An auxiliary component that is used with a medical device is modified to provide for additional or enhanced functionality. In one specific embodiment, a sheath surrounds an intraoral electronic image sensor, and is provided with signal conductors integrated therein. electrical communication is provided between the sensor and the sheath, such as via a direct electrical connection, a capacitive or inductive coupling or an optical link. The sheath, and particularly the signal conductors integrated therein, connects to a cable which in turn connects to another device, such as a processing module or computer.
|
1. An intraoral imaging system comprising:
an electronic sensor; and
a sheath that surrounds the electronic sensor, the sheath having at least one conductive trace integrated therein that provides an electrical communication path to and from the electronic sensor.
10. A method of providing electrical communication to and from an electronic sensor, comprising the steps of:
surrounding the electronic sensor with a sheath having at least one conductive trace integrated therein; and
conveying electrical signals to and from the electronic sensor via said conductive trace.
14. A medical diagnostic system comprising:
a primary component configured to perform a main function; and
an auxiliary component configured to perform a first ancillary function and further configured to perform a second ancillary function separate and distinct from the first ancillary function, wherein
the primary component is an electronic component, the first ancillary function is to provide a hygienic barrier around a main component and the second ancillary function is an electrical function.
15. A medical diagnostic system comprising:
a primary component configured to perform a main function; and
an auxiliary component configured to perform a first ancillary function and further configured to perform a second ancillary function separate and distinct from the first ancillary function, wherein
the primary component is an electronic component, the first ancillary function is a mechanical function and the second ancillary function is an electrical function,
the auxiliary component includes a mechanical sub-component that performs the first ancillary function and an electrical sub-component integrated in the mechanical sub-component that performs the second ancillary function, and
the mechanical sub-component comprises a sheath and the electrical sub-component comprises at least one conductive trace.
3. An intraoral imaging system according to
4. An intraoral imaging system according to
5. An intraoral imaging system according to
6. An intraoral imaging system according to
7. An intraoral sensor according to
8. An intraoral sensor according to
9. An intraoral imaging system according to
11. The method according to
12. The method according to
13. The method according to
16. The medical diagnostic according to
17. The medical diagnostic according to
|
1. Field of the Invention
This invention relates to the field of medical devices. In one embodiment, this invention relates to the field of filmless dental radiography.
2. Description of the Related Art
In clinical practice, medical devices are very often used in conjunction with an auxiliary component. A common example is a conventional oral thermometer, which when used to take a patient's temperature, is covered with a protective sheath. The thermometer performs the primary function of taking a temperature and the sheath performs the ancillary function of providing a hygienic barrier between the thermometer and the environment within the patient's oral cavity. The auxiliary component in that situation serves only to provide the hygienic barrier, and does not serve other purposes.
Auxiliary components are also used in the field of filmless dental radiography. By way of general background, dentists and oral surgeons typically use x radiation to obtain images of their patient's teeth, mouths and gums to aid in diagnosis and treatment. In traditional oral and dental radiography, a cartridge containing photographic film is placed in the patient's mouth, for example behind a patient's tooth, and an x-ray beam is projected through the tooth and onto the film. The film, after being exposed in this manner, is developed in a dark room or a closed processor using special chemicals to obtain a photographic image of the tooth.
In the last several decades, the field of filmless dental radiography has emerged. In filmless dental radiography, an x-ray beam is still projected through the patient's tooth, but no photographic film is used. Instead, an electronic sensor is placed in the patient's mouth behind the tooth to be examined. The electronic sensor may include a charge-coupled device (CCD), a complementary metal-oxide semiconductor (CMOS) active pixel sensor (APS) array or any other filmless radiation sensor. The x-rays pass through the tooth and impinge on the electronic sensor, which converts the x-rays into an electrical signal. The electrical signal is transmitted to a computer, either directly or through a module containing intermediate processing circuitry. The computer then processes the signal to produce an image on an associated output device, such as a monitor or a printer.
Filmless dental radiography offers several advantages over traditional film-based radiography. Most importantly, the electronic sensor is much more sensitive to x-rays than is film, allowing the dosage of x-rays to the patient to be lowered by as much as 90%. Also, the image of the tooth is generated by the computer almost instantaneously, thus eliminating the entire development process, including the use of potentially harmful chemicals. In addition, because the images are generated electronically, they can be stored electronically in a computer database.
Because electronic sensors, unlike film, are re-usable from patient to patient, it is common to use a sterile, x-ray permeable sheath that surrounds the sensor. For example, U.S. Pat. No. 6,811,312 depicts a sheath 12 that surrounds a sensor 10 and cable 14. Such sheaths are typically disposable, and are changed between examinations, so that no sheath is used for more than one patient. In this manner, the sheath protects the re-usable sensor from contamination. Protective sheaths, however, have heretofore been used only for the purpose of providing a hygienic barrier, and there has been little or no efforts at utilizing them for any other purposes.
On the other hand, conventional digital dental radiography systems are not without their drawbacks. For example, the connection between the sensor and the processing module or computer is most conventionally made via a cable. Such a cable, however, can be uncomfortable for and annoying to the patient in whose mouth the intraoral sensor is placed. The cable is also bothersome to the dental practitioner when positioning the sensor in the patient's mouth.
In addition, the repeated acts of positioning and re-positioning the cable, which involve a good deal of bending, twisting and pulling of the cable, puts mechanical stresses on the cable. These stresses can eventually lead to cable failure, and indeed cable-related malfunctions are one of most prevalent reasons for product failures and returns in this field.
One class of solution to this problem is to eliminate the cable altogether, and provide an electronic sensor that communicates with a processing module or computer over a wireless link. Such a solution has been set forth, for example, in U.S. Pat. Nos. 7,193,219 and 6,924,486. Such wireless solutions, while excellent for their intended purposes, increase the complexity of the sensor, and impose limitations on the amount of power available to the sensor. Accordingly, such solutions may not always be the most desirable.
Another solution that has been proposed is to utilize a removable cable, which can be attached to and detached from the sensor body by the dental practitioner. Such a solution is described in U.S. Pat. No. 6,030,119. This solution, however, does not solve all of the aforementioned problems. In particular, while this approach may be effective to minimize the mechanical stresses that are put on the cable, and to that extent increases cable life and reduces cable failure rate, it does little to address positioning problems and nothing to address patient comfort problems, since large protrusions are required to receive the detachable cable (see for example projected portions 43 shown in FIGS. 5 and 6 of U.S. Pat. No. 6,030,119). These protrusions hamper positioning efforts as much or nearly as much as the cable itself, and contribute significantly to overall patient discomfort.
The short-comings of the apparatus of U.S. Pat. No. 6,030,119 highlight why a wholly-satisfactory solution to the cable problem has heretofore been so elusive, namely as a result of the requirements of the cable itself. On the one hand, the cable must survive multiple cycles of bending, twisting and pulling during its lifetime, and in that sense it is desirable to make the cable as sturdy as possible. On the other hand, the cable should be flexible, soft, comfortable and utilize a connection junction as small as possible so as to provide simple positioning for the dental practitioner and allow comfortable placement in the patient's oral cavity during an x-ray exam. These requirements, which in a certain sense are at odds with one another, have heretofore prevented a solution which addresses all of the problems presented by the cable, including the positioning problems, comfortable problems and failure problems, without detracting from the overall performance of the system.
Accordingly, the problems presented by the cable in a wired digital dental radiography system have not been adequately solved. At the same time, the auxiliary component with which the electronic sensor is conventionally used, namely the sheath, has heretofore only served to provide a hygienic barrier between the sensor and the patient's oral cavity, and its presence and availability has yet to be exploited for any other purpose.
It is an object of the present invention to provide an auxiliary component that is conventionally used for one purpose, with additional functionality, so that the auxiliary component may be utilized for an additional purpose or purposes.
It is another object of the present invention to provide additional functionality to an auxiliary component, that enables the auxiliary component to solve a problem of the medical device.
It is another object of the present invention to provide an electronic dental sensor that exhibits improved positioning capability.
It is another object of the present invention to provide an electronic sensor that is more comfortable to the patient.
It is another object of the present invention to provide an electronic sensor that exhibits a reduced cable failure rate.
In one embodiment, the present invention equips a protective sheath that is conventionally used to provide a hygienic barrier between an electronic intraoral sensor and a patient's oral cavity, with conductive capability such that the sheath may additionally function as a conduit for signal and power transfer to and from the sensor. More specifically, in such an embodiment the present invention provides a sheath with integrated conductive traces, so that the sheath serves as an intermediate electrical connection between the electronic sensor and a cable. The sheath may be disposable. The sensor communicates with conductors integrated into the sheath, and the conductors in turn communicate with the cable.
The cable may be connected directly to a computer or to an interface board in a computer, or may be connected to an intermediate processing module. In the latter case, communication between the processing module and computer may be over a bi-directional wired or wireless link. The computer, interface board and/or processing module may perform control and processing functions, which may include, among other things, controlling the operation of the sensor, reading out data from the sensor, effecting analog-to-digital conversion, executing an event detection algorithm and processing data read-out of the sensor into a form suitable for transmission, such as for example transmission from the processing module to the computer.
In clinical practice, a sheath is typically disposable and used for only one or a few examinations. Thus, a marked advantage of the present invention is that the sheath and its conductive traces will be subject to most of the mechanical stresses to which the cable would be subject in a conventional system, but because the sheath is disposable, it need not meet the rigorous survival requirements of a conventional cable. The cable in the present invention, on the other hand, is not subjected to the same mechanical stresses as a cable in a conventional system, and will therefore exhibit a much lower failure rate and a much longer life span.
A block diagram of an embodiment of the present invention is shown in
Integrated in the sheath 2 are miniature electrical connectors 2a and 2b and a conductive trace 3 between the connectors 2a and 2b. Such components may be integrated in the sheath 2 by a variety of methods, such as for example by a lamination process. Other methodologies which may be used include a direct deposition/printing process, a bonding/secondary assembly process and a process in which the components to be integrated are molded-in. Other alternatives exist as well.
Miniature connector 2a connects to the sensor 1 via a connection point provided on the sensor 1. Miniature connector 2b connects to the cable 4 and conductive trace 3 provides for communication between the two miniature connectors. Electrical signals are conveyed to and from the electronic sensor 1 via the conductive trace 3. The electrical signals may be for example electronic information signals and/or electrical power.
In one embodiment of the present invention, a band, such as an elastic band, may be provided around the sheath in the vicinity of the connector 2a to ensure a proper connection between the connector 2a and the connection point on the sensor 1. Cable 4 connects on its other end to processing module 5, which in turn connects to computer 7 via link 6. Link 6 may be wired or wireless, and should provide for bi-directional communication between processing module 5 and computer 7.
In one preferred embodiment of the present invention, trace 3 comprises multiple traces, such as for example conductive trace 3a for conveying electronic information signals such as image data signals and control signals, and conductive trace 3b for conveying electrical power. This configuration is depicted schematically in
Alternatives to the configurations of
The foregoing provides several concrete examples of how an auxiliary component that is commonly used with a medical device may be modified to provide it with additional functionality. As a result of such modifications, the auxiliary component is made to perform an additional function, wholly different from its conventional function, and thereby solve a problem that has plagued the device itself. The present invention is not limited in its applicability to the specific case of modifying a hygienic sheath to enable it to provide electrical communication, but to the contrary is applicable to any case in which an auxiliary component may be modified to provide additional or enhanced functionality.
Moreover, it is understood that the above description and drawings are illustrative of the present invention and details contained therein are not to be construed as limitations on the present invention. Changes in components, procedure and structure may be made without departing from the scope of the present invention as defined in the following claims.
Armencha, Valeriy, Abramovich, Mark
Patent | Priority | Assignee | Title |
8450696, | Sep 02 2009 | SIRONA DENTAL, INC | Auxiliary component for medical device having additional functionality |
Patent | Priority | Assignee | Title |
4341992, | Jan 21 1980 | PATIENT TECHNOLOGY, INC | Conductive probe cover |
5677537, | Apr 05 1995 | GENDEX CORP | Device for recording images in the oral cavity especially for dental diagnosis |
6030119, | Apr 08 1997 | J. Morita Manufacturing Corporation; Hamamatsu Photonics Kabushiki Kaisha | Dental X-ray image detecting apparatus and adaptor for same |
6350232, | Mar 17 1999 | Arrow International, Inc | Device for protecting a cover on a probe |
6549794, | Sep 24 1999 | INTELLECTUAL PROPERTY MVM B V | Single use disposable protective cap |
6811312, | Feb 08 2002 | SIRONA DENTAL, INC | Dental x-ray positioning using adhesives |
6924486, | Oct 03 2002 | SIRONA DENTAL, INC | Intraoral sensor having power conservation features |
7193219, | Oct 03 2002 | SIRONA DENTAL, INC | Intraoral image sensor |
20020166946, | |||
20040210259, | |||
20050255424, | |||
20070198073, | |||
20090014661, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 31 2009 | ARMENCHA, VALERIY | SIRONA DENTAL SYSTEMS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023206 | /0457 | |
Aug 31 2009 | ABRAMOVICH, MARK | SIRONA DENTAL SYSTEMS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023206 | /0457 | |
Sep 02 2009 | Sirona Dental Systems GmbH | (assignment on the face of the patent) | / | |||
Mar 25 2013 | SIRONA DENTAL SYSTEMS, INC | SIRONA DENTAL, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030169 | /0594 |
Date | Maintenance Fee Events |
Dec 17 2015 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 03 2020 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Mar 04 2024 | REM: Maintenance Fee Reminder Mailed. |
Aug 19 2024 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jul 17 2015 | 4 years fee payment window open |
Jan 17 2016 | 6 months grace period start (w surcharge) |
Jul 17 2016 | patent expiry (for year 4) |
Jul 17 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 17 2019 | 8 years fee payment window open |
Jan 17 2020 | 6 months grace period start (w surcharge) |
Jul 17 2020 | patent expiry (for year 8) |
Jul 17 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 17 2023 | 12 years fee payment window open |
Jan 17 2024 | 6 months grace period start (w surcharge) |
Jul 17 2024 | patent expiry (for year 12) |
Jul 17 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |