In one embodiment, an apparatus includes a processor configured for operation in a control plane in a distributed virtual switch in communication with a plurality of virtual machines each having a virtual interface. The processor is operable to identify other control planes in the distributed virtual switch, assign a virtual interface identifier to one of the virtual interfaces, receive a configuration for the virtual interface, and share the configuration with the other control planes in the distributed virtual switch. The virtual interface identifier provides a unique identifier for the virtual interface across all of the control planes. The apparatus further includes memory for storing the configuration of the virtual interface. A method for operating a network device associated with a control in the distributed virtual switch is also disclosed.
|
13. An apparatus comprising:
a processor for connecting with a management station and joining a distributed virtual switch comprising a plurality of control plane domains associated with a plurality of network devices, the distributed virtual switch operating as an access switch with a control plane, identifying the control plane domains in the distributed virtual switch, communicating with one or more servers comprising a plurality of virtual machines each comprising a virtual interface, assigning a virtual interface identifier to one of said virtual interfaces, receiving a port profile for said virtual interface, and sharing said port profile with said other control planes in the distributed virtual switch; and
memory for storing said port profile of said virtual interface;
wherein said virtual interface identifier provides a unique identifier for said virtual interface across all of said control plane domains.
18. Logic encoded in one or more non-transitory tangible media for execution by a processor, and when executed operable to:
connect with a management station and join a distributed virtual switch comprising a plurality of control plane domains associated with a plurality of network devices, the distributed virtual switch operating as an access switch with a control plane;
identify the control plane domains in the distributed virtual switch, the network devices in communication with one or more servers comprising a plurality of virtual machines each comprising a virtual interface:
assign a virtual interface identifier to one of said virtual interfaces, wherein said virtual interface identifier provides a unique identifier for said virtual interface across all of said control plane domains; and
receive a port profile for said virtual interface and share said port profile with said control plane domains in the distributed virtual switch.
1. A method comprising:
connecting with a management station and joining a distributed virtual switch comprising a plurality of control plane domains associated with a plurality of network devices, the distributed virtual switch operating as an access switch with a control plane;
identifying the control plane domains in the distributed virtual switch, the network devices in communication with one or more servers comprising a plurality of virtual machines each comprising a virtual interface, the one or more servers each comprising a data plane associated with the control plane of the distributed virtual switch;
assigning a virtual interface identifier to one of said virtual interfaces, wherein said virtual interface identifier provides a unique identifier for said virtual interface across all of said control plane domains; and
receiving a port profile for said virtual interface and sharing said port profile with said other control plane domains in the distributed virtual switch.
2. The method of
3. The method of
4. The method of
6. The method of
7. The method of
8. The method of
9. The method of
10. The method of
11. The method of
12. The method of
14. The apparatus of
15. The apparatus of
16. The apparatus of
17. The apparatus of
19. The logic of
20. The logic of
|
The present disclosure relates generally to communication networks, and more particularly, to a distributed data center access switch.
Data centers often use a small percentage of available CPU, storage, and memory capacity. This results in deployment of more servers than are necessary to perform a specified amount of work. Additional servers increase costs and create a more complex and disparate environment that can be difficult to manage. Many data center managers are turning to virtualization so that resources can be shared across a network.
Virtualization is a technology which allows one computer to do the job of multiple computers by sharing resources of a single computer across multiple systems. Through the use of virtualization, multiple operating systems and applications can run on the same computer at the same time, thereby increasing utilization and flexibility of hardware. Virtualization allows servers to be decoupled from underlying hardware, thus resulting in multiple virtual servers sharing the same physical server hardware. This also allows the virtual server to be moved from one physical server to another physical server while maintaining continuous service availability.
Corresponding reference characters indicate corresponding parts throughout the several views of the drawings.
Overview
In one embodiment, a method for operating a network device associated with a control plane in a distributed virtual switch in communication with a plurality of virtual machines each comprising a virtual interface generally comprises identifying at the network device, other control planes in the distributed virtual switch, assigning a virtual interface identifier to one of the virtual interfaces, receiving a configuration for the virtual interface, and sharing the configuration with the other control planes in the distributed virtual switch. The virtual interface identifier provides a unique identifier for the virtual interface across all of the control planes.
In another embodiment, an apparatus generally comprises a processor configured for operation in a control plane in a distributed virtual switch in communication with a plurality of virtual machines each comprising a virtual interface. The processor is operable to identify other control planes in the distributed virtual switch, assign a virtual interface identifier to one of the virtual interfaces, receive a configuration for the virtual interface, and share the configuration with the other control planes in the distributed virtual switch. The virtual interface identifier provides a unique identifier for the virtual interface across all of the control planes. The apparatus further includes memory for storing the configuration of the virtual interface.
Example Embodiments
The following description is presented to enable one of ordinary skill in the art to make and use the invention. Descriptions of specific embodiments and applications are provided only as examples and various modifications will be readily apparent to those skilled in the art. The general principles described herein may be applied to other embodiments and applications without departing from the scope of the invention. Thus, the present invention is not to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features described herein. For purpose of clarity, details relating to technical material that is known in the technical fields related to the invention have not been described in detail.
Virtualization allows one computer to do the job of multiple computers by sharing the resources of a single computer across multiple systems. Software is used to virtualize hardware resources of a computer, including, for example, the CPU, RAM, hard disk, and network controller, to create a virtual machine that can run its own operating system and applications. Multiple virtual machines share hardware resources without interfering with each other so that several operating systems and applications can be run at the same time on a single computer. Virtual machines may be used, for example, in a virtual infrastructure to dynamically map physical resources to business needs. Virtualization thus enables the aggregation of multiple servers, storage infrastructure, and networks into shared resources that can be delivered dynamically to applications as needed.
Embodiments described herein operate in a networking environment, such as a data center networking environment, to form a distributed virtual switch (DVS) which allows for multiple control planes in the same distributed virtual switch. Since the scalability of a single control plane is limited to a subset of the data center, it is desired to allow the migration of virtual machines between physical servers which are connected to switches controlled by different control planes. The distributed virtual switch allows for migration of virtual machines across different control planes to create a seamless data center access layer. While the embodiments are described herein in the context of a data center networking environment, it is to be understood that the embodiments may be used in other networking environments.
In one embodiment, the virtual machine connects to a virtual Ethernet interface to which a virtual network interface card (VNIC) connects. A port profile is defined for each interface and provides a configuration template for the interface configuration. The port profile includes objects that provide a means to specify attributes such as network and security policies. The distributed virtual switch allows the virtual Ethernet interface to migrate between physical servers as the virtual machine migrates and provides a means for control planes to share port profiles so that the port profile follows the virtual machine as it migrates from one server to another.
Referring now to the drawings, and first to
The network 10 shown in
Each server 30 includes a virtual switch 34 and one or more virtual machines (VM A, VM B, VM C, VM D, VM E) 36. The virtual machines 36 are in communication with the virtual switch 34 via the virtual network interface card (VNIC) which connects to the virtual Ethernet interface. The virtual switches 34 are in communication with the control planes via Ethernet interfaces. The virtual switch 34 switches traffic between the virtual machines and the physical network interface card. In one embodiment, the virtual switch 34 is configured to operate in a hypervisor environment. Virtual machines 36 located within the same server (e.g., VM A and VM B in
As illustrated in
The DVS 16 is created when an initial switch (e.g., control plane 12) connects to the management station 32. When subsequent control planes (e.g., control plane domain 14) connect to the management station 32, the control planes use the same credentials to login to the management station and detect the presence of the DVS 16. The control plane 14 will thus join the existing DVS 16 rather than creating a new DVS instance.
It is to be understood that the simplified network shown in
The switch receives configuration information for each of its associated virtual interfaces at step 54. The switch may receive configuration information input by a user or may receive configuration information from the management station or another switch in the DVS. In one embodiment, the configuration information is a port profile that specifies attributes for the virtual interface. The port profiles may be configured by a user at the network management station and transmitted to the switch or transmitted from another network device in the DVS. The configuration information is shared between control planes in the DVS (step 56). The information may be shared periodically or requested upon a virtual machine move from one control plane to another control plane. Details of the above steps in accordance with exemplary embodiments are described below.
Communication between control planes for control plane discovery (step 50) may be performed by various processes, including for example, a peer to peer protocol, a fabric service, network management, or a client-server model. In a preferred embodiment, the client-server model is used with one of the control planes (and the associated switch) configured as the server and the other control planes (and associated switches) configured as clients. In one embodiment of the client-server architecture, one control plane is configured as the active server control plane and another control plane is configured as the backup server control plane. The backup server control plane acts as a client control plane to obtain configuration from the active server control plane. The rest of the control planes within the data center are configured as clients. The client control planes are configured with a virtual server control plane IP address, which can be obtained during discovery. The backup server control plane monitors the active server control plane and in the case of a failure at the active server, receives traffic addressed to the virtual server control plane IP address. The server control plane may use a push model to transmit data to the clients or the server control plane may advertise its IP address. The server control plane may be configured with a list of clients or discover the clients through client advertisement. In the client-server model, the server switch connects directly to the virtualization management station and passes information to the clients. The client switches and state can be viewed from the server switch.
As previously discussed, the virtual Ethernet interface name space is coordinated across control planes (step 52). The interface identifier can be requested from the server upon original virtual Ethernet interface creation. For example, upon creation of a new virtual Ethernet interface, the client control plane requests a virtual Ethernet interface name from the server control plane. This will ensure a consistent interface naming scheme across the entire data center. In one embodiment, each client control plane optimizes virtual Ethernet creation by prerequesting a range of virtual Ethernet names (e.g., 100 names).
Once the client discovers the server control plane, the client can request a download of all the known port profiles and virtual Ethernet interfaces (step 54). A periodic poll of the server control plane can be used to detect any configuration changes to the port profiles. The port profiles and virtual Ethernet interfaces are common across all control planes supporting the DVS. A user can configure port profiles at the server and pull information from clients, in the client-server model. If a port profile is present in the virtualization management station but not present in the switch, the port profile can be automatically created at the switch.
In the client-server model, the server may periodically poll the clients for configuration information or the clients may periodically submit updates to the server (step 56). The configuration information may provide dynamic state and feature configuration (e.g., SPAN (Switched Port Analyzer), IGMP (Internet Group Management Protocol) snooping, DHCP (Dynamic Host Configuration Protocol) snooping, IP Source Guard, etc.). The configuration information may also be shared between two client control planes following migration of a virtual machine, as described below with respect to the flowchart of
In an alternative to the client-server model, a fabric service is used for communication between the control planes. A service such as Cisco Fabric Service (CFS) multicast IP may be used. Each control plane advertises to other control planes: (a) its control plane IP address; (b) associated management station (e.g., VMware Virtual Center server) and applicable scope of the DVS (e.g., a Data Center within the VMware Virtual Center server; and (c) virtual Ethernet interfaces. The advertisements may be transmitted periodically, or may be triggered by a new virtual Ethernet interface resident on the local control plane, new physical interface attached on local control plane, or detection of a new control plane within the same DVS.
In one embodiment a DVS API (application programming interface) is used to transfer state information. In the case where a DVS API is not used, the client control plane can provide the MAC address of the virtual machine VNIC attached to the virtual Ethernet interface as part of the control plane discovery process. The destination control plane would then use the MAC address to ask the server control plane for the originating control plane previously hosting the moved virtual Ethernet interface. In the client-server model, the client control plane informs the active server control plane of the new virtual Ethernet interface location (step 72). In the fabric service model, all control planes are informed of the new location of the virtual Ethernet interface.
It is to be understood that the processes illustrated in
Upon migration of the virtual machine to a server connected to switch C, the control plane requests its state from the originating control plane and the data plane informs the control plane of new virtual NIC, as previously described.
Network device 80 interfaces with physical media via a plurality of linecards 86. Linecards 86 may incorporate Ethernet interfaces, DSL interfaces, Gigabit Ethernet interfaces, 10-Gigabit Ethernet interfaces, SONET interfaces, etc. As packets are received, processed, and forwarded by network device 80, they may be stored in a packet memory 88. To implement functionality according to the system, linecards 86 may incorporate processing and memory resources similar to those discussed above in connection with the network device as a whole. It is to be understood that the network device 80 shown in
Although the method and apparatus have been described in accordance with the embodiments shown, one of ordinary skill in the art will readily recognize that there could be variations made to the embodiments without departing from the scope of the present invention. Accordingly, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
Smith, Michael, Thompson, David, Bakke, Mark, Elangovan, Anusankar
Patent | Priority | Assignee | Title |
10003552, | Jan 05 2015 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Distributed bidirectional forwarding detection protocol (D-BFD) for cluster of interconnected switches |
10038592, | Mar 17 2015 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Identifier assignment to a new switch in a switch group |
10044568, | May 13 2014 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Network extension groups of global VLANs in a fabric switch |
10063473, | Apr 30 2014 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Method and system for facilitating switch virtualization in a network of interconnected switches |
10075394, | Nov 16 2012 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Virtual link aggregations across multiple fabric switches |
10142161, | Jan 19 2016 | Radware, Ltd.; Radware, Ltd | Techniques for distribution of application delivery |
10164883, | Nov 10 2011 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | System and method for flow management in software-defined networks |
10171303, | Sep 16 2015 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | IP-based interconnection of switches with a logical chassis |
10205657, | Oct 31 2013 | Hewlett Packard Enterprise Development LP | Packet forwarding in data center network |
10237090, | Oct 28 2016 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Rule-based network identifier mapping |
10277464, | May 22 2012 | RUCKUS IP HOLDINGS LLC | Client auto-configuration in a multi-switch link aggregation |
10284469, | Aug 11 2014 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Progressive MAC address learning |
10348643, | Jul 16 2010 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | System and method for network configuration |
10355879, | Feb 10 2014 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Virtual extensible LAN tunnel keepalives |
10419276, | Jun 07 2010 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Advanced link tracking for virtual cluster switching |
10439929, | Jul 31 2015 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Graceful recovery of a multicast-enabled switch |
10454760, | May 23 2012 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Layer-3 overlay gateways |
10462049, | Mar 01 2013 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Spanning tree in fabric switches |
10465492, | May 20 2014 | KATA SYSTEMS LLC | System and method for oil and condensate processing |
10476698, | Mar 20 2014 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Redundent virtual link aggregation group |
10579406, | Apr 08 2015 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Dynamic orchestration of overlay tunnels |
10581758, | Mar 19 2014 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Distributed hot standby links for vLAG |
10616108, | Jul 29 2014 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Scalable MAC address virtualization |
10637914, | Mar 15 2013 | VMware LLC | Distributed network services |
10673703, | May 03 2010 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Fabric switching |
10747564, | Apr 02 2015 | VMware LLC | Spanned distributed virtual switch |
10771318, | Oct 24 2018 | VMware LLC | High availability on a distributed networking platform |
10771431, | Mar 27 2013 | LENOVO ENTERPRISE SOLUTIONS SINGAPORE PTE LTD | Synchronizing IP information of virtual machines |
10924333, | Jun 07 2010 | Avago Technologies International Sales Pte. Limited | Advanced link tracking for virtual cluster switching |
11115466, | Mar 15 2013 | VMware LLC | Distributed network services |
11206173, | Oct 24 2018 | VMware LLC | High availability on a distributed networking platform |
11258760, | Jun 22 2018 | VMware LLC | Stateful distributed web application firewall |
11438219, | Jun 07 2010 | Avago Technologies International Sales Pte. Limited | Advanced link tracking for virtual cluster switching |
11671363, | Dec 06 2012 | Huawei Technologies Co., Ltd. | Method and apparatus for cross-service-zone communication, and data center network |
11736560, | Mar 15 2013 | VMware LLC | Distributed network services |
11757705, | Jun 07 2010 | Avago Technologies International Sales Pte. Limited | Advanced link tracking for virtual cluster switching |
8446914, | Jun 08 2010 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Method and system for link aggregation across multiple switches |
8532108, | Sep 30 2009 | Alcatel Lucent | Layer 2 seamless site extension of enterprises in cloud computing |
8619779, | Sep 30 2009 | Alcatel Lucent | Scalable architecture for enterprise extension in a cloud topology |
8625616, | May 11 2010 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Converged network extension |
8634308, | Jun 02 2010 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Path detection in trill networks |
8665886, | Mar 26 2009 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Redundant host connection in a routed network |
8693485, | Oct 14 2009 | Dell Products, LP | Virtualization aware network switch |
8867552, | May 03 2010 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Virtual cluster switching |
8879549, | Jun 28 2011 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Clearing forwarding entries dynamically and ensuring consistency of tables across ethernet fabric switch |
8885488, | Jun 02 2010 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Reachability detection in trill networks |
8885641, | Jun 30 2011 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Efficient trill forwarding |
8948056, | Jun 28 2011 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Spanning-tree based loop detection for an ethernet fabric switch |
8989186, | Jun 08 2010 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Virtual port grouping for virtual cluster switching |
8995272, | Jan 26 2012 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Link aggregation in software-defined networks |
8995444, | Mar 24 2010 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Method and system for extending routing domain to non-routing end stations |
9001824, | May 18 2010 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Fabric formation for virtual cluster switching |
9007958, | Jun 29 2011 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | External loop detection for an ethernet fabric switch |
9019976, | Mar 26 2009 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Redundant host connection in a routed network |
9110730, | Aug 25 2011 | Fujitsu Limited | Communication method and communication apparatus |
9112817, | Jun 30 2011 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Efficient TRILL forwarding |
9143445, | Jun 08 2010 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Method and system for link aggregation across multiple switches |
9154416, | Mar 22 2012 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Overlay tunnel in a fabric switch |
9158567, | Oct 20 2009 | Dell Products, LP | System and method for reconfigurable network services using modified network configuration with modified bandwith capacity in dynamic virtualization environments |
9231890, | Jun 08 2010 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Traffic management for virtual cluster switching |
9246703, | Jun 08 2010 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Remote port mirroring |
9270486, | Jun 07 2010 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Name services for virtual cluster switching |
9270572, | May 02 2011 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Layer-3 support in TRILL networks |
9313096, | Dec 04 2012 | International Business Machines Corporation | Object oriented networks |
9313097, | Dec 04 2012 | International Business Machines Corporation | Object oriented networks |
9331872, | May 22 2012 | Cisco Technology, Inc.; Cisco Technology, Inc | Implementing PVLANs in a large-scale distributed virtual switch |
9350564, | Jun 28 2011 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Spanning-tree based loop detection for an ethernet fabric switch |
9350680, | Jan 11 2013 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Protection switching over a virtual link aggregation |
9374301, | May 18 2012 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Network feedback in software-defined networks |
9401818, | Mar 15 2013 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Scalable gateways for a fabric switch |
9401861, | Jun 28 2011 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Scalable MAC address distribution in an Ethernet fabric switch |
9401872, | Nov 16 2012 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Virtual link aggregations across multiple fabric switches |
9407533, | Jun 28 2011 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Multicast in a trill network |
9413691, | Jan 11 2013 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | MAC address synchronization in a fabric switch |
9426117, | Jun 29 2012 | Hewlett Packard Enterprise Development LP | Firewall security between virtual devices |
9450870, | Nov 10 2011 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | System and method for flow management in software-defined networks |
9455935, | Jun 08 2010 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Remote port mirroring |
9461840, | Jun 02 2010 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Port profile management for virtual cluster switching |
9461911, | Jun 08 2010 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Virtual port grouping for virtual cluster switching |
9477500, | Mar 15 2013 | VMware LLC | Managing and controlling a distributed network service platform |
9483286, | Mar 15 2013 | VMware LLC | Distributed network services |
9485148, | May 18 2010 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Fabric formation for virtual cluster switching |
9524173, | Oct 09 2014 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Fast reboot for a switch |
9544219, | Jul 31 2014 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Global VLAN services |
9548873, | Feb 10 2014 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Virtual extensible LAN tunnel keepalives |
9548926, | Jan 11 2013 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Multicast traffic load balancing over virtual link aggregation |
9565028, | Jun 10 2013 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Ingress switch multicast distribution in a fabric switch |
9565099, | Mar 01 2013 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Spanning tree in fabric switches |
9565113, | Jan 15 2013 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Adaptive link aggregation and virtual link aggregation |
9602430, | Aug 21 2012 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Global VLANs for fabric switches |
9608833, | Jun 08 2010 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Supporting multiple multicast trees in trill networks |
9626255, | Dec 31 2014 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Online restoration of a switch snapshot |
9628293, | Jun 08 2010 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Network layer multicasting in trill networks |
9628336, | May 03 2010 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Virtual cluster switching |
9628407, | Dec 31 2014 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Multiple software versions in a switch group |
9660939, | Jan 11 2013 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Protection switching over a virtual link aggregation |
9699001, | Jun 10 2013 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Scalable and segregated network virtualization |
9699029, | Oct 10 2014 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Distributed configuration management in a switch group |
9699117, | Nov 08 2011 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Integrated fibre channel support in an ethernet fabric switch |
9716672, | May 28 2010 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Distributed configuration management for virtual cluster switching |
9729387, | Jan 26 2012 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Link aggregation in software-defined networks |
9736085, | Aug 29 2011 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | End-to end lossless Ethernet in Ethernet fabric |
9742693, | Feb 27 2012 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Dynamic service insertion in a fabric switch |
9769016, | Jun 07 2010 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Advanced link tracking for virtual cluster switching |
9774543, | Jan 11 2013 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | MAC address synchronization in a fabric switch |
9800471, | May 13 2014 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Network extension groups of global VLANs in a fabric switch |
9806906, | Jun 08 2010 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Flooding packets on a per-virtual-network basis |
9806949, | Sep 06 2013 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Transparent interconnection of Ethernet fabric switches |
9807005, | Mar 17 2015 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Multi-fabric manager |
9807007, | Aug 11 2014 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Progressive MAC address learning |
9807017, | Jan 11 2013 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Multicast traffic load balancing over virtual link aggregation |
9807031, | Jul 16 2010 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | System and method for network configuration |
9848040, | Jun 07 2010 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Name services for virtual cluster switching |
9871676, | Mar 15 2013 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Scalable gateways for a fabric switch |
9887916, | Mar 22 2012 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Overlay tunnel in a fabric switch |
9912612, | Oct 28 2013 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Extended ethernet fabric switches |
9912614, | Dec 07 2015 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Interconnection of switches based on hierarchical overlay tunneling |
9942097, | Jan 05 2015 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Power management in a network of interconnected switches |
9942173, | May 28 2010 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Distributed configuration management for virtual cluster switching |
9998365, | May 18 2012 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Network feedback in software-defined networks |
Patent | Priority | Assignee | Title |
20030014524, | |||
20060230407, | |||
20070028244, | |||
20080163207, | |||
20080201414, | |||
20080271016, | |||
20080275975, | |||
20090025007, | |||
20090292858, | |||
20100046531, | |||
20100131636, | |||
20100165877, | |||
WO2008093174, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 06 2009 | SMITH, MICHAEL | Cisco Technology, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022355 | /0309 | |
Feb 09 2009 | ELANGOVAN, ANUSANKAR | Cisco Technology, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022355 | /0309 | |
Feb 16 2009 | THOMPSON, DAVID | Cisco Technology, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022355 | /0309 | |
Feb 21 2009 | BAKKE, MARK | Cisco Technology, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022355 | /0309 | |
Feb 23 2009 | Cisco Technology, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jan 04 2016 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 03 2020 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Feb 19 2024 | REM: Maintenance Fee Reminder Mailed. |
Aug 05 2024 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jul 03 2015 | 4 years fee payment window open |
Jan 03 2016 | 6 months grace period start (w surcharge) |
Jul 03 2016 | patent expiry (for year 4) |
Jul 03 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 03 2019 | 8 years fee payment window open |
Jan 03 2020 | 6 months grace period start (w surcharge) |
Jul 03 2020 | patent expiry (for year 8) |
Jul 03 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 03 2023 | 12 years fee payment window open |
Jan 03 2024 | 6 months grace period start (w surcharge) |
Jul 03 2024 | patent expiry (for year 12) |
Jul 03 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |