enterprise Development LP Path selection in a network
7756508, Aug 25 1999 Molex Incorporated Communication between a fixed network and a movable network with means for suspending operation of the moveable network
7769028, Jun 21 2006 VISION SPHERE LABS LLC Systems and methods for adaptive throughput management for event-driven message-based data
7814322, May 03 2005 SRI INTERNATIONAL, A CALIFORNIA NONPROFIT, PUBLIC BENEFIT CORPORATION Discovery and authentication scheme for wireless mesh networks
7876736, Sep 08 2000 2BCOM, LLC Communication system with mobile terminal accessible to mobile communication network and local network simultaneously
7907893, Aug 02 2000 CORTLAND CAPITAL MARKET SERVICES LLC Integrated or autonomous system and method of satellite-terrestrial frequency reuse using signal attenuation and/or blockage, dynamic assignment of frequencies and/or hysteresis
7940669, Jun 15 2007 ITRON NETWORKED SOLUTIONS, INC Route and link evaluation in wireless mesh communications networks
20020009993,
20020168971,
20020191573,
20030003872,
20030071743,
20030072252,
20030073406,
20030158963,
20030231574,
20040008253,
20040028003,
20040132495,
20040235469,
20050026609,
20050053026,
20050054346,
20050064895,
20050090201,
20050108374,
20050143013,
20050174950,
20050197748,
20050220055,
20050221814,
20050221818,
20050232185,
20050281270,
20050286452,
20060023677,
20060031394,
20060080451,
20060098608,
20060176842,
20060178141,
20060183474,
20060205345,
20070042773,
20070042774,
20070072590,
20070150939,
20070183435,
20070213009,
20070284474,
20070286097,
20070297416,
20080117858,
20080144617,
20080150784,
20080151811,
20080186897,
20080186907,
20080205283,
20080240038,
20080240062,
20080274734,
20090005041,
20090041041,
20090058682,
20090077626,
20090092074,
20090103452,
20090103473,
20090141669,
20090197595,
20090318137,
20090318138,
20100057899,
20100157905,
20100272012,
EP1793512,
EP1850543,
EP1926234,
EP967815,
WO3053013,
WO2005069545,
WO2007022353,
WO2007043827,
WO2007054410,
WO2007059560,
WO2008007861,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 18 2008FOSTER, ERIC N Honeywell International IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0211290806 pdf
Jun 19 2008KAUFFMAN, DONALD C Honeywell International IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0211290806 pdf
Jun 19 2008TOTH, LOUISHoneywell International IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0211290806 pdf
Jun 20 2008Honeywell International Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Oct 27 2015M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Nov 25 2019M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Nov 21 2023M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
May 29 20154 years fee payment window open
Nov 29 20156 months grace period start (w surcharge)
May 29 2016patent expiry (for year 4)
May 29 20182 years to revive unintentionally abandoned end. (for year 4)
May 29 20198 years fee payment window open
Nov 29 20196 months grace period start (w surcharge)
May 29 2020patent expiry (for year 8)
May 29 20222 years to revive unintentionally abandoned end. (for year 8)
May 29 202312 years fee payment window open
Nov 29 20236 months grace period start (w surcharge)
May 29 2024patent expiry (for year 12)
May 29 20262 years to revive unintentionally abandoned end. (for year 12)