A semiconductor structure is formed in the metal interconnect structure of an integrated circuit in a method that provides either two individual resistors that are vertically isolated from each other, or a metal-insulator-metal (MIM) capacitor. As a result, both semiconductor resistors and MIM capacitors can be formed in the same process flow.
|
1. A semiconductor structure comprising:
a first isolation structure having a top surface;
a plurality of conductive landing pads, the plurality of conductive landing pads being spaced apart and having a plurality of top surfaces, each conductive landing pad having a bottom surface, all the bottom surface of each of the plurality of conductive landing pads touching the first isolation structure;
a first metallic structure that touches the top surface of the first isolation structure and the plurality of top surfaces of the plurality of conductive landing pads, the first metallic structure having a top surface and a bottom surface, the top surface of the first metallic structure having a shape;
a second isolation structure that touches the top surface of the first metallic structure, the second isolation structure having a top surface; and
a second metallic structure that touches the top surface of the second isolation structure and lies directly over all of the first metallic structure, the second metallic structure having a top surface, the top surface of the second metallic structure having a shape that is substantially identical to the shape of the top surface of the first metallic structure.
2. The semiconductor structure of
3. The semiconductor structure of
4. The semiconductor structure of
5. The semiconductor structure of
6. The semiconductor structure of
7. The semiconductor structure of
a protective structure that touches the top surface of the second metallic structure, the protective structure being non-conductive and having a top surface; and
a third isolation structure that touches the top surface of the first isolation structure, the plurality of top surfaces of the plurality of landing pads, and the top surface of the protective structure, the third isolation structure and the protective structure having different etch rates.
8. The semiconductor structure of
a plurality of first vias that extend through the third isolation structure to touch the plurality of conductive landing pads; and
a plurality of second vias that extend through the third isolation structure and the protective structure to touch the top surface of the second metallic structure.
10. The semiconductor structure of
a metal trace that touches the first isolation structure; and
a third via that extends through the third isolation structure and the first isolation structure to touch the metal trace, the third via having a length that is greater than a length of a second via.
|
1. Field of the Invention
The present invention relates to semiconductor structures and, more particularly, to a semiconductor structure and a method of forming the semiconductor structure that provides either two individual resistors that are vertically isolated from each other, or a metal-insulator-metal (MIM) capacitor.
2. Description of the Related Art
A semiconductor resistor is a well-known structure that is commonly implemented as a strip of conducting semiconductor material. As with conventionally-formed discrete resistors, semiconductors resistors provide a predefined resistance to the flow of current through the semiconductor resistor.
A semiconductor capacitor is also a well-known structure that includes two conductive plates that are separated by a dielectric material. As with conventionally-formed discrete capacitors, semiconductor capacitors store energy in an electric field that exists across the two plates when a potential difference exists across the two plates.
Semiconductor resistors and capacitors are frequently implemented in the metal interconnect structure of an integrated circuit. One of the drawbacks of forming semiconductor resistors and capacitors in the metal interconnect structure is that it often takes a number of additional masking steps to form these devices, e.g., three or more separate masking steps to form a semiconductor resistor, and one or more separate masking steps to form a semiconductor capacitor. Thus, four or more additional masking steps can be required to include both resistors and capacitors in the metal interconnect structure.
In addition, when one of the plates of the capacitor is formed at the same time that a layer of metal traces is formed in the metal interconnect structure, the breakdown of the dielectric can be significantly reduced due to the large grain sizes of the metal used to form the metal traces, i.e., the metal used to form the metal traces is relatively rough and peaks in the rough surface reduce the distance between the plates.
Thus, there is a need for a method of forming semiconductor resistors and capacitors in the metal interconnect structure that requires fewer masking steps, and provides more uniform capacitance values.
As described in greater detail below, the present invention is a method that forms a semiconductor structure that provides either two individual resistors that are vertically isolated from each other, or a metal-insulator-metal (MIM) capacitor, thereby allowing semiconductor resistors and MIM capacitors to be formed in the same process flow.
As shown in the
As further shown in
Next, as shown in
After this, as shown in
Thus, in the above example, following the chemical mechanical polishing, the landing pads 126 have 50 Å of titanium and 950 Å of titanium nitride. (A 50 Å sputter clean can optionally follow the chemical mechanical polishing to smooth the surface and promote adhesion of the following resistor layer.)
Next, as shown in
Metallic layer 130 can be implemented with one of a number of different materials that include, for example, silicon carbide chrome (SiCCr), nickel chrome (NiCr), titanium nitride (TiN), and tantalum nitride (TaN). The thickness of metallic layer 130 is dependent on the desired resistance of metallic layer 130. For example, a resistance of 1000 ohms/square can be realized with 75 Å-100 Å of SiCCr. Metallic layer 130 can be formed using, for example, sputter deposition with a low energy power supply at a wafer temperature of 40° C.
After metallic layer 130 has been formed, a dielectric layer 132 is formed on all of metallic layer 130. Dielectric layer 132 can be implemented with a number of different materials that include, for example, silicon oxide, silicon nitride, silicon oxynitride, and aluminum nitride, as well as with any high-K dielectric material, such as tantalum pentoxide. In addition, dielectric layer 132 is formed to be as thin as possible. Dielectric layer 132 can have a thickness of, for example, 100 Å-300 Å with the thickness determined by the limitations of the deposition tool.
Once dielectric layer 132 has been formed, a metallic layer 134 is formed on all of dielectric layer 132. Metallic layer 134 can be implemented with one of a number of different materials that include, for example, silicon carbide chrome (SiCCr), nickel chrome (NiCr), titanium nitride (TiN), and tantalum nitride (TaN). The thickness of metallic layer 134 is dependent on the desired resistance of metallic layer 134.
For example, if a resistance of 1000 ohms/square can be realized with 75 Å-100 Å of SiCCr, then a resistance of 200 ohms/square can be realized with 375 Å-500 Å of SiCCr, while a resistance of 100 ohms/square can be realized with 750 Å-1000 Å of SiCCr. Metallic layer 134 can be formed using, for example, sputter deposition with a low energy power supply at a wafer temperature of 40° C.
As further shown in the
Following the formation of protective layer 136, a mask 140 is next formed and patterned on protective layer 136. Mask 140 is patterned to have a top surface with a shape which, in the present example, is rectangular with a width W and a length L that is, for example, 2-4 μM wide by 40 μM long, although other shapes and dimensions can alternately be used. In addition, the mask grade and photo process preferably accommodate the formation of matching side-by-side resistors with a variation of no more than 0.1% (3 sigma).
After this, as shown in
As a result of the shape and size of mask 140, semiconductor structure 142 also has a top surface with a rectangular shape that is 2-4 μM wide by 40 μM long, although other shapes and dimensions can alternately be formed as defined by the shape and size of mask 140. Thus, due to the etch, second metallic structure 142C lies directly over all of first metallic structure 142A, while the top surface of first metallic structure 142A and the top surface of second metallic structure 142C have substantially identical shapes.
Protective layer 136, metallic layer 134, dielectric layer 132, and resistor layer 130 can be etched using, for example, a conventional oxide plasma (such as is used to form via openings) with an amount of argon added to the oxide plasma to provide a sputtering effect that facilitates the removal of the metallic layers 130 and 134.
The etch is difficult to control, and tends to remove, for example, 500 Å-600 Å of the landing pads 126 and 1000 Å of isolation structure 116. If excessive amounts of the landing pads 126 are removed during the etch, then the openings 122 shown in
As shown in
Further, the thickness of isolation layer 144 must be sufficient to replace the amount of isolation structure 116 that is lost during the etch that forms semiconductor structure 142, and cover semiconductor structure 142 after isolation layer 144 has been planarized. For example, if 1000 Å of isolation structure 116 is removed during the etch that forms semiconductor structure 142, and semiconductor structure 142 is approximately 600 Å thick, then isolation layer 144 can be formed to be 1.5× to 2× this combined thickness, or 2400 Å-3200 Å thick.
Following the formation of isolation layer 144, a mask 150 is formed and patterned on isolation layer 144. Mask 150 has openings 152 that lie over the metal-1 structures 114, a pair of openings 154 that lie over the landing pads 126, and a pair of spaced-apart openings 156 that lie over semiconductor structure 142.
Next, as shown in
By selecting isolation layer 144 and protective structure 142D to have different etch rates, and by varying the thickness of the landing pads 126 and the protective layer 136, the via etch can be prevented from etching through the landing pads 126 and/or the second metallic structure 142C during the time required to expose the top surfaces of the metal-1 traces 114A.
As a result, the top surfaces of the metal-1 traces 114A, the top surfaces of the landing pads 126, and the top surface of second metallic structure 142C can be exposed with a single etch. (At the cost of additional masking steps, multiple etches can also be used to expose these structures). Mask 150 is then stripped (e.g., using conventional ashing procedures), and the top surface of isolation layer 144 is cleaned (e.g., using conventional solvents and procedures).
As shown in
After this, as shown in
The vias 166 include vias 166A that touch the top surfaces of the metal-1 traces 114A, vias 166B that touch the top surfaces of the landing pads 126, and vias 166C that touch the top surface of second metallic structure 142C. Metallic layer 164, via liner 162, and the portion of the top surface of isolation layer 144 can be removed using conventional chemical mechanical polishing processes. The method then continues with conventional back end processing steps.
In accordance with the present invention, semiconductor structure 100 provides two individual resistors with first metallic structure 142A forming a first resistor, such as a resistor with a resistance of 1000 ohms/square, while second metallic structure 142C forms a second resistor, such as a resistor with a resistance of 200 ohms/square.
As a result, the present invention enables the formation of both a low value resistor and a high value resistor. Thus, one of the advantages of the invention is that the present process flow provides a designer with the option to use a low value resistor, a high value resistor, or both a low value resistor and a high value resistor.
The method of the first alternate embodiment is the same as the method illustrated in
As a result, after the openings 122 have been formed, and metallic layer 124 has been deposited and then subsequently removed as described above, a large number of landing pads 126 are formed as shown in
As shown in
As a result, after the exposed regions of protective layer 136, metallic layer 134, dielectric layer 132, and metallic layer 130 have been etched as described above, semiconductor structure 142 is formed as shown in
As shown in
As a result, after isolation layer 144 and portions of the underlying isolation structure 116 have been etched to form the via openings 160 that expose the top surfaces of the metal-1 traces 114A, the top surfaces of the landing pads 126, and the top surface of second metallic structure 142C, and after via liner 162 and metallic layer 164 have been formed and then removed from the top surface of isolation layer 144 as described above, semiconductor structure 1000 is formed with vias 166A that touch the top surfaces of the metal-1 traces 114A, vias 166B that touch the top surfaces of the landing pads 126, and vias 166C that touch the top surface of second metallic structure 142C as shown in
In accordance with the present invention, semiconductor structure 1000 provides a capacitor with first metallic structure 142A forming the lower plate of the capacitor, while second metallic structure 142C forms the upper plate of the capacitor. One of the advantages of the present invention is that by selecting the patterns formed in masks 120, 140, and 150, one or more dual resistors, one or more capacitors, or both dual resistors and capacitors can be formed with the same number of masking steps.
Another advantage of the present invention is that the metallic structures 142A and 142C have much smoother surfaces than the rough surfaces of the metal that is used to form the metal traces. As a result, dielectric structure 142B can be thinner than the dielectric used with a capacitor where one of the plates of the capacitor is formed at the same time that a layer of metal traces is formed in the metal interconnect structure.
The method of the second alternate embodiment is the same as the first alternate method illustrated in
As a result, after the openings 122 have been formed, and metallic layer 124 has been deposited and then subsequently removed as described above, the landing pads 126 are formed as shown in
The method of the second alternate embodiment then continues the same as the first alternate method illustrated in
In accordance with the second alternate embodiment of the present invention, the landing pads 126 shown in
It should be understood that the above descriptions are examples of the present invention, and that various alternatives of the invention described herein may be employed in practicing the invention. For example, although the semiconductor structures 100, 1000, and 1600 are illustrated as formed below the metal-2 layer, the semiconductor structures 100, 1000, and 1600 can be formed below any metal layer. Thus, it is intended that the following claims define the scope of the invention and that structures and methods within the scope of these claims and their equivalents be covered thereby.
Patent | Priority | Assignee | Title |
11233117, | Oct 31 2019 | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | Ring structure for film resistor |
Patent | Priority | Assignee | Title |
5466484, | Sep 29 1993 | NXP, B V F K A FREESCALE SEMICONDUCTOR, INC | Resistor structure and method of setting a resistance value |
7633373, | Dec 19 2005 | National Semiconductor Corporation | Thin film resistor and method of forming the resistor on spaced-apart conductive pads |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 28 2010 | Texas Instruments Incorporated | (assignment on the face of the patent) | / | |||
Sep 21 2010 | KLATT, JEFFREY | National Semiconductor Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025148 | /0803 |
Date | Maintenance Fee Events |
Nov 24 2015 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Nov 18 2019 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Nov 21 2023 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 05 2015 | 4 years fee payment window open |
Dec 05 2015 | 6 months grace period start (w surcharge) |
Jun 05 2016 | patent expiry (for year 4) |
Jun 05 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 05 2019 | 8 years fee payment window open |
Dec 05 2019 | 6 months grace period start (w surcharge) |
Jun 05 2020 | patent expiry (for year 8) |
Jun 05 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 05 2023 | 12 years fee payment window open |
Dec 05 2023 | 6 months grace period start (w surcharge) |
Jun 05 2024 | patent expiry (for year 12) |
Jun 05 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |