An grouping bits interleaver includes a grouping bits unit and a data storage unit. The grouping bits unit is used for storing N data bits of an input data and outputting an address signal. Wherein each data bit is stored according to a bit position. The data storage unit coupled to the grouping bits unit is used for saving the content of the grouping bits according to the address signal. Compared to the conventional interleaver, the grouping bits interleaver has better memory usage, less access time, and smaller memory size.
|
10. An grouping bits interleaving method, comprising:
providing n N-bit register banks, wherein both n and N are positive integers;
providing a (N−1)-bit counter for counting a bit number of data bits of an input data, the bit number of the data bits is k, and the value of the least significant bits of k is m;
calculating n bit positions for the n N-bit register banks for storing n data bits respectively, and each of the n N-bit register banks stores the data bit according to each of the n bit positions; and
calculating n address signals when n N-bit register banks are full or the n bit positions are equal to n preset values, and storing the n contents of the n N-bit register banks into a buffer sequentially.
1. A grouping bits interleaver, comprising:
a grouping bits unit, for storing N data bits of an input data and outputting an address signal, wherein N is a positive integer and each data bit is stored according to a corresponding bit position; and
a data storage unit, coupled to the grouping bits unit, for saving the content of the grouping bits unit according to the address signal;
wherein the grouping bits unit comprises:
an address and bit position calculator, for calculating the address signal and the corresponding bit position; and
a storage unit, coupled to the address and bit position calculator, for storing data bit according to the corresponding bit position, wherein the data storage unit saves the content of the storage unit according to the address signal in response of that the data storage unit is full or the corresponding bit position is equal to a preset value.
3. A grouping bits interleaver, comprising:
n grouping bits units, wherein n is an integer larger than one, each of the n grouping bits units is used to store a plurality of data bits of an input data according to each of n bit positions and to output n address signals, wherein each data bit of the input data is stored according to the corresponding bit position;
a data storage unit, coupled to the n grouping bits units, for saving content stored in each of the n grouping bits units according to the n address signals, respectively;
a first switch, coupled to the n grouping bits units, for outputting one data bit of the input data into one of the n grouping bits units according to a first select signal;
a second switch, coupled to the n grouping bits units and the data storage unit, for outputting the content stored in one of the grouping bits unit to the data storage unit according to the first select signal; and
a bit-reversed-order (BRO) operation circuit, coupled to the first and second switch, for receiving a plurality of least significant bits of a count signal and outputting the BRO of the least significant bits of the count signal, wherein a number of the least significant bits of the count signal is determined by n,
wherein the first select signal is the BRO of the least significant bits of the count signal.
2. The grouping bits interleaver as
a N-bit register bank, for storing data bit according to the corresponding bit position.
4. The grouping bits interleaver of
a (N−1)-bit counter, coupled to the BRO operation circuit, for outputting the count signal k, wherein N is a positive integer and the count signal k is a count of the data bits of the input data; and
a comparator, coupled to the (N−1)-bit counter, for comparing the a predetermined value and the count signal k,
wherein the predetermined value is the total number of the data bits Ei.
5. The grouping bits interleaver of
an address and bit position calculator, for calculating one of the n address signals and one of the n bit positions; and
a storage unit, coupled to the address and bit position calculator, for storing the N data bits of the input data according to one of the n bit positions.
6. The grouping bits interleaver of
a N-bit register bank, for storing the N data bits of input data bits according to one of the n bit positions.
7. The grouping bits interleaver of
a first (N−1)-bit counter, started from a initial value, for counting an input count SymCount of the data bits that input the grouping bits unit;
a bit position calculator, coupled to the first (N−1)-bit counter, for calculating one of the n bit positions, j=15−SymCount[0:x], wherein SymCount[0:x] is the value of the x+1 least significant bits of the input count SymCount;
a first comparator, coupled to the bit position calculator, for comparing the SymCount[0:x] with a specified value; and
a address calculator, for calculating one of the n address signals.
8. The grouping bits interleaver of
a buffer, for saving the first data in response to one of the n bit position is equal to one of the n specified values; and
an ending process circuit, coupled to the buffer, for reading the content of the buffer according to the one of the n address signal, doing a or-operation for the content of the buffer and the content of one of the n grouping bits units to produce a or-operation result, and writing the or-operation result into the buffer according to one of the n address signals; wherein the ending process circuit is enabled when the count signal is equal to the predetermined value.
