A golf club head and a removable weight that is received in a receptacle of the golf club head. The weight includes a cap and a slug. The cap is removably coupled to the receptacle and includes a recess that receives a portion of the slug so that the cap and slug are able to rotate relative to each other. The slug includes an anti-rotation feature that prevents relative rotation between the slug and the receptacle and a curved abutment surface.
|
1. A removable weight for a golf club head including a receptacle, comprising:
a cap including a base, a sidewall that extends from the base to define a recess, and a tool engagement feature included in base, wherein the side wall includes an outer surface that is removably coupled to the receptacle; and
a slug including a retention portion and an extension portion, wherein at least a portion of the retention portion is disposed in the recess and the retention portion includes a curved abutment end surface that abuts an adjacent surface of the base when the weight is installed in the receptacle of the club head, and wherein a portion of the slug extends from the recess.
19. A golf club head, comprising:
a body including a receptacle, wherein the receptacle includes a cap portion and a seat portion and at least a portion of the receptacle is a separate component coupled to the body; and
a weight comprising a cap, a slug and a retainer, wherein the cap includes a base and a sidewall that extends from the base to define a recess, and the cap is coupled to the cap portion of the receptacle, wherein the slug includes a retention portion and an extension portion, at least a portion of the retention portion is disposed in the recess and includes a curved abutment end surface that abuts an adjacent surface of the base when the weight is installed in the receptacle, and wherein a portion of the slug extends from the recess.
11. A golf club head, comprising:
a body including a receptacle, wherein the receptacle includes a cap portion and a seat portion and wherein the cap portion is disposed proximate an outer surface of the body and the seat portion is spaced from the outer surface of the body; and
a weight comprising a cap and a slug, wherein the cap includes a base and a sidewall that extends from the base to define a recess, and the cap is removably coupled to the cap portion of the receptacle, wherein the slug includes a retention portion and an extension portion, and at least a portion of the retention portion is disposed in the recess and the retention portion includes a curved abutment end surface that abuts an adjacent surface of the base when the weight is installed in the receptacle, and wherein a portion of the slug extends from the recess.
2. The weight of
3. The weight of
4. The weight of
9. The weight of
10. The weight of
12. The golf club head of
13. The golf club head of
14. The golf club head of
18. The golf club head of
20. The golf club head of
|
This application is a continuation-in-part of U.S. patent application Ser. No. 12/130,435, filed May 30, 2008, currently pending, the contents of which are incorporated in their entirety by reference herein.
This invention generally relates to golf club heads, and more specifically to golf club heads including a removable weight.
Removable weights have been incorporated into golf club heads to distribute discretionary mass in order to alter the performance characteristics of the golf clubs. For example, weights may be incorporated to provide adjustability in characteristics such as swing weight, location of the center of gravity and manipulation of the moment of inertia of a particular golf club head. Various weight designs have been utilized that allow the manufacturer and/or consumer to alter the mass properties of a golf club head.
One example of a weight incorporated into a club head is described in U.S. Pat. No. 1,167,106 to Palmer for a Golf Club. Palmer describes a golf club that includes a threaded opening that receives threaded weight plugs for varying the weight of a cast metal golf club head. The threaded opening extends through a rear wall of the golf club head and receives a threaded plug which may be just long enough to fill the opening or it may extend further into the golf club head to increase the weight. The threaded opening is tapered so that the plug may be tightened to a desired depth. A disadvantage of the threaded weight plug is that it is constructed as a single piece. As a result, torque applied to the weight plug during use of the golf club is transmitted to the threaded portion and may result in the weight plug becoming disengaged, especially with repeated use.
Another example of a removable weight is described in U.S. Pat. No. 6,773,360 to Willett et al. for a Golf Club Having a Removable Weight. The removable weight includes a mass element and a fastener that extends through an aperture in the mass element. A golf club head body includes an interior cavity and a recess on a wall of the body. Inside the recess, a threaded opening is provided so that the fastener may extend through the mass element disposed in the recess and into the threaded opening to fasten the mass element in the recess. Because the fastener extends through the mass element and into a threaded opening in the recess, the size of the mass element and the structure of the recess are limited. Additionally, the mass element is visible to the user when installed so less variation is available for the mass element without detrimentally affecting the aesthetics of the club head.
It is desirable to provide a golf club head and a weight member that allows additional design freedom for the weight while creating fewer restrictions on the golf club head design.
The invention is directed to a golf club head and a removable weight. Several embodiments of the present invention are described below.
In an embodiment, a removable weight for a golf club head including a receptacle includes a cap and a slug. The cap includes a base, a sidewall that extends from the base, and a tool engagement feature included in the base. The base defines a recess and the side wall includes an outer surface that is removably coupled to the receptacle. The slug includes a retention portion and an extension portion, wherein at least a portion of the retention portion is disposed in the recess and the retention portion includes a curved abutment surface adjacent the base.
In another embodiment, a golf club head includes a body and a weight. The club head body includes a receptacle that includes a cap portion and a seat portion. The cap portion is disposed proximate an outer surface of the body and the seat portion is spaced from the outer surface of the body. The weight includes a cap and a slug. The cap includes a base and a sidewall that extends from the base to define a recess and the cap is removably coupled to the cap portion of the receptacle. The slug includes a retention portion and an extension portion, and at least a portion of the retention portion is disposed in the recess and the retention portion includes a curved abutment surface adjacent the base.
In a further embodiment, a golf club head includes a body and a weight. The body includes a receptacle that includes a cap portion and a seat portion and at least a portion of the receptacle is a separate component that is coupled to the body. The weight includes a cap, a slug and a retainer. The cap includes a base and a sidewall that extends from the base to define a recess and the cap is coupled to the cap portion of the receptacle. The slug includes a retention portion and an extension portion. At least a portion of the retention portion is disposed in the recess and the retention portion includes a curved abutment surface adjacent the base.
In the accompanying drawings, which form a part of the specification and are to be read in conjunction therewith and in which like reference numerals are used to indicate like parts in the various views:
The present invention is directed to a golf club head and a removable weight. The removable weight is provided for use with a golf club head to alter the mass properties of the golf club head. Several embodiments of the present invention are described below.
Referring to
Hosel 24 is a generally tubular member that extends outward from crown portion 12 generally adjacent the intersection of heel portion 16 and front portion 22. In a complete golf club incorporating golf club head 10, a golf club shaft is attached to golf club 10 at hosel 24. For example, an end of the shaft is received in a shaft bore 25 defined by hosel 24 and bonded to hosel 24. It should be appreciated that hosel 24 is one exemplary construction, but any hosel construction may be incorporated into club head 10.
Weight receptacle 28 is included in one of the components of club head 10 and receives weight 26. In the present embodiment, club head 10 includes a single weight receptacle 28 provided in sole portion 14. However, it should be appreciated that any number of weight receptacles may be provided in the club head and each weight receptacle 28 may have any location and orientation corresponding to any desired design attribute. For example, a plurality of weight receptacles 28 may be provided in club head 10 to allow alteration of the location of the center of gravity of club head 10. The center of gravity may be relocated in a heel to toe direction to impart draw bias or fade bias and/or in a front to rear direction to alter launch angle and spin characteristics. The weight receptacle may be constructed as an integral part of club head 10 or it may be constructed as a separate component and attached to club head 10. Additionally, in embodiments utilizing a separate receptacle component, the receptacle may be constructed as a full receptacle including both a cap portion and a seat portion, or a partial receptacle including either a cap portion or a seat portion. Furthermore, in a club head constructed from cast components, a full weight receptacle may be cast integral with the corresponding club head component.
Embodiments of full and partial weight receptacles constructed as separate components are illustrated in
Receptacle 28 includes a bore 38 that extends through a cap portion 40 and a seat portion 42. Cap portion 40 is configured to receive and to be removably attached to a cap 30 included in weight 26. An inner attachment feature 46 is included in cap portion 40 that allows cap 30 to be removably coupled to receptacle. In the present embodiment, inner attachment feature 46 is a threaded surface that engages a threaded outer surface 57 of cap 30.
Seat portion 42 of receptacle 28 is sized and shaped to receive a portion of a slug 32 that is included in weight 26. Slug portion 42 of receptacle includes an anti-rotation feature 44 that cooperates with a complementary anti-rotation feature 48 of slug 32 to prevent relative rotation between slug 32 and receptacle 28 when slug 32 is received therein. In the present embodiment, seat portion 42 includes a plurality of tapered facets 50 combined so that seat portion 42 is generally tubular and tapered and has a generally polygonal cross-sectional shape. However, it should be appreciated that the length of seat portion 42 may be reduced so that rather than including a plurality of facets seat portion 42 merely includes a polygonal opening sized to abut slug 32.
In another embodiment, illustrated in
Another partial weight receptacle 31 includes only a seat portion 39, as shown in
In a still further embodiment, a partial weight receptacle 33 includes only cap portion 47, as shown in
In embodiments utilizing a separate weight receptacle, the receptacle may be constructed from any metallic or non-metallic material. For example, the weight receptacle may be constructed of titanium, steel, aluminum, tungsten, and/or any alloys of those materials. Including a separate weight receptacle permits the use of materials different than the club head that may be selected to simplify manufacturing of the receptacle.
Referring back to
Cap 30 is a cup-shaped member formed from a base 54 and side wall 56 that define a recess 52, as shown in
A tool engagement feature 58 is included in base 54 of cap 30. The tool engagement feature is a feature that mates with a tool manipulated by a user so that weight 26 may be installed or removed from receptacle 28. Tool engagement feature 58 is shaped and sized to mate with a complementary tool. For example, tool engagement feature 58 may be configured to receive a Torx-type wrench (as shown), a screw driver, a spanner wrench or any other standard or custom tool. Preferably, tool engagement feature 58 is configured to mate with a tool other than articles that are commonly carried by a golfer during a round of golf (e.g., coins, divot tools and golf tees).
Slug 32 is a mass member that is movably coupled to cap 30 in weight 26. Slug 32 is a generally elongate member that includes a retention portion 62 movably coupled to cap 30 and an extension portion 64 that includes anti-rotation feature 48, as shown in
A retention feature 63 is included in retention portion 62 of slug 32 that allows slug 32 to be movably coupled to cap 30. In the present embodiment, retention feature 63 is a circumferential channel that extends into slug 32 from an outer surface of retention portion 62. In the assembled weight, a retainer 34 extends from cap 30 and into retention feature 63 and limits relative translation between slug 32 and cap 30 in the direction of the longitudinal axis of weight 26 so that slug 32 is prevented from fully disengaging from cap 30.
Extension portion 64 of slug 32 engages seat portion 42 of receptacle so that relative rotation between receptacle 28 and slug 32 is prevented when weight 26 is installed. In particular, extension portion 64 of slug 32 includes anti-rotation feature 48 that is generally tapered and has a polygonal cross-sectional shape formed by a plurality of tapered facets 66 that complement facets 50 of seat portion 42 of receptacle 28. For example, portion 64 of slug 32 includes a plurality of tapered facets so that the cross-sectional shape of portion 64 is pentagonal and complements the pentagonal cross-sectional shape of seat portion 42 of receptacle 28. It should be appreciated that although seat portion 42 of receptacle 28 is tapered, it should be appreciated that seat portion 42 need not be tapered, but instead may have constant cross-sectional shape and size that correspond to the shape and size of an intermediate location along extension 64.
The dimensions and material of slug 32 are selected to provide any desired mass for weight 26. Mass adjustment features 68 may be included in slug 32 to fine tune the mass of the member. For example, slug 32 includes a mass adjustment feature 68 that is a bore extending into slug 32 from an end of portion 64 opposite retention portion 62. It should be appreciated that the bore may be any depth so that any desired amount of material is removed to reduce the mass of slug 32. Additionally, although the bore is shown extending through slug 32 generally coaxial with the longitudinal axis of slug 32, it should be appreciated that the bore may have any desired orientation and multiple mass adjustment features may be included.
Referring to
In the assembled weight 26, retainer 34 is in the second configuration and is interposed between cap 30 and slug 32 and extends across a sliding interface between cap 30 and slug 32. During assembly, however, retainer 34 is deformed from the second configuration into the first configuration and is disposed within retention feature 63 so that it and retention portion 62 of slug 32 may be inserted into recess 56. Because retainer 34 is elastically deformed from the second configuration into the first configuration, when slug 32 and cap 30 are positioned so that retention features 60 and 63 align, retainer 34 springs back to the second configuration and extends across the interface between cap 30 and slug 32 to prevent relative translation therebetween. Cap 30 may also include one or more optional access bores 70 that extend generally radially through side wall 56 and intersect retention feature 60 so that weight 26 may be disassembled. For example, a plurality of rods may be inserted through bores 70 and pressed against the outer wall of retainer 34 so that retainer 34 may be deformed from the second configuration into the first configuration in the assembled weight 26. Deforming retainer 34 into the first configuration allows slug 32 to be separated from cap 30.
Cap 30, slug 32 and retainer 34 may be constructed from any desired materials to provide any desired weights. In an embodiment, cap 30 is constructed of aluminum, slug 32 is constructed of steel and retainer 34 is constructed of stainless steel and weight 26 has a total weight of approximately 8.3 grams. In another embodiment, cap 30 is constructed of aluminum, slug 32 is constructed of a tungsten alloy and retainer 34 is constructed of stainless steel and weight 26 has a total weight of approximately 13.1 grams. In these exemplary embodiments, the density of the material used to construct slug 32 is greater than the material used to construct cap 30, but it should be appreciated that the cap and slug may be constructed from the same material or the slug may be constructed from a material having a density that is less than the density of a material used to construct the cap.
As described above, the weight slug includes an extension and an anti-rotation feature that is configured to complement a seat portion of the receptacle. For example, slug 32 includes extension portion 64 that has a generally pentagonal cross-sectional shape. Additional embodiments of an extension portion of the slug that also provide an anti-rotation feature are illustrated in
Referring first to
Referring to
Extension portion 94 is a generally cylindrical portion that includes an anti-rotation feature 96. In the present embodiment, anti-rotation feature 96 is a tapered rib that extends diametrically across an end of extension portion 94. It should be appreciated that anti-rotation feature 96 is configured to engage a diametric slot included in a corresponding receptacle. For example, a slot having a width that is between the maximum and minimum widths of the tapered rib may be provided or a tapered slot may be provided. Furthermore, slug 90 includes an optional mass adjustment feature 68 that is a bore extending into slug 90 from an end of extension portion 94 opposite retention portion 92.
The retainer used to movably couple the cap and slug may have any configuration that allows relative rotation between the cap and slug while preventing the slug from becoming fully disengaged from a recess provided in the cap. Other embodiments of the assembled weight including different retainers are illustrated in
Retention feature 118 is a channel that has a height that is approximately as large as the distance from a retention flange 119 to the surface of base 108 that forms the end of recess 112. As a result, when weight 100 is installed in a corresponding receptacle, a retention portion 120 of slug 104 is pressed against base 108 of cap 102. To reduce the surface area contact between retention portion 120 of slug 104 and base 108 of cap 102, bearing features may be included on the respective components. In particular, a projection 109 extends from base 108 toward retention portion 120 and a complementary projection 121 extends from retention portion toward base 108. Projections 109 and 121 are preferably annular and include tapered contact surfaces that abut and slide against each other as weight 100 is installed in a receptacle. Projections may be included on one or both of the cap and slug to provide a reduced contact surface area. Alternatively, a separate bearing feature may be included to reduce the contact surface area, such as a rigid or compressible annular ring interposed between base 108 and retention portion 120.
Slug 104 includes retention portion 120 and extension portion 122. Retention portion 120 extends into recess 112 of cap 102 and is used to retain slug 104 with cap 102 so that the components are free to rotate relative to each other while preventing full disengagement of slug 104 from cap 102. As described in previous embodiments, extension portion 122 extends from retention portion 120 and engages a seat portion of a corresponding receptacle when weight 100 is installed in a club head. The configuration of extension portion 122 is substantially identical to those previously described.
Retention portion 120 includes a retention feature 124 that receives a portion of deformable retainer 106 so that retainer 106 is held in place on slug 104. For example, retention feature 124 of the present embodiment is a circumferential channel that extends generally radially into slug 104 from an outer surface of retention portion 120.
Weight 100 is assembled by installing retainer 106 in retention feature 124. Then retention portion 120 and retainer 106 are inserted into recess 112. When retainer 106 is pressed against retention flange 119, it is forced to deform. The inner dimension of retention flange 119 is selected so that it is greater than a deformed outer dimension of retainer 106, but smaller than the free outer dimension of retainer 106 so that as retainer 106 deforms it is able to slide past retention flange 119 and into retention feature 118. After the deformed retainer 106 passes by retention flange 119, it is free to deform back to the free outer dimension. Because the inner dimension of retention flange 119 is smaller than the free outer dimension of retainer 106, retention portion 120 of slug 104 is retained in recess 112 of cap 102.
Another embodiment of the weight is illustrated in
Similar to previous embodiments, cap 132 includes a base 137 and side wall 138 that extends from base 137 to define a recess 142. Base 137 includes a tool engagement feature 144 that allows weight 130 to be installed in or removed from a corresponding receptacle. Side wall 138 includes an attachment feature, such as a threaded outer surface 146, for coupling cap to a receptacle, and a retention feature 148 for movably coupling cap 132 and slug 134. In the present embodiment, a single annular projection 151 is incorporated that extends from retention portion 150 toward base 137 of cap 132 to reduce contact surface area between retention portion 150 and base 137.
Retention feature 148 is a bore that extends through side wall 138. Retention feature 148 is sized and shaped to receive retainer 136, which is an elongate member such as a dowel pin or set screw. The length of retainer 136 is selected so that it extends through side wall 138 and into retention feature 140 of slug. The size and shape of retention feature 148 is selected according to the configuration of retainer 136. For example, in embodiments utilizing a dowel pin as retainer 136, the diameter of retention feature 148 is selected so that the dowel pin is captured in retention feature 148 by a press, or interference fit. In other embodiments utilizing a set screw as retainer 136, retention feature 148 is a threaded bore sized to threadably engage the set screw. It should be appreciated that any number of retainers 136 may be included that extend through side wall 138. Additionally, it should be appreciated that retention feature 148 may be configured so that retainer 136 extends through side wall radially or at any angle. For example, retention feature 148 may be configured so retainer 136 extends toward slug 134 approximately normal to retention feature 140 of slug 134. In another example, retention feature 148 may be configured so retainer 136 extends toward slug 134 so that it is approximately tangent to retention feature 140 of slug 134.
Slug 134 includes retention portion 150 and extension portion 152. Retention portion 150 extends into recess 142 of cap 132 and is used to retain slug 134 with cap 132 so that the components are free to rotate relative to each other while preventing full disengagement of slug 134 from cap 132. As described in previous embodiments, extension portion 152 extends from retention portion 150 and engages a seat portion of a corresponding receptacle when weight 130 is installed in a club head. The configuration of extension portion 152 is substantially identical to those previously described.
Retention portion 150 includes a retention feature 140 that receives a portion of retainer 136 in the assembled weight 130. Retention feature 140 of the present embodiment is a circumferential channel that extends generally radially into slug 134 from an outer surface of retention portion 150.
Weight 130 is assembled by inserting retention portion 150 of slug 134 into recess 142 of cap 132. Retention portion 150 is inserted to a position in which retention feature 140 of slug 134 is aligned with retention feature 148 of cap 132. Retainer 136 is then inserted through retention feature 148 and into retention feature 140.
In another embodiment, shown in
Slug 164 includes retention portion 176 and extension portion 178. Retention portion 176 extends into recess 172 of cap 162 and retains slug 164 in coaxial alignment with cap 162 during installation into a corresponding receptacle. Retention portion 176 is configured so that the components are free to rotate relative to each other during installation. As described in previous embodiments, extension portion 178 extends from retention portion 176 and engages a seat portion of a corresponding receptacle when weight 160 is installed in a club head. The configuration of extension portion 178 is substantially identical to those previously described.
Compression member 166 is included in weight 160 and disposed between base 168 of cap 162 and retention portion 176 of slug 164. Compression member 166 is an elastic member that is compressed when weight 160 is installed in a receptacle so that extension portion 178 of slug 164 is pressed into a seat portion of the receptacle. Compression member 166 may have any desired shape, for example, compression member 166 may be disk-shaped or annular, as shown in
Weight 160 is assembled by inserting compression member 166 into recess 172 of cap 162 and then inserting retention portion 176 of slug 164. The weight 160 is then inserted into a receptacle and cap 162 is engaged with a cap portion of the receptacle until compression member 166 is compressed a desired amount to place a selected preload on slug 164.
The weight may also be configured to provide additional compensation for misalignment of the components resulting from manufacturing tolerances as shown in the embodiments of
When the assembled weight 180 is installed in a corresponding receptacle, retention portion 196 of slug 184 is pressed against base 188 of cap 182. In some instances, due to manufacturing tolerances in weight 180 and the receptacle, cap 182 is not coaxially aligned with slug 184 when installed. In order to assure contact between cap 182 and slug 184 with such misalignment, an abutment surface 194 of retention portion 196, i.e., the surface of retention portion 196 that abuts base 188, is curved. Abutment surface 194 may have any curvature, for example, abutment surface 194 may be parabolic or spherical.
The configuration of the cap, the retainer, and the retention portion of the slug may be selected to provide additional freedom for the cap and the slug to be misaligned. Referring to
Recess 208 receives a retention portion 216 of slug 204. Retention portion 216 includes a spherical abutment surface 218 that abuts spherical portion 212 of recess 208. A neck portion 220 extends between abutment surface 218 of retention portion 216 and extension portion 222. Neck portion 220 is a section of retention portion 216 that includes an outer diameter that is smaller than the outer diameter of the part of retention portion 216 including abutment surface 218.
Channel 214 is located in cap 202 so that in the assembled weight 200, retainer 206 is positioned adjacent neck portion 220. Additionally, retainer 206 is sized so that the inner diameter of retainer 206 is smaller than the greatest outer diameter of retention portion 216 so that retainer 206 prevents disengagement of slug 204 from cap 202. Furthermore, retainer 206 is sized so that the inner diameter of retainer 206 is greater than the outer diameter of the adjacent neck portion 220 so that cap 202 is able to rotate relative to slug 204, as shown in
Referring now to
Retention portion 238 includes a circumferential channel 246 that receives a portion of retainer 236. The depth of channel 246 and the inner diameter of retainer 236 are selected so that slug 234 is able to translate radially relative to retainer 236.
The outer diameter of retainer 236 is selected so that the outer edge of retainer 236 slides against the inner surface of side wall 244 in the assembled weight 238 so that the combined slug 234 and retainer 236 are able to rotate relative to cap 232.
An abutment surface 248 is provided on retention portion 238. Abutment surface 248 is a surface of retention portion 238 that abuts base 242 when weight 230 is assembled and installed in a club head. Abutment surface 248 is curved and may have any curvature, for example, abutment surface 248 may be parabolic or spherical.
Although the inventive weight is illustrated in a wood-type golf club, it should be appreciated that the weight may be incorporated in any type of golf club. For example, the inventive weight may be included in drivers, fairway woods, utility clubs, hybrids, iron-type golf clubs, wedges and putters.
While it is apparent that the illustrative embodiments of the invention disclosed herein fulfill the objectives stated above, it is appreciated that numerous modifications and other embodiments may be devised by those skilled in the art. Elements from one embodiment can be incorporated into other embodiments. Therefore, it will be understood that the appended claims are intended to cover all such modifications and embodiments, which would come within the spirit and scope of the present invention.
Knutson, Scott A., Murphy, Stephen S., Bennett, Thomas Orrin, Bezilla, Stephanie
Patent | Priority | Assignee | Title |
1167106, | |||
3212783, | |||
3604755, | |||
3652094, | |||
4052075, | Jan 08 1976 | Golf club | |
4194547, | Aug 17 1978 | Golf club holder | |
4450904, | Mar 31 1978 | Phillips Petroleum Company | Heat exchanger having means for supporting the tubes in spaced mutually parallel relation and suppressing vibration |
5168767, | Jun 04 1990 | NIPPON THOMPSON CO , LTD | Compact ball screw assembly |
5320005, | Nov 05 1993 | Bicycle pedal crank dismantling device | |
6017177, | Oct 06 1997 | MCGARD, LLC F K A DD&D-MI, LLC | Multi-tier security fastener |
6296574, | Mar 08 1999 | Golf swing improvement device | |
6306048, | Jan 22 1999 | JPMORGAN CHASE BANK, N A , AS SUCCESSOR ADMINISTRATIVE AGENT | Golf club head with weight adjustment |
6348014, | Aug 15 2000 | Golf putter head and weight adjustable arrangement | |
6379265, | Dec 21 1998 | Yamaha Corporation | Structure and method of fastening a weight body to a golf club head |
6436142, | Dec 14 1998 | Phoenix Biomedical Corp. | System for stabilizing the vertebral column including deployment instruments and variable expansion inserts therefor |
6719510, | May 23 2001 | HUCK INTERNATIONAL, INC A K A HUCK PATENTS, INC | Self-locking fastener with threaded swageable collar |
6773360, | Nov 08 2002 | Taylor Made Golf Company, Inc. | Golf club head having a removable weight |
6811496, | Dec 01 2000 | Taylor Made Golf Company, Inc. | Golf club head |
7121956, | Oct 26 2004 | FUSHENG PRECISION CO , LTD | Golf club head with weight member assembly |
7166040, | Nov 08 2002 | Taylor Made Golf Company, Inc. | Removable weight and kit for golf club head |
7179034, | Oct 16 2002 | PENN AUTOMOTIVE, INC | Torque resistant fastening element |
7223180, | Nov 08 2002 | Taylor Made Golf Company, Inc. | Golf club head |
7294065, | Feb 04 2005 | Fu Sheng Industrial Co., Ltd. | Weight assembly for golf club head |
7351161, | Jan 10 2005 | Scientifically adaptable driver | |
7407447, | Nov 08 2002 | TAYLOR MADE GOLF COMPANY, INC | Movable weights for a golf club head |
7410425, | Nov 08 2002 | Taylor Made Golf Company, Inc. | Golf club head having removable weight |
7410426, | Nov 08 2002 | Taylor Made Golf Company, Inc. | Golf club head having removable weight |
7419441, | Nov 08 2002 | TAYLOR MADE GOLF COMPANY, INC | Golf club head weight reinforcement |
7452285, | Nov 08 2002 | Taylor Made Golf Company, Inc. | Weight kit for golf club head |
7530904, | Nov 08 2002 | TAYLOR MADE GOLF COMPANY, INC | Golf club head having movable weights |
7540811, | Nov 08 2002 | TAYLOR MADE GOLF COMPANY, INC | Golf club head having movable weights |
7568985, | Nov 08 2002 | TAYLOR MADE GOLF COMPANY, INC | Golf club head having movable weights |
7578753, | Nov 08 2002 | TAYLOR MADE GOLF COMPANY, INC | Golf club head having movable weights |
7628711, | Nov 20 2007 | Advanced International Multitech Co., Ltd. | Golf club head |
7632194, | Nov 08 2002 | TAYLOR MADE GOLF COMPANY, INC | Movable weights for a golf club head |
7670235, | Aug 09 2006 | FUSHENG PRECISION CO , LTD | Golf club head having removable weight |
7713142, | Nov 08 2002 | Taylor Made Golf Company, Inc. | Golf club head weight reinforcement |
7717804, | Nov 08 2002 | TAYLOR MADE GOLF COMPANY, INC | Golf club head having movable weights |
7717805, | Nov 08 2002 | TAYLOR MADE GOLF COMPANY, INC | Golf club head having movable weights |
20080039229, | |||
20080132353, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 17 2008 | Acushnet Company | (assignment on the face of the patent) | / | |||
Dec 17 2008 | MURPHY, STEPHEN S | Acushnet Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021994 | /0531 | |
Dec 17 2008 | BENNETT, THOMAS ORRIN | Acushnet Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021994 | /0531 | |
Dec 17 2008 | BEZILLA, STEPHANIE | Acushnet Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021994 | /0531 | |
Dec 17 2008 | KNUTSON, SCOTT A | Acushnet Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021994 | /0531 | |
Oct 31 2011 | Acushnet Company | KOREA DEVELOPMENT BANK, NEW YORK BRANCH | SECURITY AGREEMENT | 027346 | /0222 | |
Jul 28 2016 | KOREA DEVELOPMENT BANK, NEW YORK BRANCH | Acushnet Company | RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL FRAME 027346 0222 | 039939 | /0181 | |
Jul 28 2016 | Acushnet Company | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 039506 | /0030 | |
Aug 02 2022 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS RESIGNING ADMINISTRATIVE AGENT | JPMORGAN CHASE BANK, N A , AS SUCCESSOR ADMINISTRATIVE AGENT | ASSIGNMENT OF SECURITY INTEREST IN PATENTS ASSIGNS 039506-0030 | 061521 | /0414 | |
Aug 02 2022 | Acushnet Company | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 061099 | /0236 |
Date | Maintenance Fee Events |
Dec 07 2015 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 05 2019 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Dec 05 2023 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 05 2015 | 4 years fee payment window open |
Dec 05 2015 | 6 months grace period start (w surcharge) |
Jun 05 2016 | patent expiry (for year 4) |
Jun 05 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 05 2019 | 8 years fee payment window open |
Dec 05 2019 | 6 months grace period start (w surcharge) |
Jun 05 2020 | patent expiry (for year 8) |
Jun 05 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 05 2023 | 12 years fee payment window open |
Dec 05 2023 | 6 months grace period start (w surcharge) |
Jun 05 2024 | patent expiry (for year 12) |
Jun 05 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |