The present invention is a system for dissipating loops in an elongated medical device having one end secured to an anchor point, such as a housing. The system includes a selectively rotatable shaft coupler that connects a shaft to the anchor point that allows a limited amount of shaft rotation during use, but which sets a restriction on the maximum amount of shaft rotation. In another embodiment, the invention provides a shaft coupling system for connecting a proximal end of an endoscope shaft to an object without the use of adhesives or fasteners. In another embodiment, the invention provides a rotatable shaft coupling system for rotatably coupling a first and second shaft segment.

Patent
   8197400
Priority
Sep 30 2004
Filed
Sep 28 2005
Issued
Jun 12 2012
Expiry
Feb 21 2028
Extension
1239 days
Assg.orig
Entity
Large
66
588
EXPIRED<2yrs
5. A system for rotatably coupling segments of an endoscope shaft, the system comprising:
a first housing have a first end and a second end, a first segment of the endoscope shaft being rotatably secured to the first end of the first housing and a second segment of the endoscope shaft being rotatably secured to the second end of the first housing, each of the first and second ends of the first housing including a threaded bore adapted to rotatably receive a corresponding one of a first threaded end of the first segment and a second threaded end of the second segment, wherein each of the first and second segments of the endoscope shaft includes only one continuous thread;
wherein the first and second ends of the first housing are configured such that they do not rotate relative to each other; and
wherein a first amount of rotation of the second segment in a first direction causes the second segment to move towards the first segment, and wherein further rotation of the second segment in the first direction causes the first segment to move away from the second segment; and
wherein a thread of the threaded bore of the first end of the first housing extends a distance along the bore such that the thread does not extend to either the first end or the second end of the first housing.
1. A system for rotatably coupling a first segment of an endoscope shaft to a second segment of an endoscope shaft, the system comprising:
(i) an endoscope shaft comprising a proximal end and a distal end and one or more internal components of the endoscope passing therethrough; wherein the shaft is formed into a first segment having a first threaded end and a second segment having a second threaded end; and
(ii) a joint having a housing with a first end and a second end secured, respectively, to the first threaded end of the first segment and the second threaded end of the second segment, each of the first and second ends of the housing including a threaded bore adapted to rotatably receive a corresponding one of the first threaded end of the first segment and the second threaded end of the second segment, and wherein each of the threaded bores of the first and second ends of the housing includes more threads than present on a corresponding one of the first threaded end of the first segment and the second threaded end of the second segment, wherein the first and second ends of the housing are configured such that they do not rotate relative to each other, and wherein during operation of the system, at least one of the first and second segments of the shaft is rotatable in and with respect to the housing;
wherein a first amount of rotation of the second segment in a first direction causes the second segment to move towards the first segment, and wherein further rotation of the second segment in the first direction causes the first segment to move away from the second segment; and
wherein a thread of the threaded bore of the first end of the housing extends a distance along the bore such that the thread does not extend to either the first end or the second end of the housing.
2. The system of claim 1, wherein each of the first and second ends includes only one continuous thread.
3. The system of claim 1, wherein the threads of the threaded bore included in the first end are oriented in a direction opposite from the threads of the threaded bore included in the second end.
4. The system of claim 1, wherein the one or more internal components of the endoscope include at least one of an illumination element and an imaging element.
6. The system of claim 5, wherein the first housing is configured as an integral, unitary piece of material.
7. The system of claim 6, wherein the first housing is tubular.
8. The system of claim 5, wherein the thread of the threaded bore of the first end of the first housing is oriented in an opposite direction as a thread of the threaded bore of the second end of the first housing.
9. The system of claim 5, wherein the longitudinal length of the thread of the threaded bore of the first end of the first housing and the longitudinal length of a thread of the threaded bore of the second end of the first housing are selected such that the first and second segments of the endoscope shaft are permitted to travel along a length of the first housing, and wherein respective ends of the threads on the threaded bore of the first and second ends of the first housing limit further travel of the first and second segments of the endoscope shaft along the length of the first housing.
10. The system of claim 5, further including a second housing having a first end and a second end, wherein a third segment of the endoscope shaft is configured to be rotatably secured to the first end of the second housing and a fourth segment of the endoscope shaft is configured to be rotatably secured to the second end of the second housing.
11. The system of claim 10, wherein a proximal most end of the first segment of the endoscope shaft is configured to be connected to a control console, and a distal most end of the first segment of the endoscope shaft is configured to be rotatably secured to the first end of the first housing.
12. The system of claim 11, wherein a proximal most end of the second segment of the endoscope shaft is configured to be rotatably secured to the second end of the first housing, and a distal most end of the second segment of the endoscope shaft is configured to be connected to a proximal most end of an endoscope handle.
13. The system of claim 12, wherein a proximal most end of the third segment of the endoscope shaft is configured to be connected to a distal most end of the endoscope handle, and a distal most end of the third segment of the endoscope shaft is configured to be rotatably secured to the first end of the second housing.
14. The system of claim 13, wherein a proximal most end of the fourth segment of the endoscope shaft is configured to be rotatably secured to the second end of the second housing, and a distal most end of the fourth segment of the endoscope shaft is configured to be received within a body.
15. The system of claim 12, wherein the first end of the second housing includes a threaded bore having a thread configured to receive an external thread of the third segment of the endoscope shaft, and wherein the second end of the second housing includes a threaded bore having a thread configured to receive an external thread of the fourth segment of the endoscope shaft.
16. The system of claim 5, wherein the endoscope shaft is configured to pass one or more internal components of the endoscope therethough.
17. The system of claim 5, wherein each of the threaded bores of the first and second ends of the first housing includes more threads than present on a corresponding one of the first threaded end of the first segment and the second threaded end of the second segment.

This application is a continuation-in-part of U.S. application Ser. No. 10/955,960, filed Sep. 30, 2004, entitled SELECTIVELY ROTATABLE SHAFT COUPLER, the disclosure of which is hereby expressly incorporated by reference and the priority from the filing date of which is hereby claimed under 35 U.S.C. §120.

The present invention relates to shaft couplers for medical devices in general and to rotatable shaft couplers in particular.

It has become well established that there are major health benefits from regular endoscopic examinations of a patient's internal structures such as the alimentary canals and airways, e.g., the esophagus, stomach, lungs, colon, uterus, urethra, kidney, and other organ systems. Endoscopes are also commonly used to perform surgical, therapeutic, diagnostic or other medical procedures under direct visualization. A conventional imaging endoscope used for such procedures generally includes an illuminating mechanism such as a fiber optic light guide connected to a proximal source of light, and an imaging means such as an imaging light guide to carry an image to a remote camera or eye piece or a miniature video camera within the endoscope itself. In addition, most endoscopes include one or more working channels through which medical devices such as biopsy forceps, snares, fulguration probes and other tools may be passed in order to perform a procedure at a desired location in the patient's body.

In connection with the endoscope, an operator handle is typically provided that allows a user to steer and control the operation of the endoscope. The endoscope is guided through the patient's tract or canal until an opening such as an imaging port at the distal end of the endoscope is proximate to the area of the patient's body which is to be examined or receive treatment. At this point, the endoscope allows other components, such as a catheter, to access the targeted area.

In many endoscopic procedures, the physician or operator needs to rotate an endoscope shaft in order to obtain the desired images, to obtain a desired position of the distal tip, or to perform a desired surgical function (e.g. polyp removal, drainage, and the like). An endoscope shaft with torque transfer characteristics facilitates shaft rotation in the patient's anatomy by allowing the shaft to twist around its central axis. Excessive rotation of the shaft can damage the cables, tubes and electrical wires within the device. On the other hand, an endoscope shaft that is not allowed to rotate relative to the position of the handle at all may loop over itself during clinical use, causing damage to the internal components as well as discomfort to the patient. In a traditional endoscope system, when loops build up in the shaft, the physician typically propagates the loops back into the proximal portion of the shaft to keep the loops out of the physician's way. However, the loops can shorten the proximal shaft. In some cases when there is an excessive amount of looping in the shaft, the physician is forced to disconnect the scope from a console, untwist the proximal shaft, and reconnect the scope.

Low cost, disposable medical devices designated for a single use have become popular for instruments that are difficult to sterilize or clean properly. Single-use, disposable devices are packaged in sterile wrappers to avoid the risk of pathogenic cross-contamination of diseases such as HIV, hepatitis, and other pathogens. Hospitals generally welcome the convenience of single-use disposable products because they no longer have to be concerned with product age, overuse, breakage, malfunction and sterilization. One medical device that has not previously been inexpensive enough to be considered truly disposable is the endoscope, such as a colonoscope, ureteroscope, gastroscope, bronchoscope, duodenoscope, etc. Such a single-use or disposable endoscope is described in U.S. patent application Ser. No. 10/406,149, filed Apr. 1, 2003, and in a U.S. continuation-in-part patent application Ser. No. 10/811,781, filed Mar. 29, 2004, and in a U.S. continuation-in-part patent application Ser. No. 10/956,007, filed Sep. 30, 2004, that are assigned to Scimed Life Systems, Inc., now Boston Scientific Scimed, Inc. and are herein incorporated by reference. In some single-use or disposable medical device systems, the system is configured to reject a medical device that has been previously used. Therefore, when a physician builds up loops in the proximal shaft of a single-use device in such a system, the physician is not able to disconnect and reconnect the shaft to remove the loops. In such a situation, the physician is left with the option of using the device with a shorter working length.

To address these and other problems, the present invention is a system for dissipating loops in an elongated medical device having one end secured to an anchor point, such as an object, housing, console, etc. In one embodiment, the system includes a selectively rotatable shaft coupler that connects a shaft to a housing that allows a limited amount of shaft rotation during use, but which sets a restriction on the maximum amount of shaft rotation. The rotatable shaft coupler comprises a coupler housing that is secured to an anchor and a shaft adapter that securable to the shaft of medical device, the coupler including means for allowing a limited rotation during use between the shaft adapter and the housing. In one embodiment, the system maintains the effective length of the endoscope shaft during rotation.

In another embodiment, the present invention provides a shaft coupling system for connecting an endoscope shaft to a housing or other structure. The shaft coupling system comprises a housing with a first end adapted to receive a shaft retainer and a shaft retainer comprising a plurality of retention elements capable of securing an end of an endoscope shaft.

In another embodiment, the present invention provides a system for rotatably coupling a first segment of an endoscope shaft to a second segment of an endoscope shaft. The system includes an endoscope shaft and one or more internal components therein, wherein the shaft is formed into first and second segments. A swivel joint having a housing with a first and a second end rotatably connects the ends of the two shaft segments.

The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:

FIG. 1 is a diagram illustrating a selectively rotatable shaft coupler in accordance with one embodiment of the invention;

FIG. 2 shows a cross-sectional view of a shaft adapter that is included in the shaft coupler shown in FIG. 1;

FIG. 3A is a diagram illustrating the selectively rotatable shaft adapter of FIG. 2 shown in a position of maximum rotation in a first direction;

FIG. 3B shows the selectively rotatable shaft adapter of FIG. 2 shown in a position of minimal endoscope shaft rotation;

FIG. 3C shows the selectively rotatable shaft adapter of FIG. 2 coupled to an endoscope shaft showing maximum rotation in a second direction;

FIG. 4 illustrates another embodiment of a selectively rotatable shaft coupler in accordance with the present invention;

FIG. 5 illustrates another embodiment of a selectively rotatable shaft coupler that maintains the effective length of an endoscope shaft during rotation, in accordance with another embodiment of the present invention;

FIG. 6 shows a perspective view of the interface between the tangs and notches on interconnecting members of the shaft adapter shown in FIG. 5;

FIG. 7 illustrates yet another embodiment of a selectively rotatable shaft coupler that maintains the effective length of the endoscope shaft during rotation, in accordance with the present invention;

FIG. 8A shows a perspective view of a shaft adapter having grooves along the longitudinal axis in accordance with one embodiment of the present invention;

FIG. 8B shows a perspective view of the interface between the shaft adapter having grooves and a rotary adapter having corresponding ribs, in accordance with one embodiment of the present invention;

FIG. 9 shows a selectively rotatable shaft coupler having a shaft adapter in accordance with one embodiment of the present invention;

FIG. 10A illustrates a shaft retainer having inwardly and outwardly facing barbs, in accordance with another embodiment of the invention;

FIG. 10B shows a perspective view of the shaft retainer having inwardly and outwardly facing barbs in accordance with one embodiment of the invention;

FIG. 11A illustrates an alternative embodiment of a shaft retainer having anti-rotation bosses coupled to a breakout box housing;

FIG. 11B shows a perspective view of the shaft retainer having anti-rotation bosses in accordance with one embodiment of the invention;

FIG. 12 illustrates an endoscope system that includes a plurality of swivel joints in accordance with another embodiment of the invention;

FIG. 13 shows a perspective view of an embodiment of a swivel joint connecting a first shaft segment and a second shaft segment;

FIG. 14 shows a partial cutaway view of an embodiment of a swivel joint comprising a first end adapted to rotatably receive a shaft segment and a second end adapted to fixedly receive a second shaft segment;

FIG. 15 shows a partial cutaway view of another embodiment of a swivel joint comprising a first end and a second end adapted to rotatably receive a first and a second shaft segment; and

FIG. 16 shows a partial cutaway view of another embodiment of a swivel joint comprising a first end including a swivel device.

To address the problems associated with excessive endoscope shaft rotation, one aspect of the present invention is a system for rotatably coupling a shaft to an anchor point, such as a housing. The system comprises a selectively rotatable shaft coupler that allows a limited amount of device (e.g., endoscope) shaft rotation during use, but which sets a restriction on the maximum amount of shaft rotation in order to provide increased manipulation of the endoscope while protecting the internal components of the shaft. Although the present invention is described as allowing rotation of an endoscope, it will be appreciated that the invention is useful with catheters, sheaths or other medical devices that are inserted into a patient, wherein selective rotation of a shaft with respect to another part of the device is desired.

In one embodiment, the shaft coupler system of the present invention comprises at least one selectively rotatable shaft adapter that connects an endoscope shaft to a connector that is secured to the device to which the shaft is to be rotatably connected. In one embodiment, the shaft coupler connects a shaft to a device such as a handle, control unit or working channel breakout box, such as described in U.S. patent application Ser. No. 10/811,781, filed Mar. 29, 2004, and in a U.S. continuation-in-part patent application Ser. No. 10/956,007 entitled VIDEO ENDOSCOPE, filed Sep. 30, 2004, that are assigned to Scimed Life Systems Inc., now Boston Scientific Scimed, Inc. In another embodiment, the shaft coupler system is used to join two sections of a shaft together.

FIG. 1 illustrates an exemplary embodiment of a selectively rotatable shaft coupler 100 for connecting an endoscope shaft (not shown) to a proximal connector housing 102. In the embodiment shown, the proximal connector housing 102 is rigidly secured to another object to which the endoscope is to be rotatably secured. The proximal connector housing 102 has a threaded bore 104 into which a corresponding threaded end 110 of a shaft adapter 108 is inserted. The proximal connector housing 102 also includes an outwardly extending threaded nipple 106 having a smooth bore 107 therein. The proximal connector housing 102 may be secured to the object by a variety of means such as an adhesive, or with any suitable fastener, or may be integrally formed with the object. The depth of the bore 107 determines the maximum range of endoscope shaft rotation.

A shaft adapter 108 has a first threaded end 110 that is threaded within the connector housing 102 and a second end 112 that is secured to the endoscope shaft (not shown). Between the first and second ends of the shaft adapter 108 is a circular flange 114. A cap 116 is threaded over the adapter 108 and onto the nipple 106 in order to close the flange 114 within the bore 107. The shaft coupler 100, comprising the shaft adapter 108 and the connector housing 102, may be packaged as a preformed unit that can be removably attached to a housing or to any desired object with any suitable connection means.

FIG. 2 shows a cross-sectional view of the shaft adapter 108. As shown, the shaft adapter 108 has a hollow body with a first end 110 adapted to be threaded with the proximal connector housing 102 and a second end 112 adapted to be secured to the end of an endoscope shaft. As shown, the shaft adapter has a central hollow lumen through which control cables and other elements of the endoscope are passed to allow electrical, irrigation and aspiration connections to extend into the endoscope. A counter-bored detail 120 inside the second end 112 of the shaft adapter 108 receives an end of an endoscope shaft. Alternatively, the second end 112 of the shaft adapter may be sized to fit inside an end of an endoscope shaft and secure the shaft by any suitable means, such as with the use of an adhesive and/or any suitable fastener.

FIGS. 3A-C illustrate the rotational movement of the shaft adapter 108 in the proximal connector housing 102 when coupled to a rotating endoscope shaft 122. In operation, as shown in FIG. 3A, an end of an endoscope shaft 122 is first secured to an end of the shaft adapter 108. Rotation of the shaft by the physician causes the shaft adapter 108 to rotate along with the endoscope shaft 122. Rotation of the shaft 122 in a first direction (e.g., clockwise) causes axial movement of the shaft adapter 108 within the proximal connector until the flange 114 contacts the bottom of the bore 107 by the threads on the end 110 of the shaft adapter 108. As shown in FIG. 3B, the flange 114 is in an intermediate position in the cylindrical bore 107, indicating a midway rotation of the endoscope shaft 122. Finally, as shown in FIG. 3C, rotation of the shaft in a full counterclockwise direction causes axial movement of the shaft adapter 108 towards the cap 116 until the flange 114 in the bore 107 contacts the interior surface of the cap 116. The depth of the bore 107 and the width of the flange 114 and/or the pitch of the threads that secure the shaft adapter 108 to the proximal connector housing 102, may be adjusted to allow for various amounts of rotational motion of the shaft.

FIG. 4 is a partial cutaway view of another embodiment of a selectively rotatable shaft coupler 120 attached to an anchor point, such as an object 124. As shown, the coupler 120 includes an internally threaded collar 126 that extends from, or is attached to, the object 124. A shaft adapter 132 is secured to an end of an endoscope shaft 136 and an engagement element such as a pin 134 is sized to be received in the threads 128 of the threaded collar 126. In operation, the engagement pin 134, or other equivalent engagement element on the shaft adapter 132, rides in the threads 128 of the threaded collar 126, causing the shaft adapter 132 to move axially in and out of the coupler 120 during rotation of the endoscope shaft 136. To limit rotation of the shaft during use, one or more stop elements 130A, 130B are positioned to extend into the threads 128 of the threaded collar to prevent movement of the engagement pin 134. The location of each of the two stop pins 130A, 130B in the threads and the pitch of the threads determines the range of endoscope shaft rotation.

In some embodiments, the stop elements 130A, 130B may be tightened onto the shaft adapter 132, thereby locking the endoscope shaft 136 into a desired orientation during clinical use. Although the embodiment shown uses two stop pins 130A, 130B, it will be appreciated that the amount of rotation can be determined by limiting the depth of the threads in the collar 126.

Similarly, although the embodiment shown in FIG. 4 is described with reference to stop elements as pins, those of skill in the art will understand that the stop elements may comprise any suitable structure capable of preventing the rotation of the shaft adapter 132 in the collar 126, such as blocks, tabs and the like. Similarly, those of skill in the art will understand that a suitable engagement element is not limited to a pin, but also includes any structure capable of allowing rotation in the collar 126 such as tabs, blocks, a smaller threaded section, and the like.

In another embodiment, the present invention provides a selectively rotatable shaft coupler that attaches an endoscope shaft to a housing and maintains the effective length of the endoscope shaft during rotation. FIG. 5 is a partial cutaway view of an embodiment of a selectively rotatable shaft coupler 140 that extends from, or is attached to, for example, an anchor point such as an object 142. As shown, an internally threaded collar 144 extends from and is integrally formed with, or is attached to, the object 142. One end of an endoscope shaft 170 is secured to a first end of a shaft adapter 150. A second end of the shaft adapter 150 has alternating tangs and notches that slidably engage a corresponding set of tangs and notches on a rotary adapter 156. A circular flange 180 on the shaft adapter 150 is rotatably fitted in an annular slot 182 that extends around the interior of the collar 144.

An engagement pin 158 on the rotary adapter 156 rides in the threads 146 of the collar 144 and causes the rotary adapter 156 to move axially in and out of the collar 144 during rotation of the endoscope shaft 170. To limit rotation of the shaft, one or more stop elements 148A, 148B extend into the threads 146 of the threaded collar 144, to prevent further rotation of the engagement pin 158. The location of each of the two stop pins 148A, 148B in the threads 146, and the pitch of the threads determines the range of endoscope shaft rotation.

FIG. 6 illustrates the interlocking elements of the shaft adapter 150 and the rotary adapter 156 in the selectively rotatable shaft coupler 140. As shown, the first end of the shaft adapter 150 is adapted to be secured to the endoscope shaft 170 and the second end has two or more opposing tangs 152A, 152B alternating with two or more opposing notches 154A, 154B. The rotary adapter 156 has a corresponding set of tangs 162A, 162B and notches 160A, 160B which fit within the notches 154A, 154B and tangs 152A, 152B of the shaft adapter 150, respectively. As the rotary adapter 156 is rotated in the threaded collar 144, the rotary adapter 156 and the shaft adapter 150 separate or are forced closer together because the shaft adapter 150 is held within the collar 144 by the circular flange 180 in the annular slot 182. The length of the tangs and notches are chosen to allow continued slideable engagement through the desired range of endoscope shaft rotation.

Referring again to FIG. 5, in operation, the rotation of the endoscope shaft 170 causes the flange 180 on the shaft adapter 150 to rotate in the annular slot 182 in the collar 144. During rotation of the shaft adapter 150, the tangs on the shaft adapter engage in the notches of the rotary adapter 156, causing the rotary adapter 156 to rotate along with the endoscope shaft 170. As the rotary adapter 156 rotates in a first direction (e.g., clockwise), the engagement pin 158 moves along the threads 146 of the threaded collar 144, causing the rotary adapter 156 to move axially toward the object 142 until the engagement pin 158 contacts the stop pin 148B, thereby preventing further clockwise rotation. Similarly, when the rotation is in the counterclockwise direction, the rotary adapter moves away from the object 142 until the stop pin 148A prevents further rotation. Due to the circular flange 180 of the shaft adapter being retained in the annular slot 182, the shaft adapter 150 is not able to move axially in the channel during rotation of the shaft. Therefore, the effective length of the endoscope shaft 170 does not change during rotation. This aspect of the invention advantageously allows the axial position of the endoscope tip to be maintained in the body during rotation. Furthermore, the internal components in the endoscope shaft do not contract or stretch during rotation.

Although the embodiment shown in FIG. 5 uses two stop pins 148A, 148B, it will be appreciated that a single stop pin 148B could be used by limiting the depth of the threads in the collar 144 such that the engagement pin 158 on the rotary adapter 156 cannot ride in the threaded grooves, thereby limiting rotation of the endoscope shaft 170. Alternatively, the depth of travel of the rotary adapter 156 can be selected solely by the depth of the threads 146.

FIG. 7 is a partial cutaway drawing illustrating an alternative embodiment of a selectively rotatable shaft coupler 180 that attaches an endoscope shaft 196 to an anchor point, such as an object 190. The shaft coupler 180 maintains the effective length of the endoscope shaft 196 during rotation. In the embodiment shown in FIG. 7, a shaft adapter 182 has a set of grooves 184 on an outer surface and extending in the direction that slidably engage a corresponding set of ribs 194 on a rotary adapter 192. An engagement pin 198 on the rotary adapter rides in the threads of the object 190 and a stop 199 at the end thereof prevents further axial movement of the rotary adapter 192, thereby limiting rotation of the shaft 196. The longitudinal grooves 184 on the shaft adapter 182 are best shown in FIG. 8A. FIG. 8B illustrates the rotary adapter 192 with ribs 194 slidably engaged in the grooves 184 on the shaft adapter 182. In the embodiment shown, the endoscope shaft 196 is corrugated to provide additional flexibility in the shaft. A circular flange 185 allows the rotary adapter 182 to rotate in the collar (see FIG. 7), but prevents axial movement of the shaft adapter 182, thereby maintaining the effective length of the endoscope shaft 196 during rotation. The rotatable shaft coupler 180 is preferably assembled by forming the object 190 in two halves that are fitted over the rotary adapter 192 and the shaft adapter 182. Although the embodiment shown in FIGS. 7, 8A, 8B puts the grooves 184 on the shaft adapter 182 and the ribs 194 on the rotary adapter 192, it will be appreciated that the position of the ribs and the grooves could be reversed.

In another embodiment, the present invention provides a selectively rotatable shaft coupler 200 having a shaft adapter with a first end fixed to an anchor point such as a housing or other object, and a second end adapted to rotatably receive an endoscope shaft. As shown in FIG. 9, the shaft coupler 200 comprises a shaft adapter 202 with a first end 203 that is non-rotatably attached to an object 206 and a second end 205 sized to rotatably receive an end of a shaft collar 210. The shaft adapter 202 has a threaded section 204 midway between the first end 203 and the second end 205. Positioned between the threaded section 204 and the second end 205 is a set of ratchets 208 capable of functioning as one-way stop elements, as further described below. The shaft collar 210 is fixedly secured over an end of a shaft 216. The collar 210 has a pawl 214 extending inwardly toward the shaft 216 and located at a position chosen to stop rotation of the shaft 216 if rotated against the ratchets 208. The shaft 216 has a threaded section 212 that allows the collar 210 to be screwed onto the threaded section 204 on the shaft adapter 202. In operation, the collar 210 is secured over the end of the shaft 216. The shaft 216 and the collar 210 are then screwed onto the shaft adapter 202 and the ratchets 208 so that the pawl 214 passes over the ratchet elements 208. Once the threaded section 212 of the shaft 216 is screwed onto the threaded section 204 of the shaft adapter 202, the shaft 216 can be further rotated in a clockwise direction until the end of the shaft 216 and/or collar 210 contacts the wall of the housing 206. Rotation of the shaft 216 in a counterclockwise direction is permitted until the pawl 214 on the collar 210 contacts the one way ratchets 208, thereby preventing further counterclockwise rotation.

In another embodiment, the present invention provides a shaft coupling system for connecting a proximal end of an endoscope shaft 302 to an anchor point such as a housing 310 or other structure without the use of adhesives. A representative embodiment of the shaft coupling system 300 is shown in FIG. 10A. As shown, an endoscope shaft 302 is coupled to the housing 310 via a shaft retainer 304 that is press-fit into the housing 310. As shown more clearly in FIG. 10B, the shaft retainer 304 has a cylindrical hollow shape that is sized to fit into the housing 310. The outer surface of the shaft retainer 304 has a plurality of retention elements, such as, for example, outwardly extending barbs 308 capable of securing the shaft retainer 304 into the housing 310. The inner surface of the shaft retainer body has a plurality of retention elements, such as inwardly extending barbs 306 that are capable of securing the endoscope shaft 302 into the shaft retainer 304. The shaft retainer 304 may additionally have a circular flange (not shown) at one end to ease the insertion of the endoscope shaft 302.

The shaft retainer 304 may be made out of metal and be stamped or molded to form the plurality of retention elements such as inwardly and outwardly extending barbs. The stamped shaft retainer 304 may then be press-fit into the housing 310. In operation, the shaft retainer 304 is slid over the endoscope shaft 302 and is prevented from being pulled off by the barbs 306. The shaft retainer 304 is then inserted into the housing 310 and is retained by the outwardly extending barbs 308.

An alternative embodiment of a shaft coupling system 320 is shown in FIG. 11A. In this embodiment, an endoscope shaft 322 is secured in a shaft retainer 324 having one or more anti-rotation bosses 331. The shaft retainer 324 is fitted into a housing 330 having pockets or slots 332 that are sized to receive the one or more anti-rotation bosses 331. In addition, the pockets or slots 332 include radially inwardly extending tabs that engage the bosses so that the shaft retainer is not able to freely rotate in the housing 330. As shown more clearly in FIG. 11B, the shaft retainer 324 has two anti-rotation bosses 326A, 326B that protrude radially outward from the shaft retainer body. The inwardly facing surface of the shaft retainer body comprises a plurality of inwardly extending barbs 328 capable of securing the shaft retainer 324 to the endoscope shaft 322. The shaft retainer 324 with anti-rotation bosses 326A, 326B may be injection molded and fitted onto the proximal end of an endoscope shaft, wherein the inwardly extending barbs 328 secure the endoscope shaft without the need for adhesives or epoxies. The shaft retainer 324 secured to the endoscope shaft 322 may then be assembled with two halves of the housing 330, such that the one or more anti-rotation bosses 326A, 326B are fitted into preformed pockets 332 in the housing. The coupling system 320 thereby allows for a secured connection between the endoscope shaft and a housing without allowing rotation and prevents pull-out of the endoscope shaft and without the need for adhesives or fasteners.

In another embodiment, the present invention provides an endoscope system 400 comprising one or more selectively rotatable swivel joints 500A, 500B for connecting two segments of a shaft, as shown in FIG. 12. The system 400 includes an endoscope 410 comprising an elongated distal shaft 450 connected to a handle 440. The handle 440 is connected to a control console 460 via a proximal shaft 420. The proximal shaft 420 comprises a first shaft segment 422 and a second shaft segment 424 that are connected via the swivel joint 500A. The distal shaft 450 comprises a first shaft segment 452 and a second shaft segment 454 connected via the swivel joint 500B.

The swivel joints 500A, 500B functionally and rotatably couple a first segment and a second segment of a segmented shaft, as described in more detail below. The swivel joints 500A, 500B may be positioned at any location intermediate the distal end and the proximal end of the distal shaft 450 or the proximal shaft 420. In another embodiment, one or more swivel joints 500A, 500B are positioned at the junction between a shaft and an anchor point, such as a housing or an object. For example, one or more swivel joints 500A, 500B may be positioned between the distal shaft 450 and the handle 440, or at the junction between the handle 440 and the proximal shaft 420, or at the junction between the proximal shaft 420 and the control console 460.

FIG. 13 illustrates one embodiment of a swivel joint 500A that rotatably couples a first shaft segment 422 (connected to the handle 440) and a second shaft segment 424 (connected to the control console 460) of the proximal shaft 420. As shown, the swivel joint 500A comprises a tubular housing 502 with a first end 510 adapted to rotatably receive the end 426 of the first shaft segment 422. The tubular housing 502 further includes a second end 520 adapted to fixedly receive an end 428 of the second shaft segment 424. As shown, the swivel joint tubular housing 502 has a central hollow lumen 504 through which lumens 412, electrical wires and other elements of the proximal shaft 420, are passed to allow electrical, irrigation and aspiration connections to extend from the control console 460 to the endoscope 410. The housing 502 of the swivel joint 500A forms a protective cuff that overlaps, surrounds and rotatably couples a first end 426 of the first shaft segment 422 with a second end 428 of the second shaft segment 424 of the proximal shaft 420.

FIG. 14 is a partial cutaway view of an embodiment of a limited rotation swivel joint 600 that rotatably connects the first shaft segment 422 and the second shaft segment 424 of the proximal shaft 420. As shown, the swivel joint 600 comprises a tubular housing 602 with a first end 610 adapted to fixedly receive an end 426 of the first shaft segment 422. The end 426 of the first shaft segment 422 may be secured inside the housing 602 by a variety of means such as an adhesive, and/or with one or more attachment structure(s) 432. The attachment structure(s) 432 may be any suitable structure capable of securing the shaft end 426 in the tubular housing 602, such as one or more pins or a lip that is adhesively secured in a cooperating slot within the housing 602, one or more barbs extending outward from the housing 602, and the like.

With continued reference to FIG. 14, the tubular housing 602 further comprises a second end 620 adapted to rotatably receive the end 428 of the second shaft segment 424. As shown, the interior of the second end 620 of the housing 602 has a threaded section 630 into which a set of cooperating threads 430 on the end 428 of the shaft segment 424 are inserted. The threads of the threaded section 630 have a size and pitch selected to allow the desired amount of limited rotation of the second shaft segment 424 in the tubular housing 602. For example, the threads can be cut or molded to allow between one to four or more full rotations of the shaft 424. In the embodiment shown, the threaded section 630 does not extend to the end of the tubular housing 602 such that the shaft segment 424 cannot be disengaged from the tubular housing 602. In this embodiment, the tubular housing 602 can be formed of two molded sections that are adhesively secured over the ends of the shafts to assemble the swivel joint 600.

Although the embodiment shown in FIG. 14 shows the threaded section 630 of the tubular housing 602 rotatably coupled with the shaft segment 424 and the shaft segment 422 as being fixedly secured to the housing 602, it will be appreciated that the position of the shaft segments 422, 424 in the tubular housing 602 could be reversed.

In operation, rotation of the shaft segment 424 in a first direction (e.g., clockwise) causes incremental axial movement of the end 428 of the shaft 424 towards the center of the tubular housing 602 until the threads 430 on the shaft 424 reach the end of the threaded section 630 and is stopped adjacent to the end 426 of the first shaft segment 422. Therefore, as a physician applies torque to the endoscope 410 during insertion into the patient, the swivel joint 600 takes up any loops that may be formed by the physician.

FIG. 15 is a partial cutaway of another embodiment of a swivel joint 700 capable of rotatably connecting the first shaft segment 422 and the second segment 424 of the proximal shaft 420. As shown, the swivel joint 700 comprises a tubular housing 702 with a first end 710 adapted to rotatably receive the end 426 of the first shaft segment 422. As shown, the first end 710 of the housing 702 comprises a threaded section 740 into which a corresponding threaded section 436 on the first shaft segment 422 is inserted. The tubular housing 702 includes a second end 720 adapted to rotatably receive the end 428 of the second shaft segment 424. The second end 720 of the housing 702 also includes a threaded section 730 into which a corresponding threaded section 430 on the second shaft segment 424 is inserted.

In one embodiment of the swivel joint 700, the threads in the threaded section 730 at one end of the tubular housing 702 are formed in an opposite direction from the threads in the threaded section 740 at the other end of the tubular housing 702 (e.g., threaded section 730 is threaded in a clockwise direction and threaded section 740 is threaded in a counterclockwise direction). Similarly, each shaft end 426, 428 includes threaded sections 436, 430 with threads formed in a direction corresponding to the threaded sections 730, 740, such that the shafts move in opposite directions within the tubular housing when rotated in the same direction. For example, in the embodiment shown, rotating the shaft 424 in the clockwise direction advances the end of the shaft 428 toward the center of the tubular housing 702. The shaft 424 advances until it reaches the end of the thread 730. Further clockwise rotation of the shaft 424 in the clockwise direction causes the end of the shaft 422 to move away from the center of the tubular housing 702. Therefore, in the example shown, it is possible to get eight revolutions of the shaft with only 4×360° threads for each shaft.

As described above, each threaded section 730, 740 within the tubular housing 702 is designed to include a number of threads of a size and pitch to allow the desired amount of limited rotation of the shaft segments 422, 424. For example, each end of the swivel joint may allow between one full to four full rotations, thereby resulting in a total rotational range of the proximal shaft 420 from two full rotations up to eight rotations.

FIG. 16 is a partial cutaway view of another embodiment of a swivel joint 800 capable of rotatably connecting the first shaft segment 422 and the second shaft segment 426 of the proximal shaft 420. As shown, the swivel joint 800 comprises a tubular housing 802 with a first end 810 adapted to fixedly receive the end 426 of the first shaft segment 422. The tubular housing 802 includes a second end 820 adapted to rotatably receive the end 428 of the second shaft segment 424. As shown, the second end 820 of the housing 802 includes a swivel device 850 secured therein with an attachment element 440. The swivel device 850 comprises a housing 856 surrounding a set of nested, concentric, cylinders 860, such as from two to four or more nested cylinders. Each cylinder in the set 860 includes a central hollow lumen (hidden from view) through which internal elements of the endoscope shaft may be passed. As shown in FIG. 16, innermost cylinder in the set is fixedly attached to the housing 856 of the swivel device 850. The remaining cylinders are rotatably secured in the housing 856. The outermost cylinder 852 in the set includes at least one slot 854 to receive at least one corresponding tab 438 on the end of the second shaft segment 428. Each nested cylinder has a stop element thereon capable of limiting the rotation of an adjacent cylinder such that the nested cylinders function to allow limited rotation of the shaft segment 424.

The various embodiments of the swivel joints (500, 600, 700, and 800) may be made out of any suitable material such as metal or moldable plastic. The swivel joint tubular housing (602, 702 and 802) may be formed into two separate molded components that snap together around the ends 426, 428 of the proximal shaft segments. The proximal shaft 420 comprising the shaft segment 422 and the shaft segment 424 connected via the swivel joints 500, 600, 700 or 800 may be packaged as a preformed unit that can be removably attached to a housing, such as the handle 440, or to any desired object with any suitable connection means.

While embodiments of the invention have been illustrated and described, it will be appreciated that various changes can be made therein without departing from the scope of the invention. It is therefore intended that the scope of the invention be determined from the following claims and equivalents thereof.

Boutillette, Michael P., Boulais, Dennis R., Dayton, Peter L.

Patent Priority Assignee Title
10070774, Feb 07 2011 ENDOCHOICE, INC Multi-element cover for a multi-camera endoscope
10080486, Sep 20 2010 ENDOCHOICE, INC Multi-camera endoscope having fluid channels
10092167, Jun 18 2009 EndoChoice, Inc. Multiple viewing elements endoscope system with modular imaging units
10136796, May 09 2006 Boston Scientific Scimed, Inc Medical device positioning system
10165929, Jun 18 2009 EndoChoice, Inc. Compact multi-viewing element endoscope system
10182707, Dec 09 2010 ENDOCHOICE, INC Fluid channeling component of a multi-camera endoscope
10203493, Oct 28 2010 ENDOCHOICE, INC Optical systems for multi-sensor endoscopes
10292578, Mar 07 2011 ENDOCHOICE, INC Multi camera endoscope assembly having multiple working channels
10470649, Dec 13 2011 ENDOCHOICE, INC Removable tip endoscope
10499794, May 09 2013 EndoChoice, Inc. Operational interface in a multi-viewing element endoscope
10561301, May 09 2006 Boston Scientific Scimed, Inc. Medical device positioning system
10638922, Jun 18 2009 ENDOCHOICE, INC Multi-camera endoscope
10765305, Jun 18 2009 EndoChoice, Inc. Circuit board assembly of a multiple viewing elements endoscope
10791909, Jun 18 2009 EndoChoice, Inc. Image capture assembly for use in a multi-viewing elements endoscope
10791910, Jun 18 2009 EndoChoice, Inc. Multiple viewing elements endoscope system with modular imaging units
10799095, Jun 18 2009 ENDOCHOICE, INC Multi-viewing element endoscope
10898063, Dec 09 2010 ENDOCHOICE, INC Flexible electronic circuit board for a multi camera endoscope
10905315, Mar 28 2013 EndoChoice, Inc. Manifold for a multiple viewing elements endoscope
10905320, Jun 18 2009 ENDOCHOICE, INC Multi-camera endoscope
10912445, Jun 18 2009 EndoChoice, Inc. Compact multi-viewing element endoscope system
10918263, Nov 24 2014 Gyrus ACMI, Inc. Adjustable endoscope sheath
10925471, Mar 28 2013 EndoChoice, Inc. Fluid distribution device for a multiple viewing elements endoscope
11026566, Mar 07 2011 EndoChoice, Inc. Multi camera endoscope assembly having multiple working channels
11185216, Jun 22 2019 KARL STORZ SE & Co KG Video endoscope and handle for a video endoscope including rotational support means
11278190, Jun 18 2009 EndoChoice, Inc. Multi-viewing element endoscope
11284778, May 09 2006 Boston Scientific Scimed, Inc. Medical device positioning system
11291357, Dec 13 2011 EndoChoice, Inc. Removable tip endoscope
11471028, Jun 18 2009 EndoChoice, Inc. Circuit board assembly of a multiple viewing elements endoscope
11497388, Dec 09 2010 EndoChoice, Inc. Flexible electronic circuit board for a multi-camera endoscope
11534056, Jun 18 2009 EndoChoice, Inc. Multi-camera endoscope
11543646, Oct 28 2010 ENDOCHOICE, INC Optical systems for multi-sensor endoscopes
11547275, Jun 18 2009 EndoChoice, Inc. Compact multi-viewing element endoscope system
11547280, Jun 22 2019 KARL STORZ SE & Co KG Rotatable and detachable electrical coupling point
11672405, Jun 22 2019 KARL STORZ SE & Co KG Video endoscope and handle, including driven rotation limitation, for video endoscope
11684244, Nov 24 2014 Gyrs ACMI, Inc. Adjustable endoscope sheath
11793393, Mar 28 2013 EndoChoice, Inc. Manifold for a multiple viewing elements endoscope
11864734, Jun 18 2009 EndoChoice, Inc. Multi-camera endoscope
11889986, Dec 09 2010 EndoChoice, Inc. Flexible electronic circuit board for a multi-camera endoscope
11925323, Mar 28 2013 EndoChoice, Inc. Fluid distribution device for a multiple viewing elements endoscope
11937774, May 09 2006 Boston Scientific Scimed, Inc. Medical device positioning system
11986155, Jun 18 2009 EndoChoice, Inc. Multi-viewing element endoscope
8926502, Mar 07 2011 ENDOCHOICE, INC Multi camera endoscope having a side service channel
9101266, Feb 07 2011 ENDOCHOICE, INC Multi-element cover for a multi-camera endoscope
9101268, Jun 18 2009 ENDOCHOICE, INC Multi-camera endoscope
9101287, Mar 07 2011 ENDOCHOICE, INC Multi camera endoscope assembly having multiple working channels
9314147, Dec 13 2011 ENDOCHOICE, INC Rotatable connector for an endoscope
9320419, Dec 09 2010 ENDOCHOICE, INC Fluid channeling component of a multi-camera endoscope
9351629, Feb 07 2011 ENDOCHOICE, INC Multi-element cover for a multi-camera endoscope
9402533, Mar 07 2011 ENDOCHOICE, INC Endoscope circuit board assembly
9492063, Jun 18 2009 ENDOCHOICE, INC Multi-viewing element endoscope
9554692, Jun 18 2009 ENDOCHOICE, INC Multi-camera endoscope
9560953, May 09 2013 ENDOCHOICE, INC Operational interface in a multi-viewing element endoscope
9560954, Jul 24 2012 ENDOCHOICE, INC Connector for use with endoscope
9642513, Jun 18 2009 ENDOCHOICE, INC Compact multi-viewing element endoscope system
9655502, Dec 13 2011 ENDOCHOICE, INC Removable tip endoscope
9706903, Jun 18 2009 ENDOCHOICE, INC Multiple viewing elements endoscope system with modular imaging units
9706905, Jun 18 2009 ENDOCHOICE, INC Multi-camera endoscope
9713415, Mar 07 2011 ENDOCHOICE, INC Multi camera endoscope having a side service channel
9713417, Jun 18 2009 ENDOCHOICE, INC Image capture assembly for use in a multi-viewing elements endoscope
9814374, Dec 09 2010 ENDOCHOICE, INC Flexible electronic circuit board for a multi-camera endoscope
9854959, Mar 07 2011 ENDOCHOICE, INC Multi camera endoscope assembly having multiple working channels
9872609, Jun 18 2009 ENDOCHOICE, INC Multi-camera endoscope
9901244, Jun 18 2009 ENDOCHOICE, INC Circuit board assembly of a multiple viewing elements endoscope
9986892, May 09 2013 EndoChoice, Inc. Operational interface in a multi-viewing element endoscope
9986899, Mar 28 2013 ENDOCHOICE, INC Manifold for a multiple viewing elements endoscope
9993142, Mar 28 2013 ENDOCHOICE, INC Fluid distribution device for a multiple viewing elements endoscope
Patent Priority Assignee Title
3266059,
3470876,
3572325,
3581738,
3692338,
4060264, Jun 16 1976 I-T-E Imperial Corporation Efcor Division Swivel conduit coupling assembly
4108211, Apr 28 1975 Fuji Photo Optical Co., Ltd. Articulated, four-way bendable tube structure
4286585, Dec 22 1978 Olympus Optical Co., Ltd. Bend angle control for endoscope
4294162, Jul 23 1979 United Technologies Corporation Force feel actuator fault detection with directional threshold
4315309, Jun 25 1979 Integrated medical test data storage and retrieval system
4351323, Oct 20 1979 Asahi Kogaku Kogyo Kabushiki Kaisha Curvable pipe assembly in endoscope
4425113, Jun 21 1982 Baxter Travenol Laboratories, Inc. Flow control mechanism for a plasmaspheresis assembly or the like
4432349, Apr 03 1979 Fuji Photo Optical Co., Ltd. Articulated tube structure for use in an endoscope
4471766, Nov 24 1977 YOON, INBAE, 2101 HIGHLAND RIDGE RD , PHOENIX, MD 21131 Ring applicator with an endoscope
4473841, Oct 20 1981 FUJIFILM Corporation Video signal transmission system for endoscope using solid state image sensor
4488039,
4491865, Sep 29 1982 Welch Allyn, Inc. Image sensor assembly
4495134, Nov 17 1981 Asahi Kogaku Kogyo Kabushiki Kaisha Method for manufacturing a flexible tube for an endoscope
4499895, Oct 15 1981 Olympus Optical Co., Ltd. Endoscope system with an electric bending mechanism
4513235, Jan 22 1982 British Aerospace Public Limited Company Control apparatus
4515444, Jun 30 1983 Smith & Nephew, Inc Optical system
4516063, Jan 22 1982 British Aerospace Public Limited Company Control apparatus
4519391, Oct 20 1981 FUJIFILM Corporation Endoscope with signal transmission system and method of operating same
4559928, Oct 22 1981 Olympus Optical Co., Ltd. Endoscope apparatus with motor-driven bending mechanism
4573450, Nov 11 1983 Fuji Photo Optical Co., Ltd. Endoscope
4576144, Mar 08 1982 Olympus Optical Co., Ltd. Endoscope connecting device
4580210, Apr 18 1983 SAAB-SCANTA AKTIEBOLAG, S-581 88 LINKOPING, A CORP OF SWEDEN Control system having variably biased manipulatable unit
4586923, Jun 25 1984 Cordis Corporation Curving tip catheter
4615330, Sep 05 1983 Olympus Optical Co., Ltd. Noise suppressor for electronic endoscope
4616630, Aug 20 1984 Fuji Photo Optical Co., Ltd. Endoscope with an obtusely angled connecting section
4617915, Apr 24 1984 Fuji Photo Optical Co., Ltd. Construction of manual control section of endoscope
4621618, Feb 28 1984 Olympus Optical Company, Ltd. Dual viewing and control apparatus for endoscope
4625714, Aug 20 1984 Fuji Photo Optical Co., Ltd. Endoscope having a control for image stand still and photographing the image
4631582, Aug 31 1984 Olympus Optical Co., Ltd. Endoscope using solid state image pick-up device
4633303, Aug 31 1984 OLYMPUS OPTICAL CO , LTD , NO 43-2, HATAGAYA 2-CHOME, SHIBUYA-KU TOKYO JAPAN Two-dimensional bandwidth compensating circuit for an endoscope using a solid state image pick-up device
4633304, Aug 27 1983 Olympus Optical Co., Ltd. Endoscope assembly
4643170, Dec 05 1984 Olympus Optical Co., Ltd. Endoscope apparatus
4646723, Aug 23 1984 Fuji Photo Optical Co., Ltd. Construction of a forward end portion of an endoscope using a heat conductive material
4649904, Jan 02 1986 Welch Allyn, Inc. Biopsy seal
4651202, May 16 1984 Fuji Photo Optical Co., Ltd. Video endoscope system
4652093, Nov 19 1982 Gwyndann Group Limited Optical instruments
4652916, Oct 12 1983 OMRON TATEISI ELECTRONICS CO , Image pick-up device
4654701, Sep 03 1984 Olympus Optical Co., Ltd. Biopsy information recording apparatus for endoscope
4662725, Feb 15 1984 Olympous Optical Co., Ltd. Objective lens system for endoscopes
4663657, Sep 05 1983 Olympus Optical Company, Ltd. Image pickup apparatus for endoscopes
4667655, Jan 21 1985 Olympus Optical Co., Ltd. Endoscope apparatus
4674844, Jul 28 1984 Olympus Optical Co., Ltd. Objective lens system for an endscope
4686963, Mar 05 1986 ACMI Corporation Torsion resistant vertebrated probe of simple construction
4697210, Aug 20 1984 Fuji Photo Optical Co., Ltd. Endoscope for displaying a normal image
4700693, Dec 09 1985 EVEREST VIT, INC Endoscope steering section
4714075, Feb 10 1986 Welch Allyn, Inc. Biopsy channel for endoscope
4716457, Feb 27 1986 KABUSHIKI KAISHA TOSHIBA PART INTEREST Electronic endoscopic system
4719508, Oct 02 1985 Olympus Optical Co., Ltd. Endoscopic photographing apparatus
4727417, May 14 1986 Olympus Optical Co., Ltd. Endoscope video apparatus
4727418, Jul 02 1985 Olympus Optical Co., Ltd. Image processing apparatus
4745470, Apr 04 1986 Olympus Optical Co., Ltd. Endoscope using a chip carrier type solid state imaging device
4745471, May 13 1986 Olympus Optical Co., Ltd. Solid-state imaging apparatus and endoscope
4746974, Feb 06 1986 Kabushiki Kaisha Toshiba Endoscopic apparatus
4748970, May 30 1986 Olympus Optical Co., Ltd. Endoscope systems
4755029, May 22 1986 Olympus Optical Co., Ltd. Objective for an endoscope
4762119, Jul 28 1987 Welch Allyn, Inc. Self-adjusting steering mechanism for borescope or endoscope
4765312, Jul 30 1986 Olympus Optical Co., Ltd. Endoscope
4766489, Aug 01 1986 Olympus Optical Co., Ltd. Electronic endoscope with image edge enhancement
4787369, Aug 14 1987 GE Inspection Technologies, LP Force relieving, force limiting self-adjusting steering for borescope or endoscope
4790294, Jul 28 1987 GE Inspection Technologies, LP Ball-and-socket bead endoscope steering section
4794913, Dec 04 1986 Olympus Optical Co., Ltd. Suction control unit for an endoscope
4796607, Jul 28 1987 GE Inspection Technologies, LP Endoscope steering section
4800869, Feb 13 1987 Olympus Optical Co. Ltd. Endoscope
4805596, Apr 03 1987 Olympus Optical Co., Ltd. Endoscope
4806011, Jul 06 1987 Spectacle-mounted ocular display apparatus
4819065, May 08 1986 Olympus Optical Co., Ltd. Electronic endoscope apparatus
4819077, May 14 1986 Kabushiki Kaisha Toshiba Color image processing system
4821116, Sep 30 1983 Olympus Optical Co., Ltd. Endoscope equipment
4824225, Dec 28 1985 Olympus Optical Co., Ltd. Illumination optical system for an endoscope
4831437, Aug 11 1987 Olympus Optical Co., Ltd. Video endoscope system provided with color balance adjusting means
4836187, Dec 27 1986 Kabushiki Kaisha Toshiba; Kabushiki Kaisha Machidaseisakujyo Constant pressure apparatus of an endoscope
4844052, Mar 11 1987 Kabushiki Kaisha Toshiba Apparatus for transmitting liquid and gas in an endoscope
4844071, Mar 31 1988 Edwards Lifesciences Corporation Endoscope coupler device
4845553, May 22 1987 Olympus Optical Co., Ltd. Image data compressing device for endoscope
4845555, Feb 13 1987 Olympus Optical Co., Ltd. Electronic endoscope apparatus
4847694, Dec 03 1986 Kabushiki Kaisha Toshiba Picture archiving and communication system in which image data produced at various locations is stored in data bases at various locations in accordance with lists of image ID data in the data bases
4853772, Jun 24 1987 Olympus Optical Co., Ltd. Electronic endoscope apparatus having isolated patient and secondary circuitry
4860731, Dec 17 1987 Olympus Optical Co., Ltd. Endoscope
4867546, Jan 11 1985 Olympus Optical Co., Ltd. Objective lens system for an endoscope
4868647, Sep 14 1987 Olympus Optical Co., Ltd. Electronic endoscopic apparatus isolated by differential type drive means
4869237, Mar 02 1987 Olympus Optical Co., Ltd. Electronic endoscope apparatus
4873965, Jul 31 1987 Flexible endoscope
4875468, Dec 23 1988 Welch Allyn, Inc. Elastomer-ePTFE biopsy channel
4877314, May 25 1987 Olympus Optical Co., Ltd. Objective lens system for endoscopes
4882623, Aug 11 1988 Olympus Optical Co., Ltd. Signal processing apparatus for endoscope capable of changing outline enhancement frequency
4884134, Oct 07 1987 Olympus Optical Co., Ltd. Video endoscope apparatus employing device shutter
4885634, Oct 27 1987 Olympus Optical Co., Ltd. Endoscope apparatus capable of monochrome display with respect to specific wavelength regions in the visible region
4890159, Feb 04 1988 Olympus Optical Co., Ltd. Endoscope system and method of unifying picture images in an endoscope system
4894715, Jan 08 1988 Olympus Optical Co., Ltd. Electronic endoscope
4895431, Nov 13 1986 OLYMPUS OPTICAL CO , LTD Method of processing endoscopic images
4899731, Oct 16 1986 Olympus Optical Co., Ltd. Endoscope
4899732, Sep 02 1988 Spectrum Medsystems Corporation Miniscope
4899787, Nov 17 1981 Asahi Kogaku Kogyo Kabushiki Kaisha Flexible tube for endoscope
4905666, Mar 27 1987 Olympus Optical Co., Ltd. Bending device for an endoscope
4918521, Jan 20 1987 Olympus Optical Co., Ltd. Solid state imaging apparatus
4919112, Apr 07 1989 PHOENIXCOR, INC Low-cost semi-disposable endoscope
4919114, Jan 14 1988 Olympus Optical Co., Ltd. Endoscope provided with flexible signal wires
4920980, Sep 14 1987 Cordis Corporation Catheter with controllable tip
4928172, Jan 07 1988 Olympus Optical Co., Ltd. Endoscope output signal control device and endoscope apparatus making use of the same
4931867, Mar 01 1988 Olympus Optical Co., Ltd. Electronic endoscope apparatus having an isolation circuit for isolating a patient circuit from a secondary circuit
4941454, Oct 05 1989 GE Inspection Technologies, LP Servo actuated steering mechanism for borescope or endoscope
4941456, Oct 05 1989 GE Inspection Technologies, LP Portable color imager borescope
4951134, May 18 1987 Asahi Kogaku Kogyo Kabushiki Kaisha Color tone controller for endoscope
4951135, Jan 11 1988 Olympus Optical Co., Ltd. Electronic-type endoscope system having capability of setting AGC variation region
4952040, Jun 26 1987 Olympus Optical Co., Ltd. Illumination optical system for an endoscope
4960127, Jan 23 1989 LON ACQUISITION CORPORATION, A DE CORP ; LON RESEARCH, INC Disposable transducer manifold
4961110, Nov 02 1988 Olympus Optical Co., Ltd. Endoscope apparatus
4967269, Jul 28 1988 Olympus Optical Co., Ltd. Endoscope automatic light control apparatus and endoscope apparatus making use of the same
4971034, Feb 16 1985 Asahi Kogaku Kogyo Kabushiki Kaisha Body cavity pressure adjusting device for endoscope and laser medical treatment apparatus including body cavity pressure adjusting device
4973311, Dec 27 1986 Kabushiki Kaisha Toshiba; Kabushiki Kaisha Machidaseisakujyo Aspirator for endoscopic system
4979497, Jun 06 1989 Olympus Optical Co., Ltd. Endoscope
4982725, Jul 04 1989 Olympus Optical Co., Ltd. Endoscope apparatus
4984878, Sep 29 1988 Fuji Photo Optical Co., Ltd. Ojective lens for endoscope
4986642, Nov 20 1987 Olympus Optical Co., Ltd. Objective lens system for endoscopes and image pickup system equipped with said objective lens system
4987884, Dec 28 1984 Olympus Optical Co., Ltd. Electronic endoscope
4989075, Aug 26 1987 Kabushiki Kaisha Toshiba Solid-state image sensor device
4989581, Jun 01 1990 EVEREST VIT, INC Torsional strain relief for borescope
4996974, Apr 17 1989 Welch Allyn, Inc. Adjustable steering control for flexible probe
4996975, Jun 01 1989 Kabushiki Kaisha Toshiba Electronic endoscope apparatus capable of warning lifetime of electronic scope
4998182, Feb 08 1990 GE Inspection Technologies, LP Connector for optical sensor
5001556, Sep 30 1987 Olympus Optical Co., Ltd. Endoscope apparatus for processing a picture image of an object based on a selected wavelength range
5005558, May 16 1988 Kabushiki Kaisha Toshiba Endoscope
5005957, Sep 07 1988 Olympus Optical Co., Ltd. Objective lens system for endoscopes
5007408, Mar 16 1989 Olympus Optical Co., Ltd. Endoscope light source apparatus
5018509, Feb 21 1989 Olympus Optical Co., Ltd. Endoscope insertion controlling apparatus
5022382, May 25 1988 Kabushiki Kaisha Toshiba Endoscope
5029016, Sep 07 1988 Olympus Optical Co., Ltd. Medical image filing apparatus and filing method for registering images from a plurality of image output devices in a single examination
5034888, Feb 26 1988 Olympus Optical Co., Ltd. Electronic endoscope apparatus having different image processing characteristics for a moving image and a still image
5040069, Jun 16 1989 Fuji Photo Optical Co., Ltd. Electronic endoscope with a mask bump bonded to an image pick-up device
5045935, Apr 12 1989 KABUSHIKI KAISHA TOSHIBA PART INTEREST Electronic endoscope system including image processing unit with photographing unit
5049989, Jan 04 1990 Olympus Optical Co., Ltd. Method and circuit for reducing the influence of a bright image area in an endoscope image signal
5050584, Sep 22 1989 Olympus Optical Co., Ltd. Endoscope with a solid-state image pickup device
5050974, Sep 12 1988 OLYMPUS OPTICAL CO , LTD Optical system for endoscopes
5056503, Oct 03 1983 Olympus Optical Co., Ltd. Endoscope with high frequency accessory and reduced video interference
5061994, Nov 25 1987 Olympus Optical Co., Ltd. Endoscope device using a display and recording system with means for monitoring the status of the recording medium
5068719, Jun 07 1989 OLYMPUS OPTICAL CO LTD Endoscope photometric apparatus
5081524, May 22 1987 Olympus Optical Co., Ltd. Image inputting device for endoscope
5087989, Apr 19 1989 Olympus Optical Co., Ltd. Objective optical system for endoscopes
5110645, Oct 03 1986 Olympus Optical Company Ltd. Sheath of articulated tube for endoscope
5111281, Sep 28 1987 Kabushiki Kaisha Toshiba Color correction device for an endoscope
5111306, Apr 18 1990 Olympus Optical Co., Ltd. Endoscope image filing system
5111804, Feb 15 1989 Kabushiki Kaisha Toshiba Electronic endoscope
5113254, Jun 04 1989 OLYMPUS OPTICAL CO , LTD Electronic endoscope apparatus outputting ternary drive signal
5119238, Oct 13 1989 Olympus Optical Co., Ltd. Objective lens system for endoscopes
5131393, Jun 25 1990 Fuji Photo Optical Co., Ltd. Ultrasound internal examination system
5137013, Jun 29 1990 Olympus Optical Company Limited Joint structure composed of flexible tubing and a handling apparatus comprising such a joint structures
5140265, Dec 20 1989 Olympus Optical Co., LTD Eddy current flaw detecting endoscope apparatus which produces signals which control other devices
5159446, Jun 21 1991 Olympus Optical Co., Ltd. Electronic endoscope system provided with a separate camera controlling unit and motor controlling unit
5170775, Jun 20 1990 Olympus Optical Co., Ltd. Endoscope
5172225, Nov 25 1987 Olympus Optical Co., Ltd. Endoscope system
5174293, Nov 17 1988 Olympus Optical Co., Ltd. Medical apparatus including on isolating transformer apparatus for isolating medical apparatus from non-medical apparatus to prevent electrical shocks to patients
5176629, Jul 31 1989 C. R. Bard, Inc. Irrigation system for use with endoscopic procedure
5191878, Apr 12 1990 Olympus Optical Co., Ltd. Endoscope device
5198931, Apr 19 1989 Olympus Optical Co., Ltd. Objective optical system for endoscopes
5201908, Jun 10 1991 ENDOMEDICAL TECHNOLOGIES, INC Sheath for protecting endoscope from contamination
5208702, Apr 11 1990 Olympus Optical Co., Ltd. Objective lens system for endoscopes
5209220, Oct 05 1989 Olympus Optical Co., Ltd. Endoscope image data compressing apparatus
5217002, May 14 1990 Asahi Kogaku Kogyo Kabushiki Kaisha Flexible tube of endoscope and method of producing the same
5225958, Oct 09 1990 KABUSHIKI KAISHA TOSHIBA PART INTEREST Electronic endoscope apparatus capable of protecting overvoltage for solid-state image sensor
5228356, Nov 25 1991 Variable effort joystick
5243416, Apr 13 1990 Kabushiki Kaisha Toshiba Method and apparatus for recording plurality of non-synchronous image data
5243967, Mar 26 1991 Olympus Optical Co., Ltd. Endoscope system providing mutual operative communication between the drive control means and the video signal control means
5257628, Jul 11 1991 Fujinon Corporation Ultrasound internal examination system
5271381, Nov 18 1991 Vision Sciences, Inc. Vertebrae for a bending section of an endoscope
5289555, Jun 18 1992 Optical-fibre cable coupler for endoscope light source
5291010, Oct 04 1990 Olympus Optical Co., Ltd. Solid state imaging device having a chambered imaging chip corner
5299559, Mar 13 1992 Siemens Medical Solutions USA, Inc Endoscope with overload protective device
5311858, Jun 15 1992 Imaging tissue or stone removal basket
5325845, Jun 08 1992 Steerable sheath for use with selected removable optical catheter
5331551, Oct 02 1989 Olympus Optical Co., Ltd. Endoscope image recording system for compressing and recording endoscope image data
5342299, Jul 06 1992 CATHETER IMAGING SYSTEMS, A GEORGIA CORPORATION Steerable catheter
5347989, Sep 11 1992 GE Inspection Technologies, LP Control mechanism for steerable elongated probe having a sealed joystick
5374953, Feb 01 1991 Olympus Optical Co., Ltd. Electronic endoscope apparatus with signal validity monitor
5379757, Aug 28 1990 Olympus Optical Co. Ltd. Method of compressing endoscope image data based on image characteristics
5381782, Jan 09 1992 Spectrum Medsystems Corporation Bi-directional and multi-directional miniscopes
5383791, Apr 14 1992 Kabushiki Kaisha Toshiba Connector for use in an electric endoscope
5390662, Mar 02 1992 Fuji Photo Optical Co., Ltd. Electronic endoscope apparatus using circuit board having cavity
5400769, Feb 18 1991 OLYMPUS OPTICAL CO , LTD Electrically bendable endoscope apparatus having controlled fixed bending speed
5402768, Sep 01 1992 MICRO-MEDICAL DEVICES, INC Endoscope with reusable core and disposable sheath with passageways
5402769, Apr 23 1992 Olympus Optical Co., Ltd. Endoscope apparatus which time-sequentially transmits sensor signals with image signals during a blanking period
5406983, Nov 13 1992 Mobil Oil Corporation Corrosion-resistant composite couplings and tubular connections
5409485, Jan 31 1990 Kabushiki Kaisha Toshiba Power supply apparatus for electrosurgical unit including electrosurgical-current waveform data storage
5412478, Sep 30 1992 Olympus Optical Co., Ltd. Endoscope system which changes over switches in interlocking relation to each other within video processor and image display apparatus to perform display of endoscope image
5418649, Apr 28 1992 Olympus Optical Co., Ltd. Objective lens system for endoscopes
5420644, Sep 21 1990 Olympus Optical Co., Ltd. Color smear correcting apparatus
5431645, Feb 18 1992 Symbiosis Corporation Remotely activated endoscopic tools such as endoscopic biopsy forceps
5434615, Sep 25 1992 Fuji Photo Optical Co., Ltd. Signal processing circuit adaptable to electronic endoscopes having different lengths
5436640, Oct 29 1993 GUILLEMOT CORPORATION, A FRENCH SOCIETE ANONYME Video game and simulator joystick controller with geared potentiometer actuation
5436767, Mar 05 1991 Olympus Optica Co., Ltd. Objective lens system for endoscopes
5440341, May 20 1993 Fuji Photo Optical Co., Ltd. Signal processing circuit for a simultaneous electronic endoscope apparatus
5464007, Feb 23 1994 Welch Allyn, Inc. Fluid insensitive braking for an endoscope
5469840, Dec 10 1991 Olympus Optical, Ltd. Electromotive warping type endoscope with velocity control
5473235, Dec 21 1993 Honeywell Inc. Moment cell counterbalance for active hand controller
5482029, Jun 26 1992 Kabushiki Kaisha Toshiba Variable flexibility endoscope system
5484407, Jun 24 1993 Catheter with steerable distal end
5485316, Oct 25 1991 Olympus Optical Co., Ltd. Illumination optical system for endoscopes
5496260, May 16 1994 Welch Allyn, Inc. Torque override knob for endoscopes, borescopes, or guide tubes
5515449, Jan 26 1989 Olympus Optical Co., Ltd. Endoscope image processing apparatus
5518501, Jul 08 1993 Vision-Sciences, Inc. Endoscopic contamination protection system to facilitate cleaning of endoscopes
5543831, Nov 20 1990 Olympus Optical Co., Ltd. Endoscope system having reduced noise emission/permeation
5569158, Oct 15 1993 Fuji Photo Optical Co. Ltd. Shielding structure of electronic endoscope apparatus
5569159, Dec 16 1994 Endoscopic sleeve
5586262, Jul 02 1986 Kabushiki Kaisha Toshiba Image data management system particularly for use in a hospital
5589854, Jun 22 1995 IMMERSION CORPORATION DELAWARE CORPORATION Touching feedback device
5591202, Apr 28 1994 Symbiosis Corporation Endoscopic instruments having low friction sheath
5608451, Mar 11 1994 Olympus Optical Co., Ltd. Endoscope apparatus
5619380, May 25 1992 Olympus Optical Co. Ltd. Objective optical system for endoscopes
5621830, Jun 07 1995 Smith & Nephew, Inc Rotatable fiber optic joint
5622528, Jan 25 1991 Olympus Optical Co., Ltd. Endoscope examination system for processing endoscope picture image
5631695, Oct 18 1993 Olympus Optical Co., Ltd. Endoscope with smear extraction and correction
5633203, Sep 30 1992 Method of making a miniaturized electronic imaging chip from a standard imaging chip
5643203, Aug 21 1991 Smith & Nephew, Inc Fluid management system
5645075, Feb 18 1992 Symbiosis Corporation Jaw assembly for an endoscopic instrument
5647840, Sep 14 1994 GYRUS ACMI, INC Endoscope having a distally heated distal lens
5658238, Feb 25 1992 Olympus Optical Co., Ltd. Endoscope apparatus capable of being switched to a mode in which a curvature operating lever is returned and to a mode in which the curvature operating lever is not returned
5667477, Feb 14 1995 Fujinon Corporation Inner structure of endoscope
5674182, Feb 26 1993 Olympus Optical Co., Ltd. Endoscope system including endoscope and protection cover
5674197, Jul 01 1994 Cordis Corporation Controlled flexible catheter
5685823, Mar 30 1994 Asahi Kogaku Kogyo Kabushiki Kaisha End structure of endoscope
5685825, Mar 03 1995 Olympus Optical Co., Ltd. Endoscope
5691853, Oct 05 1994 Fujinon Corporation Objective lens for endoscopes
5695450, Mar 05 1993 Olympus Optical Co., Ltd. Cover-type endoscope apparatus
5698866, Sep 19 1994 PDT Systems, Inc. Uniform illuminator for phototherapy
5702349, Jul 07 1994 Fujinon Corporation Endoscope with acutely angled handle and associated focus adjustment mechanism
5703724, May 16 1995 FUJIFILM Corporation Objective lens system for endoscope
5704371, Mar 06 1996 MAGNA CARTA HOLDINGS, LLC, AN ILLINOIS LIMITED LIABILITY CORP Medical history documentation system and method
5704896, Apr 27 1994 Kabushiki Kaisha Toshiba Endoscope apparatus with lens for changing the incident angle of light for imaging
5707340, Dec 10 1994 Richard Wolf GmbH Device for connecting an endoscope to an auxiliary apparatus
5708482, Sep 08 1994 Asahi Kogaku Kogyo Kabushiki Kaisha Image-signal clamping circuit for electronic endoscope
5721566, Mar 03 1995 IMMERSION CORPORATION DELAWARE CORPORATION Method and apparatus for providing damping force feedback
5724068, Sep 07 1995 Microsoft Technology Licensing, LLC Joystick with uniform center return force
5728045, Dec 26 1994 Fujinon Corporation Endoscope having auxiliary hole
5739811, Jul 16 1993 IMMERSION CORPORATION DELAWARE CORPORATION Method and apparatus for controlling human-computer interface systems providing force feedback
5740801, Mar 31 1993 KARL STORZ ENDOSCOPY-AMERICA, INC Managing information in an endoscopy system
5746696, May 16 1995 Fujinon Corporation Flexible sheathing tube construction
5764809, Mar 26 1991 Olympus Optical Co., Ltd. Image processing apparatus using correlation among images
5767839, Jan 18 1995 IMMERSION CORPORATION DELAWARE CORPORATION Method and apparatus for providing passive force feedback to human-computer interface systems
5781172, Dec 05 1990 U.S. Philips Corporation Data input device for use with a data processing apparatus and a data processing apparatus provided with such a device
5788714, Aug 14 1995 Hoya Corporation Flexible tube for an endoscope
5789047, Dec 21 1993 Japan GORE-TEX, Inc; Olympus Optical Co. Flexible, multilayered tube
5793539, Dec 27 1993 Olympus Optical Co., Ltd. Optical system for endoscopes
5805140, Jul 16 1993 IMMERSION CORPORATION DELAWARE CORPORATION High bandwidth force feedback interface using voice coils and flexures
5810715, Sep 29 1995 Olympus Optical Co., Ltd. Endoscope provided with function of being locked to flexibility of insertion part which is set by flexibility modifying operation member
5812983, Aug 03 1995 Computed medical file and chart system
5819736, Mar 24 1994 STRYKER GI LTD Viewing method and apparatus particularly useful for viewing the interior of the large intestine
5820591, Feb 02 1990 Boston Scientific Scimed, Inc Assemblies for creating compound curves in distal catheter regions
5821466, Dec 23 1996 BELDEN TECHNOLOGIES, INC Multiple twisted pair data cable with geometrically concentric cable groups
5821920, Jul 14 1994 IMMERSION MEDICAL, INC Control input device for interfacing an elongated flexible object with a computer system
5823948, Jul 08 1996 RLIS, Inc. Medical records, documentation, tracking and order entry system
5827186, Apr 11 1997 PURDUE PHARMACEUTICAL PRODUCTS L P Method and PDT probe for minimizing CT and MRI image artifacts
5827190, Mar 28 1994 NOVADAQ TECHNOLOGIES INC Endoscope having an integrated CCD sensor
5828197, Oct 25 1996 IMMERSION CORPORATION DELAWARE CORPORATION Mechanical interface having multiple grounded actuators
5828363, Dec 15 1993 Interlink Electronics, Inc. Force-sensing pointing device
5830124, May 18 1995 Fuji Photo Optical Co., Ltd. Guide structure for electronic endoscope systems
5830128, Jan 09 1996 Fuji Photo Optical Co., Ltd. Liquid feed device for intracavitary examination instrument
5836869, Dec 13 1994 Olympus Optical Co., Ltd. Image tracking endoscope system
5837023, Aug 08 1996 Olympus Optical Co., Ltd. Process for making gradient index optical elements
5837083, Aug 12 1993 ITI Scotland Limited Method of forming a rigid tubular body
5840014, Jan 14 1997 Fuji Photo Optical Co., Ltd. Endoscope
5841126, Nov 16 1995 California Institute of Technology CMOS active pixel sensor type imaging system on a chip
5843000, May 07 1996 The General Hospital Corporation Optical biopsy forceps and method of diagnosing tissue
5846183, Jun 07 1995 Articulated endoscope with specific advantages for laryngoscopy
5855560, Nov 08 1991 EP Technologies, Inc. Catheter tip assembly
5857963, Jul 17 1996 GE Inspection Technologies, LP Tab imager assembly for use in an endoscope
5865724, Jan 11 1996 Symbiosis Corp. Flexible microsurgical instruments incorporating a sheath having tactile and visual position indicators
5868664, Feb 23 1996 Linvatec Corporation Electrically isolated sterilizable endoscopic video camera head
5868666, Nov 26 1993 Olympus Optical Co., Ltd. Endoscope apparatus using programmable integrated circuit to constitute internal structure thereof
5873816, Nov 02 1994 Olympus Optical Co., Ltd. Electronic endoscope having an insertional portion a part of which is a conductive armor
5873866, Jan 13 1995 Fuji Photo Optical Co., Ltd. Flexible sheathing tube construction, and method for fabrication thereof
5876326, Mar 10 1995 Olympus Optical Co., Ltd. Electronic endoscope with grounded spirally-wound lead wires
5876331, Nov 12 1996 Johnson & Johnson Medical, Inc. Endoscope with improved flexible insertion tube
5876373, Apr 04 1997 HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT Steerable catheter
5876427, Jan 29 1997 PURDUE PHARMACEUTICAL PRODUCTS L P Compact flexible circuit configuration
5877819, Mar 31 1993 Smith & Nephew, Inc Managing information in an endoscopy system
5879284, Dec 10 1996 FUJIFILM Corporation Endoscope
5880714, Jul 16 1993 IMMERSION CORPORATION DELAWARE CORPORATION Three-dimensional cursor control interface with force feedback
5882293, Sep 05 1996 Hoya Corporation Treatment accessories for endoscope
5882339, Aug 21 1991 Smith & Nephew, Inc Fluid management system
5889670, Oct 24 1991 IMMERSION CORPORATION DELAWARE CORPORATION Method and apparatus for tactilely responsive user interface
5889672, Oct 24 1991 IMMERSION CORPORATION DELAWARE CORPORATION Tactiley responsive user interface device and method therefor
5892630, Feb 10 1992 Linvatec Corporation Disposable endoscope
5895350, Oct 28 1992 VIKING SYSTEMS, INC Electronic endoscope
5897507, Nov 25 1996 Boston Scientific Miami Corporation Biopsy forceps instrument having irrigation and aspiration capabilities
5897525, Mar 15 1995 Dey, Uwe and Mueller, Bernd Process and apparatus for introducing a fluid
5907487, Sep 27 1995 IMMERSION CORPORATION DELAWARE CORPORATION Force feedback device with safety feature
5923018, Jan 31 1997 Kameda Medical Information Laboratory Medical care schedule and record aiding system, medical care schedule and record aiding method, and program storage device readable by the system
5928136, Feb 13 1997 KARL STORZ GMBH & CO KG Articulated vertebra for endoscopes and method to make it
5929607, Dec 01 1995 IMMERSION CORPORATION DELAWARE CORPORATION Low cost force feedback interface with efficient power sourcing
5929846, Jul 16 1993 IMMERSION CORPORATION DELAWARE CORPORATION Force feedback interface device including grounded sensor system
5929900, Nov 14 1996 Fuji Photo Optical Co., Ltd. Signal processor circuit for endoscope systems of all-pixels readout type
5929901, Oct 06 1997 MICRO-IMAGING SOLUTIONS, LLC Reduced area imaging devices incorporated within surgical instruments
5931833, Nov 22 1994 Endoscopic accessory and containment system
5933809, Feb 29 1996 Medcom Solutions, Inc.; MEDCOM SOLUTIONS, INC Computer software for processing medical billing record information
5935085, Nov 24 1997 Stephen W., Welsh Method for prepping a patient for an endoscopic procedure
5936778, Mar 19 1997 Fuji Photo Optical Co., Ltd. Objective lens for endoscope
5941817, Nov 14 1996 VIKING SYSTEMS, INC Endoscope wherein electrical components are electrically isolated from patient-engaging components
5950168, Dec 18 1996 US ONCOLOGY CORPORATE, INC , A DELAWARE CORPORATION Collapsible flowsheet for displaying patient information in an electronic medical record
5951462, Dec 11 1997 Fuji Photo Optical Co., Ltd. Electronic endoscope system for displaying unconnected scope
5956416, Mar 23 1989 Olympus Optical Co., Ltd. Endoscope image processing apparatus
5956689, Jul 31 1997 Accordant Health Services, Inc. Systems, methods and computer program products for using event specificity to identify patients having a specified disease
5956690, Sep 03 1997 VHS OF MICHIGAN, INC Bundled billing accounting computer systems
5959613, Dec 01 1995 IMMERSION CORPORATION DELAWARE CORPORATION Method and apparatus for shaping force signals for a force feedback device
5976070, Feb 27 1997 Olympus Optical Co., Ltd. Signal cable of a video endoscope provided with a solid state image pick-up device
5976074, Sep 29 1995 Olympus Optical Co., Ltd. Endoscope provided with function of being locked to flexibility of insertion part which is set by flexibility modifying operation member
5980454, Dec 01 1997 Medtronic, Inc Endoscopic imaging system employing diffractive optical elements
5980468, Sep 22 1997 ZIMMON, DAVID S Apparatus and method for serial collection storage and processing of biopsy specimens
5986693, Oct 06 1997 MICRO-IMAGING SOLUTIONS, INC Reduced area imaging devices incorporated within surgical instruments
5991729, Jun 28 1997 Methods for generating patient-specific medical reports
5991730, Oct 08 1997 Queue Corporation Methods and systems for automated patient tracking and data acquisition
5999168, Sep 27 1995 IMMERSION CORPORATION DELAWARE CORPORATION Haptic accelerator for force feedback computer peripherals
6002425, Sep 12 1996 Fuji Photo Optical Co., Ltd. All pixels read type electronic endoscope system
6007531, Nov 21 1995 Catheter Imaging Systems, Inc. Steerable catheter having disposable module and sterilizable handle and method of connecting same
6014630, Aug 26 1993 PATIENT EDUCATION SERVICES, INC Customized system for providing procedure-specific patient education
6015088, Nov 05 1996 HAND HELD PRODUCTS, INC Decoding of real time video imaging
6017322, Nov 21 1995 Catheter Imaging Systems, Inc. Steerable catheter having disposable module and sterilizable handle and method of connecting same
6020875, Oct 31 1997 IMMERSION CORPORATION DELAWARE CORPORATION High fidelity mechanical transmission system and interface device
6020876, Apr 14 1997 IMMERSION CORPORATION DELAWARE CORPORATION Force feedback interface with selective disturbance filter
6026363, Mar 06 1996 MAGNA CARTA HOLDINGS, LLC, AN ILLINOIS LIMITED LIABILITY CORP Medical history documentation system and method
6030360, Dec 30 1996 MYELOTEC CO , LTD Steerable catheter
6032120, Dec 16 1997 Siemens Medical Solutions USA, Inc Accessing stored ultrasound images and other digital medical images
6039728, Apr 06 1992 Biolitec Unternehmensbeteiligungs II AG Working shaft for photo-thermal therapy
6043839, Oct 06 1997 Cellect LLC Reduced area imaging devices
6050718, Mar 28 1996 IMMERSION CORPORATION DELAWARE CORPORATION Method and apparatus for providing high bandwidth force feedback with improved actuator feel
6057828, Jan 18 1995 Immersion Corporation Method and apparatus for providing force sensations in virtual environments in accordance with host software
6059719, Aug 06 1997 Olympus Corporation Endoscope system
6061004, Nov 26 1995 Immersion Corporation Providing force feedback using an interface device including an indexing function
6063035, Jul 24 1997 Fuji Photo Optical Co., Ltd. Coupling adaptor for endoscopically inserting ultrasound probe
6067077, Apr 10 1998 IMMERSION CORPORATION DELAWARE; IMMERSION CORPORATION DELAWARE CORPORATION Position sensing for force feedback devices
6071248, Sep 22 1997 ZIMMON, DAVID S Apparatus for serial collection, storage and processing of biopsy specimens
6075555, Apr 04 1995 Method and apparatus for image enhancement
6078308, Dec 13 1995 IMMERSION CORPORATION DELAWARE CORPORATION Graphical click surfaces for force feedback applications to provide user selection using cursor interaction with a trigger position within a boundary of a graphical object
6078353, Sep 12 1996 Fuji Photo Optical Co., Ltd. All-pixels reading type electronic endoscope apparatus
6078876, Aug 07 1995 Immersion Corporation Method and apparatus for tracking the position and orientation of a stylus and for digitizing a 3-D object
6080104, May 16 1995 Asahi Kogaku Kogyo Kabushiki Kaisha Electronic endoscope system
6081809, Aug 03 1995 Interpolative method and system for producing medical charts and monitoring and recording patient conditions
6083152, Jan 11 1999 GE Inspection Technologies, LP Endoscopic insertion tube
6083170, May 17 1996 Biosense, Inc. Self-aligning catheter
6095971, Oct 22 1997 Fuji Photo Optical Co., Ltd. Endoscope fluid controller
6099465, Dec 04 1996 Fuji Photo Optical Co., Ltd. Electromagnetically coupled electronic endoscope system
6100874, Nov 17 1995 IMMERSION CORPORATION DELAWARE CORPORATION Force feedback mouse interface
6104382, Oct 31 1997 IMMERSION CORPORATION DELAWARE CORPORATION Force feedback transmission mechanisms
6120435, Jul 16 1997 Olympus Optical Co., Ltd. Endoscope system in which operation switch sets designed to function and be handled same way are included in endoscope and image processing apparatus respectively
6125337, Jul 16 1993 Immersion Corporation Probe apparatus and method for tracking the position and orientation of a stylus and controlling a cursor
6128006, Mar 26 1998 IMMERSION CORPORATION DELAWARE CORPORATION Force feedback mouse wheel and other control wheels
6132369, Aug 21 1997 Fuji Photo Optical Co., Ltd. Opening/closing and flow rate controller for an endoscope pipe
6134056, Aug 01 1997 Olympus Corporation Objective lens system for endoscopes
6134506, Aug 07 1995 Immersion Corporation Method and apparatus for tracking the position and orientation of a stylus and for digitizing a 3-D object
6135946, Jun 23 1997 U S PHILIPS CORPORATION Method and system for image-guided interventional endoscopic procedures
6139508, Aug 04 1998 Medtronic, Inc Articulated medical device
6141037, Mar 18 1998 Linvatec Corporation Video camera system and related method
6142956, Nov 25 1996 Boston Scientific Miami Corporation Proximal actuation handle for a biopsy forceps instrument having irrigation and aspiration capabilities
6146355, Dec 30 1996 MYELOTEC CO , LTD Steerable catheter
6149607, Aug 04 1998 Medtronic, Inc Multiple sample biopsy device
6152877, Dec 16 1998 Boston Scientific Scimed, Inc Multimode video controller for ultrasound and X-ray video exchange system
6154198, Jan 18 1995 IMMERSION CORPORATION DELAWARE D B A IMMERSION CORPORATION Force feedback interface apparatus including backlash and for generating feel sensations
6154248, May 24 1996 Hoya Corporation Electronic endoscope
6155988, Mar 26 1998 NIVAROX-FAT S A Device for taking samples, for example for a biopsy, and rack system fitted to such a device
6181481, Nov 30 1998 Fuji Photo Optical Co., Ltd. Objective lens for endoscope
6184922, Jul 31 1997 Olympus Corporation Endoscopic imaging system in which still image-specific or motion picture-specific expansion unit can be coupled to digital video output terminal in freely uncoupled manner
6193714, Apr 11 1997 PROJECT TROJAN INTELLECTUAL PROPERTY ACQUISITION, LLC Medical probe device with transparent distal extremity
6195592, Oct 24 1991 IMMERSION CORPORATION DELAWARE CORPORATION Method and apparatus for providing tactile sensations using an interface device
6203493, Feb 15 1996 Biosense, Inc. Attachment with one or more sensors for precise position determination of endoscopes
6206824, Mar 18 1998 Hoya Corporation Flexible tube for endoscope and method of producing the flexible tube
6211904, Sep 11 1997 MICRO-IMAGING SOLUTIONS, INC Surgical devices incorporating reduced area imaging devices
6216104, Feb 20 1998 Philips Electronics North America Computer-based patient record and message delivery system
6219091, Sep 12 1996 Fujinon Corporation All-pixels reading type electronic endoscope apparatus
6221070, Oct 18 1996 Irvine Biomedical, Inc. Steerable ablation catheter system having disposable shaft
6241668, Jan 23 1998 Monument Peak Ventures, LLC Medical system architecture
6260994, Aug 21 1998 Fujinon Corporation Battery-powered light source arrangement for endoscope
6272470, Sep 03 1996 Kabushiki Kaisha Toshiba Electronic clinical recording system
6275255, Oct 06 1997 Cellect LLC Reduced area imaging devices
6283960, Oct 24 1995 Oratec Interventions, Inc Apparatus for delivery of energy to a surgical site
6295082, Feb 23 1994 Smith & Nephew, Inc Camera head with digital memory for storing information about the image sensor
6299625, Aug 12 1998 KARL STORZ SE & CO KG Handle for a medical instrument
6309347, Mar 17 1998 Fujinon Corporation Air and water supply system for endoscopes
6310642, Nov 24 1997 MICRO-IMAGING SOLUTIONS, INC Reduced area imaging devices incorporated within surgical instruments
6319196, Jul 06 1998 Fujinon Corporation Imaging element assembly unit for endoscope
6319197, Nov 20 1990 Olympus Optical Co., LTD Endoscope system having reduced noise emission/permeation
6334844, Aug 17 1999 Fujinon Corporation Mechanical- and electrical-mode changeable endoscope conduit controller
6346075, Feb 01 1999 Fujinon Corporation Air and water supply valve structure in endoscope
6366799, Feb 15 1996 Biosense, Inc. Movable transmit or receive coils for location system
6381029, Dec 23 1998 International Business Machines Corporation Systems and methods for remote viewing of patient images
6398724, Mar 16 2000 Medivision, Inc. Focusable optical instrument with a sealed optical system having no internal optical moving parts
6413207, Sep 30 1999 Fuji Photo Optical Co., Ltd. Electronic endoscope apparatus
6421078, Feb 12 1999 FUJI PHOTO OPTICAL CO , LTD Electronic endoscope system
6425535, Aug 02 1999 Fuji Photo Optical Co., Ltd. Fluid supplying apparatus for endoscope
6425858, Mar 19 1999 Fuji Photo Optical Co., Ltd. Electronic endoscope apparatus having magnification changing function
6436032, May 30 2000 Olympus Corporation Data filing system for endoscope
6441845, Mar 31 1998 Olympus Corporation Image pickup apparatus enlarging a dynamic range of an image pickup signal
6447444, Nov 04 1997 STRYKER GI LTD Video rectoscope
6449006, Jun 26 1992 SURGICON, INC LED illumination system for endoscopic cameras
6453190, Feb 15 1996 Biosense, Inc. Medical probes with field transducers
6454162, Jan 25 2001 BEVERAGAE METRICS HOLDING LTD Process for controlling the misuse of disposable medical products
6459447, Sep 30 1998 Fuji Photo Optical Co., Ltd. Video signal transmission device
6468204, May 25 2000 FUJIFILM Corporation Fluorescent endoscope apparatus
6475141, Jun 29 2000 Fuji Photo Optical Co., Ltd. Electronic endoscope device using separated area photometry
6478730, Sep 09 1998 VISIONQUEST HOLDINGS, LLC Zoom laparoscope
6489987, Jan 09 1998 Fuji Photo Optical Co., Ltd. Electronic endoscope apparatus
6496827, May 12 1997 DATASCI LLC Methods and apparatus for the centralized collection and validation of geographically distributed clinical study data with verification of input data to the distributed system
6498948, Aug 25 1999 Hoya Corporation Endoscope system
6503193, Apr 14 1999 Hoya Corporation Flexible tube for endoscope
6520908, Sep 30 1999 Olympus Corporation Electronic endoscope
6524234, Sep 18 2000 PENTAX Corporation Tip portion of an endoscope
6530882, Jun 30 2000 Inner Vision Imaging, L.L.C.; INNER VISION IMAGING, L L C Endoscope having microscopic and macroscopic magnification
6533722, Dec 03 1999 Hoya Corporation Electronic endoscope having reduced diameter
6540669, Aug 31 2000 Hoya Corporation Flexible tube for an endoscope and electronic endoscope equipped with the flexible tube
6544194, Nov 25 1996 Boston Scientific Miami Corporation Proximal actuation handle for a biopsy forceps instrument having irrigation and aspiration capabilities
6545703, Jun 26 1998 Hoya Corporation Electronic endoscope
6551239, May 28 1999 KARL STORZ SE & CO KG Shaft for a flexible endoscope and flexible endoscope
6558317, Mar 17 1998 Fuji Photo Optical Co., Ltd. Air and water supply system for endoscopes
6561971, May 07 1999 Fuji Photo Optical Co., Ltd. Endoscope with magnification change function
6565507, Sep 13 2000 Fuji Photo Optical Co., Ltd. Flexible tube, and method for manufacturing same
6574629, Dec 23 1998 AGFA HEALTHCARE CORPORATION Picture archiving and communication system
6589162, Feb 21 2000 Hoya Corporation Endoscope system and video camera for endoscope
6595913, Sep 07 2000 FUJI PHOTO OPTICAL CO , LTD Cable structure in electronic endoscope
6597390, Jan 11 1999 Fuji Photo Optical Co., Ltd.; FUJI PHOTO OPTICAL CO , LTD Electronic endoscope apparatus
6599239, Dec 13 1999 Hoya Corporation Flexible tube for endoscope, material used for producing outer cover of the flexible tube, and production method of the flexible tube
6602186, Nov 11 1999 Hoya Corporation Electronic endoscope system
6605035, Sep 07 2000 Fuji Photo Optical Co., Ltd. Endoscope
6609135, Jul 22 1999 Olympus Corporation Image file equipment, and database creating method in an image file equipment
6611846, Oct 30 1999 MEDTECH GLOBAL LIMITED Method and system for medical patient data analysis
6614969, Jul 26 2001 LUDLOW COMPANY LP, THE High speed electronic remote medical imaging system and method
6616601, Jan 21 2000 PENTAX Corporation Flexible tube for endoscope
6623424, Sep 01 2000 Hoya Corporation Flexible tube for an endoscope and electronic endoscope equipped with the flexible tube
6638214, Aug 02 2000 Fuji Photo Optical Co., Ltd. Observation window washing device of endoscope
6638215, Aug 25 2000 Hoya Corporation Video endoscope system
6641528, Sep 08 2000 Fuji Photo Optical Co., Ltd. Bending part of endoscope
6651669, Sep 07 1999 Boston Scientific Scimed, Inc Systems and methods to identify and disable re-used single use devices based on cataloging catheter usage
6656110, Apr 16 1997 Karl Storz GmbH & Co. KG Endoscopic system
6656112, Sep 08 1998 Olympus Corporation Distal endoscope part having light emitting source such as light emitting diodes as illuminating means
6659940, Apr 10 2000 GYRUS ACMI, INC D B A OLYMPUS SURGICAL TECHNOLOGIES AMERICA Image sensor and an endoscope using the same
6663561, Oct 05 2000 PENTAX Corporation Video endoscope system
6669629, Apr 24 2001 Olympus Corporation Endoscope system comprising an electrically bendable endoscope
6673012, Apr 19 2000 PENTAX Corporation Control device for an endoscope
6677984, Nov 30 1999 PENTAX Corporation Electronic endoscope system
6678397, Jan 26 1999 Olympus Corporation Medical image filing system
6682479, Feb 02 1999 PENTAX Corporation Air feeding device for endoscope
6685631, Mar 16 2001 FUJI PHOTO OPTICAL CO , LTD Electronic endoscope system having variable power function
6686949, Jan 14 2000 PENTAX Corporation Electronic endoscope system
6690409, Sep 16 1998 PENTAX Corporation Electronic endoscope system
6690963, Jan 24 1995 Biosense, Inc System for determining the location and orientation of an invasive medical instrument
6692431, Sep 07 2001 Smith & Nephew, Inc.; Smith & Nephew, Inc Endoscopic system with a solid-state light source
6697101, Sep 20 1999 PENTAX Corporation Electronic endoscope
6699181, Jan 19 2001 Fuji Photo Optical Co., Ltd. Connector device for endoscope
6702737, Mar 30 2001 Fujinon Corporation Bending manipulation device for endoscope
6711426, Apr 09 2002 JB IP ACQUISITION LLC Spectroscopy illuminator with improved delivery efficiency for high optical density and reduced thermal load
6715068, Mar 31 1999 Fuji Photo Optical Co., Ltd. Multi-microcomputer system
6716162, Apr 24 2000 FUJIFILM Corporation Fluorescent endoscope apparatus
6728599, Sep 07 2001 Intuitive Surgical Operations, Inc Modularity system for computer assisted surgery
6730018, Jul 04 2000 Olympus Corporation Endoscope
6736773, Jan 25 2001 Boston Scientific Scimed, Inc Endoscopic vision system
6743240, Jun 25 2001 Ethicon Endo-Surgery, Inc Flexible surgical device having a rotatable end effector assembly
6749559, May 27 1999 OLYMPUS WINTER & IBE GMBH Endoscope
6749560, Oct 26 1999 GYRUS ACMI, INC Endoscope shaft with slotted tube
6749561, Aug 23 2001 Smith & Nephew, Inc Autofocusing endoscopic system
6753905, Sep 29 1997 Fuji Photo Optical Co., Ltd. Circuit for transmitting a solid-state image pickup device signal to a signal processor
6758806, Jan 12 2001 LEVY, MICHAEL Endoscopic devices and method of use
6758807, Aug 27 2001 FUJI PHOTO OPTICAL CO , LTD Electronic endoscope with power scaling function
6758842, Dec 16 1999 KARL STORZ GMBH & CO KG Medical instrument for removing tissue, bone cement or the like in the human or animal body
6778208, Dec 28 2000 PENTAX Corporation Electronic endoscope system
6780151, Oct 26 1999 GYRUS ACMI, INC Flexible ureteropyeloscope
6785410, Aug 09 1999 WAKE FOREST UNIVERSITY HEALTH SCIENCES Image reporting method and system
6785593, Sep 07 2001 Intuitive Surgical Operations, Inc Modularity system for computer assisted surgery
6796938, Apr 27 2001 FUJIFILM Corporation Image obtaining method and apparatus of an endoscope apparatus
6796939, Aug 26 1999 Olympus Corporation Electronic endoscope
6798533, Dec 23 1998 International Business Machines Corporation Systems and methods for remote viewing of patient images
6800056, Apr 03 2000 Intuitive Surgical Operations, Inc Endoscope with guiding apparatus
6800057, May 29 2001 FUJIFILM Corporation Image obtaining apparatus
6808491, May 21 2001 IS, LLC Methods and apparatus for on-endoscope instruments having end effectors and combinations of on-endoscope and through-endoscope instruments
6824539, Aug 02 2002 KARL STORZ ENDOSCOPY-AMERICA, INC Touchscreen controlling medical equipment from multiple manufacturers
6824548, Jun 25 2001 Ethicon Endo-Surgery, Inc Flexible surgical clip applier
6829003, Jun 02 2000 PENTAX Corporation Sampling pulse generator of electronic endoscope
6830545, May 13 2002 WAYGATE TECHNOLOGIES USA, LP Tube gripper integral with controller for endoscope of borescope
6832990, Nov 25 1996 Boston Scientific Miami Corporation Biopsy instrument having aspiration capabilities
6840932, Sep 21 1999 KARL STORZ SE & CO KG Medical instrument
6842196, Apr 04 2000 Smith & Nephew, Inc Method and system for automatic correction of motion artifacts
6846286, May 22 2001 Hoya Corporation Endoscope system
6847933, Dec 31 1997 Siemens Medical Solutions USA, Inc Ultrasound image and other medical image storage system
6849043, Mar 22 2002 Fuji Photo Optical Co., Ltd. Suction valve for endoscope use
6850794, Sep 23 2000 CICAS IP LLC Endoscopic targeting method and system
6855109, Jul 18 2001 Hoya Corporation Portable endoscope
6858004, Nov 12 1999 PENTAX Corporation Electronic endoscope system including a plurality of video-processors
6858014, Apr 05 2002 Boston Scientific Scimed, Inc Multiple biopsy device
6860849, May 08 2000 Hoya Corporation Flexible tube for an endoscope
6863650, Jul 24 1997 Karl Storz GmbH & Co KG Endoscopic instrument for performing endoscopic procedures or examinations
6863661, May 17 2000 SciMed Life Systems, Inc. Fluid seal for endoscope
6868195, Feb 20 2003 Fujinon Corporation Device for detecting three-dimensional shapes of elongated flexible body
6871086, Feb 15 2001 ROBIN MEDICAL INC. Endoscopic examining apparatus particularly useful in MRI, a probe useful in such apparatus, and a method of making such probe
6873352, Jun 09 1999 Olympus Corporation Image processing unit whose ability to process endoscopic image signal can be expanded, and endoscopic imaging system
6876380, Mar 30 2001 Fujinon Corporation Electronic endoscopic apparatus connectable with electronic endoscope having different number of pixels
6879339, Oct 23 2001 Hoya Corporation Electronic endoscope system with color-balance alteration process
6881188, Sep 03 2001 PENTAX Corporation Electronic endoscope system with liquid supply apparatus
6882785, Sep 27 2001 The Ludlow Company LP High speed electronic remote medical imaging system and method
6887195, Jul 09 1999 DILIGENTIA EINHUNDERTSTE VERMOGENSVERWALTUNGS GMBH Endoscope-type device, especially for emergency intubation
6890294, Aug 02 2001 Olympus Corporation Endoscope apparatus
6892090, Aug 19 2002 Surgical Navigation Technologies, Inc. Method and apparatus for virtual endoscopy
6892112, Sep 07 2001 Intuitive Surgical Operations, Inc Modularity system for computer assisted surgery
6895268, Jun 28 1999 Siemens Aktiengesellschaft Medical workstation, imaging system, and method for mixing two images
6898086, Dec 14 2001 PENTAX Corporation PCB structure for scope unit of electronic endoscope
6899673, Oct 02 2000 Olympus Corporation Endoscope
6899674, Mar 07 2002 INVENDO Medical GmbH Endoscope shaft comprising a movable end portion
6899705, Apr 07 1999 Intuitive Surgical Operations, Inc Friction compensation in a minimally invasive surgical apparatus
6900829, Apr 03 1996 Hoya Corporation Electronic endoscope system for reducing random noise of a video signal
6902527, May 18 1999 Olympus Corporation Endoscope system with charge multiplying imaging device and automatic gain control
6902529, Apr 10 2000 Olympus Corporation Endoscope apparatus
6903761, Jun 24 1999 Fujinon Corporation Electronic endoscope system allowing accurate delay time to be set
6903883, Jun 27 2002 Olympus Corporation Image pickup lens unit and image pickup device
6905057, Sep 29 2003 Cilag GmbH International Surgical stapling instrument incorporating a firing mechanism having a linked rack transmission
6905462, Sep 08 1999 Olympus Corporation Endoscope image pickup optical system
6908427, Dec 30 2002 Paré Surgical, Inc. Flexible endoscope capsule
6908429, Mar 01 2002 Richard Wolf GmbH Suction valve for a medical instrument
6911916, Jun 24 1996 Intuitive Surgical Operations, Inc Method and apparatus for accessing medical data over a network
6916286, Aug 09 2001 Smith & Nephew, Inc. Endoscope with imaging probe
6923818, Mar 26 2001 Olympus Corporation Apparatus for ligating living tissues
6928490, May 20 1999 ST LOUIS UNIVERSITY Networking infrastructure for an operating room
6930706, Feb 28 2001 PENTAX Corporation Organ-region-indication system incorporated in electronic endoscope system
6932761, Sep 30 2002 Olympus Corporation Electrically-bent endoscope
6934093, Jun 15 1999 Given Imaging LTD Optical system
6934575, Sep 15 1994 GE Medical Systems Global Technology Company, LLC Position tracking and imaging system for use in medical applications
6943663, Aug 06 1996 Intuitive Surgical Operations, Inc General purpose distributed operating room control system
6943946, May 01 2003 Harris Corporation Multiple aperture imaging system
6943959, Jul 04 2003 Olympus Corporation Objective optical system
6943966, Jun 04 2001 Olympus Corporation Optical component and image pick-up device using the same
6944031, Dec 14 2001 PENTAX Corporation PCB structure for scope unit of electronic endoscope
6949068, May 07 2001 Olympus Corporation Endoscope shape detector
6950691, Apr 10 2001 Olympus Corporation Surgery support system and surgery support method
6955671, Feb 18 1999 Olympus Corporation Remote surgery support system
7108063, Sep 25 2000 Connectable rod system for driving downhole pumps for oil field installations
20010039370,
20010049491,
20020017515,
20020028984,
20020055669,
20020080248,
20020087048,
20020087166,
20020095175,
20020128633,
20020193664,
20030032863,
20030069897,
20030078476,
20030149338,
20030181905,
20040049097,
20040054258,
20040073083,
20040073084,
20040073085,
20040147809,
20040167379,
20040249247,
20040257608,
20050197861,
20050203341,
20050228697,
20050273084,
20060111616,
EP689851,
EP1300883,
JP10113330,
JP10286221,
JP11216113,
JP2002102152,
JP2002177197,
JP2002185873,
JP2002253481,
JP200375113,
JP3219521,
JP3372273,
JP3482238,
JP5091972,
JP531071,
JP5878635,
JP6105800,
JP6254048,
JP78441,
RE32421, Sep 20 1979 Olympus Optical Co., Ltd. Data transmission system for an endoscope apparatus
RE33689, Feb 15 1984 Olympus Optical Co., Ltd. Objective lens system for endoscopes
RE34504, Feb 16 1988 Olympus Optical Co., Ltd. Electronic endoscope system provided with a means of imaging frozen pictures having few picture image smears
WO2004016310,
WO2005023082,
WO9313704,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 28 2005Boston Scientific Scimed, Inc.(assignment on the face of the patent)
Dec 15 2005BOULAIS, DENNIS R Boston Scientific Scimed, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0170630794 pdf
Jan 09 2006BOUTILLETTE, MICHAEL P Boston Scientific Scimed, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0170630794 pdf
Jan 09 2006DAYTON, PETER L Boston Scientific Scimed, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0170630794 pdf
Date Maintenance Fee Events
May 16 2012ASPN: Payor Number Assigned.
Nov 25 2015M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Dec 02 2019M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jan 29 2024REM: Maintenance Fee Reminder Mailed.
Jul 15 2024EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Jun 12 20154 years fee payment window open
Dec 12 20156 months grace period start (w surcharge)
Jun 12 2016patent expiry (for year 4)
Jun 12 20182 years to revive unintentionally abandoned end. (for year 4)
Jun 12 20198 years fee payment window open
Dec 12 20196 months grace period start (w surcharge)
Jun 12 2020patent expiry (for year 8)
Jun 12 20222 years to revive unintentionally abandoned end. (for year 8)
Jun 12 202312 years fee payment window open
Dec 12 20236 months grace period start (w surcharge)
Jun 12 2024patent expiry (for year 12)
Jun 12 20262 years to revive unintentionally abandoned end. (for year 12)