9. The grouping bits interleaver of
11. The grouping bits interleaving method of
doing the BRO of m, the value of the BRO of m is i;
providing n first (N−1)-bit counters with n differentent initial values; and
assigning the n bit positions j=SymCount(i)[x:0], i is from 1 to n, and SymCount(i)[x:0] means the value of the (x+1) least significant bits of the count number of the i-th first (N−1)-bit counter.
12. The grouping bits interleaving method of
when the SymCount(i)[x:0] is equal to N, the i-th address signal is a base-address plus SymCount(i)[N−1:x+1], wherein SymCount(i)[N−1:x+1] means the value of the most significant bits of the count number of the i-th first (N−1)-bit counter from (N−1) to x+1.
13. The grouping bits interleaving method of
14. The grouping bits interleaving method of
15. The grouping bits interleaving method of
when k is equal to the total bit number of the input data, the n address signals are calculated, and the n contents of the buffer are read according to n address signals;
acquiring the n contents of the n (N−1)-bits register banks to do the or-operation with the n contents read from buffer to generate n operation results; and
writing the n operation results according the n address signals.
|
1. Field of Invention
The present invention generally relates to an interleaving apparatus and method thereof, and more particularly to a grouping bits interleaving apparatus and method thereof.
2. Description of Prior Art
In digital communication systems, information to be transmitted is represented in bits. A bit is a binary digit that can take on two kinds of values namely “0” or “1”. When one bit transmitted by the transmitter with a value is received but decoded as a different value in the receiver, a bit-error has occurred. This kind of error is caused by channel impairments like noise, interference, fading or any combination of them.
In most cases, noise, interference and fading impairments occur in bursts and can lead to more than one bit being in error consecutively. When bit-errors occur in consecutive received bits at the receiver end, a burst-error occurs. In most communication systems, forward error correction (FEC, hereafter) is a method that is used to detect and correct bit-errors, and thus the performances of communication systems will be improved.
However, the ability of FEC for correcting bit-errors is best when the bit-errors are not consecutive. In other words, isolated bit-errors can be more easily detected and corrected by the modem FEC algorithm, device or apparatus, while the consecutive bit-errors are not easily detected and corrected by the modem FEC algorithm, device or apparatus. Interleaving is a common algorithm in the digital communication system, which is used to spread the burst-error to multiple isolated bit errors. Using an appropriated FEC mechanism and an interleaving algorithm, these isolated errors can be corrected and the entire transmit message will be received correctly. At the transmitter end, the mechanism to do the interleaving algorithm is called interleaver; while in receiver end, the mechanism to do the de-interleaving algorithm is called de-interleaver.
Interleaving the transmitted bits and de-interleaving the received bits can spread a long burst-error into several single bit-errors or multiple shorter burst-errors. Then the following FEC algorithm will be more capable to correct these single bit-errors or shorter burst-errors than the longer burst-error.
Please see
As shown in
In
As shown in
In
As stated above, data to be interleaved at the transmitter end are in unit of bits. At the transmitter end, one bit represents one datum. While at the receiver end, the data to be de-interleaved is mostly in the unit of symbols, and one symbol consists of several bits whereby the soft or multi-level values are used by the FEC decoder for better decoding. In some cases where the FEC decoder operates at the binary level, data to be de-interleaved can be in the units of bits. Thus at the receiver end, one bit or several bits represent one datum.
Generally speaking, the storage array (such as memory) is most efficiently composed of words (ex: 16 bits per word in WCDMA systems), where one word may consist of several bits such as 16, 32, or 64 bits. Therefore when designing a de-interleaver for a receiver using soft symbol FEC decoding, it is straightforward to use one word to store one symbol datum.
However, when designing an interleaver for a transmitter or a receiver using a binary FEC decoder, an inefficient usage of memory will occur if one word is still used to store only one bit datum. Besides, memory access time will be too much in such an implementation. With one word only containing one bit datum, the memory access times (i.e. consider writing access only) will be as many as the number of data bits. Additionally, a larger address space is needed.
In essence, the conventional block interleaving implementation using word-based memory suffers from poor memory usage, longer processing time, and larger address space. In order to improve the efficiency of the memory usage as well as access time, the embodiment of the invention provides an interleaving mechanism and a de-interleaving mechanism with the receiver using a binary FEC decoder to possess benefits in digital communication systems.
Accordingly, the present invention is directed to an interleaving apparatus and method thereof.
The present invention provides a grouping bits interleaver, and the grouping bits interleaver has better memory usage, less access time, and smaller memory size.
The present invention provides a grouping bits interleaver. The grouping bits interleaver includes a grouping bits unit and a data storage unit. The grouping bits unit is used for storing N data bits of an input data and outputting an address signal. Wherein each data bit is stored according to a bit position. The data storage unit coupled to the grouping bits unit is used for saving the content of the grouping bits according to the address signal.
According to the embodiments of the present invention, the grouping bits unit includes an address and bit position calculator. The address and bit position calculator is used for calculating the address signal and the bit position. The storage unit coupled to the address and bit position calculator is used for storing each data bit according to the bit position.
The invention provides a grouping interleaving method. First, store data bits of a received input data according to a corresponding bit position in a register bank, wherein the corresponding bit position is calculated before the storing. Then, save the content of the register bank in a data storage unit according to a calculated address signal.
In the embodiments of the present invention, saving the content of the register in the data storage unit is in response of the register bank is full or the corresponding bit position is equal to the preset value.
The present invention provides a grouping bits interleaver. The interleaver comprises n grouping bits units and a data storage unit. Each of the n grouping bits units is used to store a plurality of data bits of an input data according each of n bit positions and to output each of n address signals, wherein each data bit of the input data is stored according to the corresponding bit position. The data storage unit coupled to the n grouping bits units is used for saving content stored in each of the n grouping bits units according to the n address signals, respectively.
In the embodiments of the present invention, the interleaver further comprises a first switch, a second switch and a bit-reversed-order (BRO) operation circuit. The first switch coupled to the n grouping bits units is used for outputting one data bit of the input data into one of the n grouping bits units according to a first select signal. The second switch coupled to the n grouping bits units and the data storage unit is used for outputting the content stored in one of the grouping bits unit to the data storage unit according to the first select signal. The BRO operation circuit coupled to the first and second switch is used for receiving a plurality of least significant bits of a count signal and outputting the BRO of the least significant bits of the count signal, wherein a number of the least significant bits of the count signal is determined by n, and the first select signal is the BRO of the least significant bits of the count signal.
The present invention provides a grouping bits interleaving method used in a transmitter. First, provide n N-bit register banks. Then, provide a (N−1)-bit counter for counting a bit number of data bits of an input data, the number of the data bits is k, and the value of the least significant bits of k is m. Next, calculate n bit positions for the n N-bit register banks for storing n data bits respectively, and each of the n N-bit register banks stores the data bit according to each of the n bit positions. Finally, calculate n address signals when n N-bit register banks are full or the n bit positions are equal to n preset values, and then store the n contents of the n N-bit register banks into a buffer sequentially.
According to the embodiments of the present invention, the step of obtaining the n bit positions comprises the following sub-steps. First, do the BRO of m, and the value of the BRO of m is i. Then, provide n first (N−1)-bit counters with n different initial values. Finally, assign the n bit positions j=SymCount(i)[x:0]. Wherein i is from 1 to n, and SymCount(i)[x:0] means the value of the (x+1) least significant bits of the count number of the i-th first (N−1)-bit counter.
According to the embodiments of the present invention, the step of obtaining the n bit positions comprises the following sub-steps. When the SymCount(i)[x:0] is equal to N, the i-th address signal is a base-address -plus SymCount(i)[N−1:x+1]. Wherein SymCount(i)[N−1:x+1] means the value of the most significant bits of the count number of the i-th first (N−1)-bit counter from (N−1) to x+1.
The interleaver and interleaving method provided by the invention use grouping bits design, so as to improve the efficiency of the memory usage. Thus the memory of the grouping bits interleaver does not need a large size memory, and the access times of the memory are reduced.
It is to be understood that both the foregoing general description and the following detailed description are exemplary, and are intended to provide further explanation of the invention as claimed.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
Reference will now be made in detail to the present preferred embodiment of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
The grouping bits unit 21 is used to temporarily store a plurality of encoded bits of the input data to be interleaved according to a bit position and output a write address. The interleaved data storage unit 22 is used to save the input data temporarily stored in the grouping bits unit 21 according to the write address.
The grouping bits unit 21 comprises an address and bit position calculator 210 and a temporary storage unit 211. The temporary storage unit 211 may be composed of a plurality of registers (not shown in the
The address and bit position calculator 210 is used to calculate the bit position and the write address. When each of the encoded bits is input into the grouping bits unit, the address and bit position calculator 210 calculate the bit position. And then the temporary storage unit 211 is used to temporarily store each of the encoded bits of the data according to the bit position currently calculated. In one instance, each register contains one bit memory. The bit position determines the corresponding register of the registers to temporarily store each encoded bit of the input data.
The input data to be interleaved is in unit of the encoded bits, and each unit will be processed one by one. Each input data to be interleaved will be first transferred into a temporary storage unit 211, which consists of several registers. The registers store the same number of bits as one word (ex: 16 bits per word in WCDMA systems) of the interleaved data storage unit 22. Once the registers are filled up, the whole contents of the registers will be transferred to the interleaved data storage unit 22 based on the write address. This procedure continues until all data to be interleaved are processed, and the whole interleaving process is finished.
In the application, the interleaver 20 furthermore comprises other grouping bits units (not shown in
Since in many implementations, a word-based storage unit is commonly used as a final or temporary place to store interleaved data, such advantages as reduced address and storage space, simpler control logic, and reduced total memory access time can be derived by grouping enough encoded bits (datum) into a word before accessing the interleaved data storage unit for word storage. So the main benefit of this grouping bits design is to significantly reduce the access times of the interleaved data storage unit so that the memory usage can be more efficient and the required processing time can be reduced accordingly.
This interleaving mechanism can be easily applied to the 1st interleaving performed in WCDMA baseband according to the technical specification TS 25.212. Please see
Since more than one transport channel may be stored, a base address parameter is also given as shown below. During the interleaving, a column permutation may be performed by swapping the columns using a bit-reversed-order (BRO, hereafter) of their original column number. For example, a BRO of column 3 (binary 011) in an eight-column block interleaver becomes column 6 (binary 110). In essence, column 3 becomes column 6. For some embodiments, no column permutation is one of many possible permutations. The bit-reversed-order functionality is not essential in the present invention.
The 1st interleaver 40 comprises an initial value generator 43, a BRO operation circuit 44, a 15-bit counter 45, a comparator 46, two switches 47 and 48, a grouping-units block 41, and an interleaved data storage unit 42. The grouping-units block 41 comprises n+1 grouping bits units 410˜41n, wherein n is equal to C1−1. In other words, the number of grouping bits units is equal to the total number of columns. The interleaved data storage unit 42 comprises an ending process circuit 420 and a turbo, convolutional TTI buffer 421, and a switch 422.
The initial value generator 43 is coupled to the grouping bits units 410˜41n. The grouping bits units 410˜41n are coupled to the ending process circuit 420 and the turbo and convolutional TTI buffer 421. The switch 47 is coupled to the BRO operation circuit 44 and the 15-bit counter 45. The comparator 46 is coupled to the grouping bits units 410˜41n, the ending process circuit 420, and the turbo and convolutional TTI buffer 421. The switch 422 is coupled to the ending process circuit 420 and the turbo and convolutional TTI buffer 421.
The interleaver 40 is enabled by the enable signal 1stInterleaver_en. The interleaver 40 receives coded data bits and performs the grouping bits interleaving algorithm, when the interleaver 40 is enabled.
The initial value generator 43 generates a plurality of initial values for the grouping bits units 410˜41n, when the initial value generator 43 is triggered to start by the start encoding signal. The initial value for the grouping bits unit 410 is 0 (0*R1). The initial value for the grouping bits unit 411 is R1 (1*R1). By this deduction, the initial value for the grouping bits unit 41n is n*R1.
The BRO operation 44 circuit receives the output m of the 15-bit counter 45, and performs the BRO operation for m. The 15-bit counter 45 receives coded data bits to check if the coded data bits are in the new encoded symbol. If the coded data bits are in the new encoded symbol, the outputs m and k of the 15-bit counter 45 increase by one (i.e. m=m+1, k=k+1); otherwise, the outputs m and k of the 15-bit counter 45 remain the same. The output k of the 15-bit counter 45 is the total symbol count. The output m of the 15-bit counter 45 is the symbol count modulo C1.
If C1=1, the BRO operation circuit 44 will not work. If C1=2, the BRO operation circuit 44 will do 1-bit BRO operation for m, wherein m has 1 bit. If C1=2x, the BRP operation circuit 44 will do x-bit BRO operation for m, wherein m has x bits. The output of the BRO operation circuit 44 is the result of the BRO operation for m, wherein the output of the BRO operation circuit 44 is denoted as i=BRO(m).
The comparator 46 compares the total symbol count k with Ei. If the k≧Ei, the output signal StateCtrl of the comparator 46 is enabled. The signal StateCtrl is used to control the grouping bits units 41 for sending the read address or write address to the turbo and convolutional TTI buffer 421. The signal StateCtrl is also used to enable the ending process circuit 42 and control the switch 422.
The switch 47 and 48 are controlled by the output i of the BRO operation circuit 44. In other word, the switch 47 sends one of the coded data bits to one of the corresponding grouping bits units 410˜41n according to the output i of the BRO operation circuit 44. The switch 48 selects similarly one of the corresponding grouping bits units 410˜41n.
Each of the grouping bits units 410˜41n is used to generate a write address, and temporarily store the coded data bits. The structures of each grouping bits unit 410˜41n are the same. Here, take grouping bits unit 410 for illustration. The grouping bits unit 410 comprises a TTI buffer address calculator 4100, a 15-bit counter 4101, a 16-bit register bank 4102, a bit position calculator 4103, a comparator 4104, and switch 4105.
The 15-bit counter 4101 is coupled to the TTI buffer address calculator 4100, the 16-bit register bank 4102, the bit position calculator 4103, and the comparator 4104. The 16-bit register bank 4102 is coupled to the switch 4105 and the bit position calculator 4103. The switch 4105 is coupled to the comparator 4104.
The 15-bit counter 4101 receives one of the initial values as a starting number of the 15-bit counter 4101 from the initial value generator 43. The 15-bit counter 4101 receives the coded data bits via the switch 47 and checks if the coded data bits are in the new encoded symbol. If the coded data bits are in the new encoded symbol, the output SymCount(0) of the 15-bit counter 4101 increases by one (i.e. SymCount(0)=SymCount(0)+1); if not, the output SymCount(0) of the 15-bit counter 4101 remains the same. As stated above, the initial value for the grouping bits unit 410 is 0.
The bit position calculator 4103 calculates a bit position to the 16-bit register bank 4102. The bit position is equal to 15−j, wherein j is the four least significant bits (LSBs, hereafter) presented decimally (i.e. j=SymCount(0)[3:0]). The 16-bit register bank 4102 is used to store the coded data bits according to the bit position. The 16-bit register bank 4102 is composed of 16 one-bit registers. The bit position is used to indicate which one register of the 16-bit register bank 4102 to store the bit of the coded data bits.
The comparator 4104 compares j and the value 15, if j=15, the output of the comparator 4104 is enabled; otherwise the output of the comparator 4104 is disabled. The switch 4105 is controlled by the output of the comparator 4104. The comparator may compare j with the other positive value less than the bits number of the 16-bit register bank 4102. In the embodiment this value is 15, but it is not intended to limit the scope of the invention.
In response to the output of the comparator 4104 is enabled, the 16-bit register bank 4102 dumps stored data bits to the ending process circuit 420 and the turbo and convolutional TTI buffer 421 via the switch 422. The TTI buffer address calculator 4100 calculates the write address and outputs the write address to the turbo and convolutional TTI buffer 421 in response to the signal StateCtrl is disabled; in response to the signal StateCtrl is 1, the TTI buffer address calculator 4100 calculates the write address and the read address and outputs the write address to the turbo and convolutional TTI buffer 421. The write address and the read address are the base address initialized by the external setting plus SymCount(0)[14:4].
When StateCtrl is disabled, the switch 422 selects the stored data bits in the 16-bit register bank 4102 as the output of the switch 422; when StateCtrl is enabled, the switch 422 selects the output of the ending process circuit 420 as the output of the switch 422. The turbo and convolutional TTI buffer 421 outputs its stored data according the read address and stores the output of the switch 422 according to the write address.
The ending process circuit 420 comprises a 16-bit register bank 4200 and a plurality of or-gates 4201. Wherein the 16-bit register bank 4200 is coupled to the or-gates 4201. The ending process circuit 420 is enabled when StateCtrrl is enabled. The 16-bit register bank 4200 reads the stored data of the turbo and convolutional TTI buffer 421 according the read address. The OR-gates 4201 do the OR-operation for the output of the switch 4105 and the output of the 16-bit register bank 4200.
As stated above, the structures of the grouping bits units 410˜41n are the same. The functions of the grouping bits units 410˜41n are similar. For the grouping bits units 41i and 410, the difference is SymCount(0) as stated above and SymCount(i). In other word, the function of the grouping bits unit 41i is same as stated above, except for using SymCount(i) to substitute for SymCount(0).
Please see
In step S54, check whether the coded data bits are in the new encoded symbol. If the coded data bits are in the new encoded symbol, the next step S55 will be executed; otherwise, repeat checking whether the coded data bits are in the new encoded symbol. In other words, if a new encoded symbol is sent from the FEC encoder, the next step S55 will be executed. In the step S55, do the BRO operation for m, i.e. i=BRO(m), wherein m is the total symbol count k modulo C1; j is assigned to SymCount(i)[3:0], then the bit position is 15−j, and the bit of the coded data bits is written into the 16-bit register bank of the grouping bits unit 41i according to the bit position; finally increase m and k by 1 (i.e. m=m+1, k=k+1).
In step S56, check whether SymCount(i)[3:0] is equal to 15.I If SymCount(i)[3:0] is equal to 15, the next step S57 will be executed; otherwise, the next step S58 will be executed. In step S57, write the data stored in the 16-bit register bank of the grouping bits unit 410i into the turbo and convolutional TTI buffer 421 according to the write address, and clear the 16-bit register bank of the grouping bits unit 41j. Wherein the write address is BaseAddress plus SymCount(i)[14:4]. In step S58, increase SymCount(i) by one (i.e. SymCount(i)=SymCount(i)+1).
In step S59, check whether k is equal to Ei. If k is equal to Ei, the next step S60 will be executed; otherwise the next step S66 will be executed. In step S66, check whether m is larger than C1−1. If m is larger than C1−1, the next step S67 will be executed; otherwise, go back to step S54. In step S67, m is set to be 0.
In step S60, index i is set to be 0. In step S61, j is assigned to be SymCount(i)[3:0]. In step S62, check whether j is equal to 0. If j is equal to 0, the next step S64 will be executed; otherwise the next step S63 will be executed. In step S63, read the data stored from the turbo and convolutional TTI buffer 421 according to the read address into the 16-bit register bank 4200; do the OR-operation for data stored in the 16-bit register bank 4200 and the output of the switch 48; finally write the result of OR-operation into the turbo and convolutional TTI buffer 421 according to the write address. In which the write address and the read address are the same, and the address equals the sum of BaseAddress plus SymCount(i)[14:4]. In step S64, increase i by one (i.e. i=i+1). In step S65, check if i is equal to C1, if i is equal to C1, the grouping bits interleaving algorithm is finished; otherwise, go back to step S61.
In one embodiment, steps S60˜S65 are executed by the ending process circuit 420. The ending process circuit 420 will improve the efficiency of the memory usage of the turbo and convolutional TTI buffer 421. In some circumstances, the ending processing circuit 420 and BRO operation circuit 44 may be removed for some requirement. The embodiments shown in
Below, two examples are provided to explain the working procedure of the 1st interleaver with grouping bits design. Please see
In
In
In
Please see
In
In
In
In
In
Accordingly, in these embodiments, the interleaver provided by the invention use grouping bits design, so as to improve the efficiency of the memory usage. Thus the memory of the grouping bits interleaver does not need a large size memory, and the access times of the memory are reduced.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing descriptions, it is intended that the present invention covers modifications and variations of this invention if they fall within the scope of the following claims and their equivalents.
Patent | Priority | Assignee | Title |
8638244, | Aug 31 2009 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Encoding module, apparatus and method for determining a position of a data bit within an interleaved data stream |
Patent | Priority | Assignee | Title |
6405286, | Jul 31 1998 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Method and apparatus for determining interleaving schemes in a computer system that supports multiple interleaving schemes |
20020035709, | |||
20080126914, | |||
WO124380, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 14 2008 | SEBENI, JOHNSON | Via Technologies, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020523 | /0300 | |
Feb 14 2008 | PENG, DENNIS | Via Technologies, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020523 | /0300 | |
Feb 14 2008 | VIA Technologies, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Nov 19 2015 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 31 2019 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Nov 17 2023 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 05 2015 | 4 years fee payment window open |
Dec 05 2015 | 6 months grace period start (w surcharge) |
Jun 05 2016 | patent expiry (for year 4) |
Jun 05 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 05 2019 | 8 years fee payment window open |
Dec 05 2019 | 6 months grace period start (w surcharge) |
Jun 05 2020 | patent expiry (for year 8) |
Jun 05 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 05 2023 | 12 years fee payment window open |
Dec 05 2023 | 6 months grace period start (w surcharge) |
Jun 05 2024 | patent expiry (for year 12) |
Jun 05 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |