Methods for wafer level fabricating of light emitting diode (led) chips are disclosed with one embodiment of a method according to the present invention comprising providing a plurality of LEDs and then coating of the LEDs with a layer of first conversion material so that at least some light from the LEDs passes through the first conversion material. The light is converted to different wavelengths of light having a first conversion material emission spectrum. The LEDs are then coated with a layer of second conversion material arranged on the first layer of conversion. The second conversion material has a wavelength excitation spectrum, and at least some light from the LEDs passes through the second conversion material and is converted. The first conversion material emission spectrum does not substantially overlap with the second conversion material excitation spectrum. Methods according to the present invention can also be used in wafer level fabrication of led chips and led packages with pedestals for electrically contacting the LEDs through the conversion coatings.
|
15. A light emitting diode (led) package comprising:
an led and a pedestal in electrical contact with said led;
a coating of first conversion material on said led, said first conversion material having an associated emission spectrum;
a coating of second conversion material on said coating of first conversion material, said second conversion material having an associated excitation spectrum, wherein said first conversion material emission spectrum does not substantially overlap with said second conversion material excitation spectrum;
a package lead in electrical connection with said pedestal; and
an encapsulation over said led chip and electrical connection.
17. A light emitting diode (led) chip wafer, comprising:
a plurality of LEDs on a wafer;
a plurality of pedestals each of which is in electrical contact with one of said LEDs;
a layer of first conversion material on at least some of said LEDs, said first conversion material having an associated emission spectrum; and
a layer of second conversion material on said layer of first conversion material, said second conversion material being different than said first conversion material and having an associated excitation spectrum, wherein said first conversion material emission spectrum does not substantially overlap with said second conversion material excitation spectrum.
3. A light emitting diode (led) chip, comprising:
an led;
a pedestal in electrical contact with said led;
a layer of first conversion material on said led, said layer of first conversion material having an associated emission spectrum; and
a layer of second conversion material on said layer of first conversion material, said second conversion material being different than said first conversion material and having an associated excitation spectrum, wherein said first conversion material emission spectrum does not substantially overlap with said second conversion material excitation spectrum, wherein said pedestal is configured to provide electrical connection to said led.
1. A light emitting diode (led) chip wafer, comprising:
a plurality of LEDs on a wafer;
a first conversion layer on at least some of said LEDs, said first conversion layer comprising a first conversion material having an associated emission spectrum;
a second conversion layer comprising a second conversion material having an associated excitation spectrum and arranged on said first conversion layer, said second conversion material being different than said first conversion material, wherein said first conversion material emission spectrum does not substantially overlap with said second conversion material excitation spectrum; and
a plurality of pedestals, each of which is in electrical contact with one of said plurality of LEDs, at least some of said pedestals extending through said first and second conversion layers and exposed at the top surface of said layers.
2. The led chip wafer of
4. The led chip of
6. The led chip of
7. The led chip of
8. The led chip of
10. The led chip of
11. The led chip of
14. The led chip of
16. An led package of
18. The led chip wafer of
19. The led chip wafer of
20. The led chip wafer of
21. The led chip wafer of
|
This application is a continuation-in-part of and claims the benefit of U.S. Patent Application Publication Numbers 2008/0173884 filed on Jan. 22, 2007, and 2008/0179611 filed on Sep. 7, 2007, both to Chitnis et al.
1. Field of the Invention
This invention relates to methods for fabricating solid state emitters and in particular methods for tuning the emission characteristics of light emitting diodes coated by a conversion material.
2. Description of the Related Art
Light emitting diodes (LED or LEDs) are solid state devices that convert electric energy to light, and generally comprise one or more active layers of semiconductor material sandwiched between oppositely doped layers. When a bias is applied across the doped layers, holes and electrons are injected into the active layer where they recombine to generate light. Light is emitted from the active layer and from all surfaces of the LED.
Conventional LEDs cannot generate white light from their active layers. Light from a blue emitting LED has been converted to white light by surrounding the LED with a yellow phosphor, polymer or dye, with a typical phosphor being cerium-doped yttrium aluminum garnet (Ce:YAG). [See Nichia Corp. white LED, Part No. NSPW300BS, NSPW312BS, etc.; Cree® Inc. EZBright™ LEDs, XThin™ LEDs, etc.; See also U.S. Pat. No. 5,959,316 to Lowrey, “Multiple Encapsulation of Phosphor-LED Devices”]. The surrounding phosphor material “downconverts” the wavelength of some of the LED's blue light, changing its color to yellow. In other devices the light can be converted to green, yellow, orange or red or a combination thereof. Some of the blue light passes through the phosphor without being changed while a substantial portion of the light is downconverted. The LED emits both blue and yellow and/or red light, which combine to provide a white light. In another approach light from a violet or ultraviolet emitting LED has been converted to white light by surrounding the LED with multicolor phosphors or dyes.
One conventional method for coating an LED with a phosphor layer utilizes a syringe or nozzle for injecting a phosphor mixed with epoxy resin or silicone polymers over the LED. Using this method, however, it can be difficult to control the phosphor layer's geometry and thickness. As a result, light emitting from the LED at different angles can pass through different amounts of conversion material, which can result in an LED with non-uniform color temperature as a function of viewing angle.
Another conventional method for coating an LED is by stencil printing, which is described in European Patent Application EP 1198016 A2 to Lowery. Multiple light emitting semiconductor devices are arranged on a substrate with a desired distance between adjacent LEDs. The stencil is provided having openings that align with the LEDs, with the holes being slightly larger than the LEDs and the stencil being thicker than the LEDs. A stencil is positioned on the substrate with each of the LEDs located within a respective opening in the stencil. A composition is then deposited in the stencil openings, covering the LEDs, with a typical composition being a phosphor in a silicone polymer that can be cured by heat or light. After the holes are filled, the stencil is removed from the substrate and the stenciling composition is cured to a solid state.
Like the syringe method above, using the stencil method can be difficult to control the geometry and layer thickness of the phosphor containing polymer. The stenciling composition may not fully fill the stencil opening such that the resulting layer is not uniform. The phosphor containing composition can also stick to the stencil opening which reduces the amount of composition remaining on the LED. The stencil openings may also be misaligned to the LED. These problems can result in LEDs having non-uniform color temperature and LEDs that are difficult to consistently reproduce with the same or similar emission characteristics.
Many of the above coating processes focus on coating at the LED chip level or at the package level. There has been recent interest in coating LEDs with a phosphor at the wafer level instead of the chip level to reduce the cost and complexity of fabrication. With these approaches one challenge is accessing the wire bond pad on the device after the coating process. Accessing the wire bond by standard wafer fabrication techniques is difficult with typical silicone binding material, as well as other binder materials such as epoxies or glass. Silicones are not compatible with commonly used wafer fabrication materials such as acetone, as well as some developers and resist strippers. This can limit the options and choices of process steps for the particular silicones. Silicones are also cured at high temperature (greater than 150° C.), which is beyond the glass transition temperature of commonly used photoresists. Cured silicone films with phosphor are also difficult to etch and have a very slow etch rate in chlorine and CF4 plasma, and wet etching of cured silicones is typically inefficient.
LEDs across a wafer can also have different emission characteristics or color spread.
The wafer can be coated with a conversion material (i.e. phosphor) using one of the methods described above, and
The human eye is relatively sensitive to variations in emission wavelengths and can detect relatively small differences in emission wavelengths or color. Perceptible variations in color emitted by packages designed to emit a single color of light can reduce customer satisfaction and reduce overall acceptance of LED packages for commercial uses. In an effort to provide LEDs that emit light of the same or similar wavelength, the LEDs can be tested and sorted by color or brightness. This process is generally known in the art as binning. Each bin typically contains LEDs from one color and brightness group and is typically identified by a bin code. White emitting LEDs can be sorted by chromaticity (color) and luminous flux (brightness). Color LEDs can be sorted by dominant wavelength, and luminous flux, or in the case of certain colors such as royal blue, by radiant flux. LEDs can be shipped, such as on reels, containing LEDs from one bin and are labeled with the appropriate bin code.
There is also interest in optimizing the emission efficiency of LEDs that are coated at the wafer level. For certain LEDs it is common to provide more than one phosphor mixed in the phosphor coating. For warm white emitting LEDs a blue emitting LED can be coated with a yellow and red phosphor mixture, such that the end LED package emits a warm white light combination of blue, yellow and red. These different phosphors can have different excitation and re-emission spectrums, and
When the phosphor mixture is applied to the LED it can be in direct contact with or close to the LED's semiconductor layers such that heat from the LED spreads to the phosphor. The different phosphors can react differently to the LED heat and some can degrade from the heat. As one example, certain yellow phosphors such as YAG can be more sensitive to heat compared to red phosphors and the efficacy of these YAG phosphors can degrade over time.
The present invention discloses new methods for fabricating semiconductor devices such as LED chips at the wafer level, and discloses LED chips and LED chip wafers fabricated using the methods. One embodiment of a method according to the present invention for fabricating light emitting diode (LED) chips comprises providing a plurality of LEDs and coating the LEDs with a layer of first conversion material so that at least some light from the LEDs passes through the first conversion material. The light is converted to different wavelengths of light having a first conversion material emission spectrum. The LEDs are then coated with a layer of second conversion material arranged on the first layer of conversion, with the second conversion material being different from the first conversion material. The second conversion material has a wavelength excitation spectrum, and at least some light from the LEDs passes through the second conversion material and is converted. The first conversion material emission spectrum does not substantially overlap with the second conversion material excitation spectrum.
Another embodiment of a method for fabricating LED chips according to the present invention comprises providing a plurality of LEDs and depositing pedestals on the LEDs, with each of the pedestals in electrical contact with one of the LEDs. The LEDs are coated with a layer of first conversion material so that at least some light from the LEDs passes through the first conversion material and is converted to a different wavelength. The layer of first conversion material is planarized leaving at least some of the first conversion material on the LEDs while exposing at least some of the buried pedestals. The LEDs are coated with a layer of second conversion material arranged on the first conversion material, the second conversion material being different from the first conversion material. At least some light from the LEDs passes through the second conversion material and is converted. The layer of second conversion material is planarized leaving at least some of the second conversion material on the LEDs while exposing at least some of the buried pedestals.
One embodiment of an LED chip wafer according to the present invention comprises a plurality of LEDs on a wafer and a layer of first conversion material on the LEDs so that at least some light from the LEDs passes through the first conversion material and is converted to a different wavelength of light in a first emission spectrum. A layer of second conversion material having a second excitation spectrum is arranged on the first layer of conversion, wherein at least some light from the LEDs passes through the second conversion material and is converted. The first emission spectrum does not substantially overlap with the second excitation spectrum.
One embodiment of an LED chip according to the present invention comprises an LED and a pedestal in electrical contact with the LED. A coating of first conversion material is included at least partially covering the LED and a coating of a second conversion material is included on the coating of a first conversion material and is at least partially covering the LED. The second conversion material being different than the first conversion material and the pedestal extends through and to the surface of the coatings, and is exposed at the surface of the coatings.
An LED package according to the present invention comprises an LED and a pedestal on and in electrical contact with the LED. A coating of first conversion material is included on and at least partially covers the LED. A coating of second conversion material is included on the coating of first conversion material and at least partially covers the LED. The pedestal extends through and to the surface of the coating and is exposed at the surface of the coatings. Package leads are included, at least one of which is in electrical connection with the pedestal. An encapsulation surrounds the LED chip and the electrical connection.
These and other aspects and advantages of the invention will become apparent from the following detailed description and the accompanying drawings which illustrate by way of example the features of the invention.
The present invention discloses new methods for fabricating semiconductor devices such as LED chips, with one embodiment of a fabrication method according to the present invention providing LED chip fabrication at the wafer level. The present invention also discloses LED chips and LED packages fabricated using the methods. Different embodiments of the present invention disclose sequential coating methods that provide two or more coatings or layers of conversion material over LEDs. In one embodiment this can be done at the wafer level. The methods according to the present invention are particularly applicable to fabricating LED chips that emit a warm white light, which typically requires covering LEDs with two or more phosphors such as yellow and red phosphors. As described above, the presence of the two phosphors in the same layer can result in re-absorption losses due to a portion of the emission spectra from one of the phosphors overlapping with the excitation spectrum of one of the other phosphors.
To reduce these losses, separate phosphor coatings or layers are provided over the LEDs, with each of the layers having one or more phosphors. For each of the layers, the absorption wavelength spectrum does not overlap with the emission spectrum of the phosphor in the layer or layers below it, or the overlap is minimized. Light from the LED that is absorbed and re-emitted by the phosphors in the different layers is not re-absorbed by subsequent layers, or the re-absorption is minimized. In one embodiment, a blue emitting LED is covered by two phosphor layers at the wafer level with a red phosphor layer sandwiched between the blue LED and the yellow phosphor. With the yellow phosphor on the red phosphor, LED light that is absorbed and re-emitted by the yellow phosphor has a very small chance of interacting with the red phosphor layer. This minimizes the chance that the re-emitted yellow light would be re-absorbed by the red phosphor.
The present invention also provides methods for sequentially coating LEDs with two or more conversion coatings or layers at the wafer level while still allowing for contacting LED chips that are singulated from the wafer. In one such embodiment the LEDs can have one or more pedestals that extend from the contacts on the LEDs up through the conversion layers. Electrical contact is made to the LEDs through the one or more pedestals. In some embodiments the thickness of the layers can be varied during or after wafer fabrication to control the emission characteristics of the LED chips. The thickness can be controlled across the wafer using methods such as grinding, planarizing or sandblasting. Additional color tuning processes can be used to remove phosphor over individual LEDs or regions of LEDs to further control or vary the emission characteristics of the LED chips.
The present invention is described herein with reference to certain embodiments but it is understood that the invention can be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. In particular, the present invention is described below in regards to coating LEDs with a down-converter coating that typically comprises a phosphor loaded binder (“phosphor/binder coating”), but it is understood that the present invention can be used to coat LEDs with other materials for down-conversion, protection, light extraction or scattering. It is also understood that the phosphor binder can have scattering or light extraction particles or materials, and that the coating can be electrically active. The methods according to the present invention can also be used for coating other semiconductor devices with different materials. Additionally, single or multiple coatings and/or layers can be formed on the LEDs and in different embodiments different ones of the coatings/layers can be formed on the LEDs at the wafer level or at the LED chip or package level. A coating can include no phosphors, one or more phosphors, scattering particles and/or other materials. A coating may also comprise a material such as an organic dye that provides down-conversion. With multiple coatings and/or layers, each one can include different phosphors, different scattering particles, different optical properties, such as transparency, index of refraction, and/or different physical properties, as compared to other layers and/or coatings. Each of the sequential phosphor layers can have only one phosphor or can have more than one phosphor, with different phosphors having the desired absorption and re-emission wavelength spectrum to minimize or eliminate re-absorption losses.
It is also understood that when an element such as a layer, region or substrate is referred to as being a “cover” or being “on”, “over”, “coating” or “covering” another element, it can be a direct cover or can be directly on, over, coating or covering on the other element, or intervening elements may also be present. Furthermore, relative terms such as “inner”, “outer”, “upper”, “above”, “lower”, “beneath”, “below”, “on”, “over” or “covering” and similar terms, may be used herein to describe a relationship of one layer or another region. It is understood that these terms are intended to encompass different orientations of the device in addition to the orientation depicted in the figures.
Although the terms first, second, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present invention.
Embodiments of the invention are described herein with reference to cross-sectional view illustrations that are schematic illustrations of embodiments of the invention. As such, the actual thickness of the layers can be different, and variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances are expected. Embodiments of the invention should not be construed as limited to the particular shapes of the regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. A region illustrated or described as square or rectangular will typically have rounded or curved features due to normal manufacturing tolerances. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the precise shape of a region of a device and are not intended to limit the scope of the invention.
In 42 LEDs are fabricated on a growth wafer or substrate, and the LEDs can have many different semiconductor layers arranged in different ways. The fabrication and operation of LEDs is generally known in the art and only briefly discussed herein. The layers of the LEDs can be fabricated using known processes with a suitable process being fabrication using metal organic chemical vapor deposition (MOCVD). The layers of the LEDs generally comprise an active layer/region sandwiched between first and second oppositely doped epitaxial layers, all of which are formed successively on the growth wafer or substrate (“wafer”). The LED layers can initially be formed as continuous layers across the substrate with the layers then partitioned or separated into individual LEDs. This separation can be achieved by having portions of the active region and doped layers etched down to the wafer to form the open areas between the LEDs. In other embodiments the active layer and doped layers can remain continuous layers on the wafer and can be separated into individual devices when the LED chips are singulated.
It is understood that additional layers and elements can also be included in each of the LEDs, including but not limited to buffer, nucleation, contact and current spreading layers as well as light extraction layers and elements. The active region can comprise single quantum well (SQW), multiple quantum well (MQW), double heterostructure or super lattice structures, and as is understood in the art, the oppositely doped layers are commonly referred to as n-type and p-type doped layers.
The LEDs may be fabricated from different material systems, with preferred material systems being Group-III nitride based material systems. Group-III nitrides refer to those semiconductor compounds formed between nitrogen and the elements in the Group III of the periodic table, usually aluminum (Al), gallium (Ga), and indium (In). The term also refers to ternary and quaternary compounds such as aluminum gallium nitride (AlGaN) and aluminum indium gallium nitride (AlInGaN). In a preferred embodiment, the n- and p-type layers are gallium nitride (GaN) and the active region is InGaN. In alternative embodiments the n- and p-type layers may be AlGaN, aluminum gallium arsenide (AlGaAs) or aluminum gallium indium arsenide phosphide (AlGaInAsP).
The wafer can be made of many materials such as sapphire, silicon carbide, aluminum nitride (AlN), GaN, with a suitable wafer being a 4H polytype of silicon carbide, although other silicon carbide polytypes can also be used including 3C, 6H and 15R polytypes. Silicon carbide has certain advantages, such as a closer crystal lattice match to Group III nitrides than sapphire and results in Group III nitride films of higher quality. Silicon carbide also has a very high thermal conductivity so that the total output power of Group-III nitride devices on silicon carbide is not limited by the thermal dissipation of the wafer (as may be the case with some devices formed on sapphire). SiC wafers are available from Cree Research, Inc., of Durham, N.C. and methods for producing them are set forth in the scientific literature as well as in U.S. Pat. Nos. Re. 34,861; 4,946,547; and 5,200,022.
Each of the LEDs can also have first and second contacts. The LEDs can have vertical geometry with a first contact on the substrate and a second contact on the LEDs top layer, which is typically a p-type layer. The first and second contacts can comprise many different materials such as gold (Au), copper (Cu) nickel (Ni), indium (In), aluminum (Al) silver (Ag), or combinations thereof. In still other embodiments the contacts can comprise conducting oxides and transparent conducting oxides such as indium tin oxide, nickel oxide, zinc oxide, cadmium tin oxide, titanium tungsten nickel, indium oxide, tin oxide, magnesium oxide, ZnGa2O4, ZnO2/Sb, Ga2O3/Sn, AgInO2/Sn, In2O3/Zn, CuAlO2, LaCuOS, CuGaO2 and SrCu2O2. The choice of material used can depend on the location of the contacts as well as the desired electrical characteristics such as transparency, junction resistivity and sheet resistance. In the case of Group-III nitride devices, it is known that a thin semitransparent current spreading layer typically can cover some or the entire p-type layer. It is understood that the second contact can include such a layer which is typically a metal such as platinum (Pt) or a transparent conductive oxide such as indium tin oxide (ITO), although other materials can also be used. The present invention can also be used with LEDs having lateral geometry wherein both contacts are on the top of the LEDs. The LEDs can also comprise additional current spreading structures or grids.
In one embodiment, each of the LEDs can further comprise one or more pedestals each of which is provided to allow electrical contact to a respective one of the LED's contacts after phosphor coating of the LEDs. This embodiment is described in more detail below and in white chip patent applications U.S. patent application Ser. No. 11/656,759, and U.S. patent application Ser. No. 11/899,790, both entitled “Wafer Level Phosphor Coating Method and Devices Fabricated Utilizing Method”, and both incorporated by reference as though fully set forth herein.
In an optional step, a good die map can be generated for the wafer based on a visual and electrical/optical inspection. The map can indicate the emission wavelengths for the LEDs across the wafer as well as LEDs that are defective. For example, a wafer of blue emitting LEDs can have a certain number of defective devices and in some embodiments the operating devices can experience emission wavelength variations of approximately 445 to 470 nm.
In 44, a first conversion coating/layer (“first conversion layer”) is on the wafer that covers the LEDs, with the first coating in one embodiment comprising a conversion material in a binder. The first conversion layer can be applied using different known processes such as “glob” dispensing, electrophoretic deposition, electrostatic deposition, printing, jet printing or screen printing. In other embodiments the first conversion layer can be provided as a separately fabricated preform that can be bonded or mounted over the LEDs.
In one embodiment, the first conversion layer can be deposited over the wafer in a phosphor/binder mixture using spin coating. Spin coating is generally known in the art and generally comprises depositing the desired amount of binder and phosphor mixture at the center of the substrate and spinning the substrate at high speed. The centrifugal acceleration causes the mixture to spread to and eventually off the edge of the substrate. Final layer thickness and other properties of the first conversion layer depend on the nature of the mixture (viscosity, drying rate, percent phosphor, surface tension, etc.) and the parameters chosen for the spin process. For large wafers it may be useful to dispense the phosphor/binder mixture over the substrate before spinning the substrate at high speed.
In other embodiments, the first conversion layer can be deposited on the wafer using known electrophoretic deposition methods. The wafer and its LEDs are exposed to a solution containing phosphor particles suspended in a liquid. An electrical signal applied between the solution and the LEDs creates an electrical field that causes the phosphor particles to migrate to and deposit on the LEDs. The process typically leaves the phosphor blanketed over the LEDs in powder form. A binder can then be deposited over the phosphor with the phosphor particles sinking into the binder to form the first conversion layer. The binder can be applied using many known methods and in one embodiment, the binder coating can be applied using spin coating.
The first conversion layer can then be cured using many different curing methods depending on different factors such as the type of binder used. Different curing methods include but are not limited to heat, ultraviolet (UV), infrared (IR) or air curing. Different materials can be used for the binder, with materials preferably being robust after curing and substantially transparent in the visible wavelength spectrum. Suitable material include silicones, epoxies, glass, inorganic glass, spin-on glass, dielectrics, BCB, polymides, polymers and hybrids thereof, with the preferred material being silicone because of its high transparency and reliability in high power LEDs. Suitable phenyl—and methyl-based silicones are commercially available from Dow® Chemical. In other embodiments, the first coating can be textured or can be engineered to be index matched with the features such as the chip (semiconductor material) and growth substrate, which can reduce total internal reflection (TIR) and improve light extraction. Similarly, the surface of the LEDs can be textured to improve light extraction.
The first conversion layer preferably contains one or more light conversion materials that absorb light from the LEDs and re-emit light at a different wavelength, such as down-converting the light to a longer wavelength. Many different conversion materials can be used, with a suitable material being a first phosphor. Different factors determine the amount of LED light that will be absorbed by the first phosphor in the final LED chips, including but not limited to the size of the phosphor particles, the percentage of phosphor loading, the type of binder material, the efficiency of the match between the type of phosphor and wavelength of emitted light, and the thickness of the first coating. These different factors can be controlled to control the emission wavelength of the LED chips according to the present invention.
Many different phosphors can be used as the first phosphor. The present invention is particularly adapted to LED chips emitting white light including warm white light. In one embodiment according to the present invention the LEDs across a wafer can emit light in the blue wavelength spectrum, and red and yellow phosphors are used to produce the desired warm light hue. The phosphors absorb some of the blue light and re-emit yellow and red light, with the LED chips emitting a white light combination of blue and yellow and red light. In this embodiment, the first phosphor comprises a red phosphor and different materials can be used for the red phosphor including but not limited to:
Different sized phosphor particles can be used including but not limited to 10-100 nanometer (nm)-sized particles to 20-30 μm sized particles, or larger. Smaller particle sizes typically scatter and mix colors better than larger sized particles to provide a more uniform light. Larger particles are typically more efficient at converting light compared to smaller particles because they are predominantly forward scattering, but can emit a less uniform light pattern. In one embodiment, the particle sizes are in the range of 2-15 μm. The coating can also have different concentrations or loading of phosphor materials in the binder, with a typical concentration being in the range of 30-70% by weight. In one embodiment, the phosphor concentration is approximately 65% by weight, and in some embodiments the phosphor is uniformly dispersed throughout the binder.
In 46 a second conversion coating/layer (“second conversion layer”) can be formed on the first coating. The second conversion layer can comprise the same or similar binder as the first conversion layer, and can be applied and cured using the same methods. The second conversion layer, however, contains a different conversion material than the first conversion layer that preferably compliments the phosphor in the first coating by re-emitting light to provide the desired hue for the LED chips. The second phosphor should have an excitation spectrum that does not overlap with the emission spectrum of the first phosphor. In some embodiments there may be some minimal overlap between the excitation and emission spectrums of the first and second conversion layers.
In one embodiment the conversion material in the second conversion layer comprises a second phosphor that absorbs blue LED light and re-emits yellow light. Many different types of phosphors can be used such as commercially available YAG:Ce. A full range of broad yellow spectral emission is possible using conversion particles made of phosphors based on the (Gd,Y)3(Al,Ga)5O12:Ce system, such as the Y3Al5O12:Ce (YAG). Other yellow phosphors that can be used for white emitting LED chips include:
The particular yellow phosphor should be chosen to compliment the phosphor being used for layers yet to be deposited on the wafer. The type and concentration of the yellow and red phosphors should be selected to provide the desired hue of white light, and the yellow phosphor should be selected.
It is understood that many different types of conversion materials emitting at different wavelengths of light can also be used alone or in combination with the phosphors mentioned above, and additional coatings can be included that contain these materials. For example, the following phosphors can be used to emit green saturated light:
The following lists some additional suitable phosphors, although others can be used. Each exhibits excitation in the blue and/or UV emission spectrum, provides a desirable peak emission, has efficient light conversion, and has acceptable Stokes shift:
Yellow/Green
It is understood that the conversion materials in first and second conversion layers can be different than those described above. Depending on the emission and excitation spectrums of the conversion materials, the conversion in the first conversion layer can absorb LED light and emit yellow light, while the conversion material in the second conversion layer can absorb LED light and can emit red light. In other embodiments different colors of light can be re-emitted from the conversion material. The overlap between the emission spectrum of the conversion material in the first conversion layer and the excitation spectrum of the second conversion layer should be minimized.
The first and second conversion layers can be formed using the same or different methods, and one or both can comprise a substantially uniform thickness layer across each of the LEDs or can comprise a conformal coat. In other embodiments, one or both of the first and second conversion layers can comprise a substantially non-uniform thickness layer such as typically provided by “glob” dispensing. For example, in one embodiment the first conversion layer can comprise a substantially uniform thickness layer deposited layer and the second conversion layer can be deposited using “glob” dispensing. In other embodiments the first conversion layer can be deposited using “glob” dispensing and the second conversion layer can be deposited using methods to provide conformal coating type layers having a varying thickness can depend on in some embodiment on the variations in the layer below it. Subsequent conversion layers can be deposited using any of these methods.
In 48 the individual LED chips can be singulated from the wafer using known methods such as dicing, scribe and breaking, or etching. The singulating process separates each of the LED chips and in 50 the singulated LED chips can optionally be mounted in a package, or to a submount or printed circuit board (PCB) without the need for further processing to add phosphor. In one embodiment the package/submount/PCB can have conventional package leads with the pedestals electrically connected to the leads. A conventional encapsulation can then surround the LED chip and electrical connections. In other embodiments the LED chip can be enclosed by a hermetically sealed cover with an inert atmosphere surrounding the LED chip at or below atmospheric pressure.
It is understood that additional steps can be included in the different embodiments of the methods according to the present invention. It is also understood that methods according to the present invention need not include all of the steps in the method 40 and the steps can be completed in different order. As described in further detail below, in some embodiments the first conversion layer can be deposited at the wafer level using any of the methods described above. The LEDs can then be singulated from the wafer into single LEDs or groups of LEDs, and following singulation the second conversion layer can be applied to the individual chips. For example, a first conversion layer having a red phosphor can be applied to the LEDs at the wafer level using one of the methods described above, and the wafer can then be singulated into LED chips. The individual LED chips can then be coated or can be coated after being packaged, such as by mounting to a submount. This process allows for the second conversion layer to be chosen to match with the emission of the LED with its first coating to achieve the desired emission characteristics for the LED chip. The emission variations that may occur from LED fabrication or coating of the LEDs as described above, can be considered when choosing the type of conversion material and thickness for the second conversion layer.
In the embodiments mentioned above where the LEDs comprise one or more pedestals to allow electrical contact to the LED's contacts after phosphor coating, or where the LEDs are otherwise arranged to allow electrical contact following coating, different methods according to the present invention can allow for simultaneous probing and micromachining to achieve the desired emission characteristics. That is, the micromachining can occur while the LED is probed and is emitting. This allows for real time controlled tuning at the wafer level without the need for generating a map of the wafer level emission characteristics.
In 66 the first conversion layer can be ground or planarized as desired to remove some of the first coating. This can be done for different reasons, such as to control emission characteristics of the LED chips with less of the LED light being absorbed and re-emitted by the LED chips when there is less conversion material. Alternatively, this can be done to expose the pedestals on the LEDs across the wafer. This is particularly applicable to methods used to coat LEDs with pedestals, as described in U.S. patent application Ser. Nos. 11/656,759 and 11/899,790, both entitled “Wafer Level Phosphor Coating Method and Devices Fabricated Utilizing Method” and incorporated above. Different portions of the pedestals can be exposed and in some embodiments just the top of the pedestals are exposed. Many different thinning or planarizing processes can be used including known mechanical processes such as grinding, lapping or polishing, preferably after the binder has cured. Other fabrication methods can comprise a squeegee to thin the coating before cured or pressure planarization can also be used before the coating is cured. Still in other embodiments the coating can be thinned using physical or chemical etching, or ablation. The coating can have many different thicknesses following planarization, with a range of thicknesses in one embodiment being 1 to 100 μm.
In 68 an alternative step of micromachining the first coating can be performed to tune the emission characteristics by removing portions of the first conversion layer in selected areas. This is particularly applicable to methods of fabricating LEDs with pedestals where portions of the first coating are removed without removing additional portions of the pedestals. One purpose of this step can be removal of the first conversion layer between the pedestals to allow for the second conversion layer to be applied to the LEDs while still allowing for access to the pedestals. Without this step, the second conversion layer would bury the pedestals and planarizing the second conversion layer down the pedestals would result in all or most of the second conversion layer being removed. This step can also be used to tune the amount of first phosphor over the LED as described in U.S. Provisional Patent Application No. 61/072,546 entitled “Emission Tuning Methods and Devices Fabricated Utilizing Methods”, incorporated by reference as though fully set forth herein.
Phosphor removal in 68 can be accomplished using several known techniques such as chemical, physical, mechanical etching and photo-ablation. There are several known techniques to chemically etch various phosphors and/or binding materials (resins, silicones, glass etc). Examples of physical etching include sputtering of the phosphor layer by high energy species. These could be plasma etching, physical sputtering using abrasive media such as polycarbonates, alumina, dry ice, etc. A selective area sandblasting or gas (CO2) blasting can also be used where a nozzle crystallizes the gas as it exits, with the crystals used as the blasting compound. In each of these blasting embodiments, a mask can be used to protect the areas where the conversion layer thickness is not to be reduced by the sand or gas crystal blasting. Requiring a masking layer can increase the process steps and cost of etching techniques. Abrasive media should also be completely removed from the devices, which can require expensive vacuum removing techniques.
Another method that can be used according to the present invention is mechanical etching such as grinding/milling, drilling. This process can be less complicated and less costly than other processes and can utilize grinding and drilling bits of appropriate size, shape based on the machining application. Conversion layers over large area (such as a few millimeters), intermediate area (1-5 mm) and small area (less than 1 mm) can be removed in a single step on a CNC machine tool.
In other embodiments, the conversion layer can be removed by machining through laser ablation, which is a known process of removing material by irradiating it with a laser beam. Using a low laser flux, the material can be heated by the absorbed laser energy and evaporates or sublimates. At high laser flux, the material can be typically converted to a plasma. Laser ablation typically removes material with a pulsed laser, but it is possible to ablate material with a continuous wave laser beam if the laser intensity is high enough. In one embodiment, the material is removed in a series of holes formed in the conversion layer over the LED, with the number, depth and spacing of the holes determined by the target emission characteristics of the LED and the corresponding amount of conversion layer material to be removed to reach that target.
In still other embodiments, the conversion layer material can be removed by machining using micro drilling. This typically comprises using a mechanical drill to form holes in the conversion layer over the LEDs. Like laser ablation the number, depth and spacing of the holes is determined by the target emission characteristics of the LED and the amount of conversion layer material to be removed.
In 70 a second conversion layer is formed on the wafer that covers each of the LEDs comprising a conversion material in a binder. In 72, the second conversion layer can be planarized or thinned using the same processes as those described above in step 66, and can be performed for the same reasons such as to remove phosphor and/or to expose the pedestals. In optional step 74 the conversion layer can also be micro-machined to further tune the emission characteristics of the LEDs, and the same micromachining processes can be used as those described in 68. In step 76 and 78 the LED chips can be singulated from the wafer and can be packaged as described in method 40.
In alternative embodiments of methods according to the present invention, the wafer can be probed at different points during fabrication to measure the output lighting characteristics of the LED chips across the wafer as described above. This can help determine the appropriate amount of the first and second conversion layers to remove to attain the desired output characteristics for the LED chips. In another alternative step a map of the output of the LEDs may be developed based on the output characteristics of the probed LEDs or regions of LEDs. This map can dictate different planarizing and mico-machining over individual LEDs or regions of LEDs based on the map showing the output characteristics. This allows for the physical thickness, and therefore, optical thickness of the conversion layers to be tuned based on the output characteristics of each of the LEDs across the wafer.
It is understood that additional steps can be included in the different embodiments of the methods according to the present invention. It is also understood that methods according to the present invention need not include all of the steps in the methods 40 and 60. In the embodiments mentioned above where the LEDs comprise one or more pedestals to allow electrical contact to the LED's contacts after phosphor coating with the conversion layers, or where the LEDs are otherwise arranged to allow electrical contact following coating, different methods according to the present invention can allow for simultaneous probing and micromachining to achieve the desired emission characteristics. That is, the micromachining can occur while the LED is probed and is emitting. This allows for real time controlled tuning at the wafer level without the need for generating a map of the wafer level emission characteristics.
In still other embodiments, a portion of the conversion layer can be micromachined at the wafer level to achieve emission within an acceptable range of the target emission characteristics. Individual LEDs can then be singulated from the wafer and then packaged, such as by mounting to a substrate or submount. Based on the desired emission color point for the package, final micromachining can be conducted at the package level. This process allows for the LEDs to be singulated and packaged, with the packages then being available for final micromachining to meet many different color points depending on customer demand. It is further understood that one or more of the conversion layers can also be deposited and micromachined at the LED chip or LED package level.
Methods according to the present invention can be utilized for machining many different devices, and
The details for fabrication of the LED wafer 80 are described in U.S. patent application Ser. Nos. 11/656,759 and 11/899,790, which are incorporated as provided above. Referring now to
Each of the LED chips 82 comprise a semiconductor LED 84 that can have many different semiconductor layers arranged in different ways as described above. The layers of the LEDs 84 generally comprise an active layer/region 86 sandwiched between first and second oppositely doped epitaxial layers 88, 90, all of which are formed successively on a substrate 92 at the wafer level. In the embodiment shown, the LEDs 84 are shown as separate devices on the substrate 92. This separation can be achieved by having portions of the active region 86 and doped layers 88, 90 etched down to the substrate 92 to form the open areas between the LEDs. In other embodiments, the active layer 86 and doped layers 88, 90 can remain continuous layers on the substrate 92 and can be separated into individual devices when the LED chips are singulated. The LEDs 84 can be made of different material systems as described above, and the substrate can be made of different materials. It is understood that additional layers and elements can also be included in the LED 84 and the active region 86 can comprise many different structures.
The LEDs 84 have lateral geometry, although it is understood that the invention is equally applicable to vertical geometry LEDs. Each of the LEDs 84 have first and second contacts each of which can be made of the materials described above, and each of the LEDs 84 can also comprise the current spreading layers and structures described above. Because the LEDs 84 have lateral geometry, both contacts are on the top of the LEDs 84.
Each of the LED chips 82 further comprise contact pedestals 98 and 100, both of which are utilized to make electrical contact to the LEDs 84. In the embodiment shown the pedestals 98, 100 make electrical contact to the LED's n-type layer, but it is understood that in other embodiments the pedestals 98, 100 can make contact to the p-type layer, or one of the pedestals 98, 100 can make contact to the p-type layer and the other can make contact to the n-type layer. The pedestals 98, 100 can be formed of many different electrically conductive materials and can be formed using many different known physical or chemical deposition processes such as electroplating, mask deposition (e-beam, sputtering), electroless plating, or stud bumping, with the preferred contact pedestal being gold (Au) and formed using stud bumping which is generally known in the art. The pedestals 98, 100 can be made of other conductive materials beyond Au, such as the metals utilized for the first and second contacts including Cu, Ni, In, combinations thereof, or the conducting oxides and transparent conducting oxides listed above. The height of the pedestals 98, 100 can vary depending on the desired thickness of the phosphor loaded binder coating and should be high enough to match or extend above the top surface of the phosphor loaded binder coating from the LED.
Referring now to
Referring now to
Referring now to
Referring now to
In one embodiment, in order to minimize the amount of light from the yellow phosphor being backscattered towards the red phosphor, the yellow phosphor can have relatively large particles in relation to the wavelength of light emitted by the LED. In one embodiment, where the LED emits a blue wavelength of light (e.g. approximately 450 nm), phosphor particle sizes having a diameter greater than 10 μm would minimize backscattering. It is understood that many different sized phosphor particles can be used depending on the emission characteristics of the LED.
The side surfaces of the LEDs 84 and the pedestals are covered by only the first conversion layer, such that light emitting from the side surfaces of the LEDs 84 does not encounter the second conversion layer. In the embodiment shown the LED light encounters only the red phosphor of the first conversion layer and not the yellow phosphor of the second conversion layer. As a result, the side surfaces emit only blue LED light and red light re-emitted from the phosphor. However, the percentage of LED light emitted out the side surfaces is relatively small (<0.5%) so that the red emissions from the side surface do not impact the general color perception of the LED. LED light can also emit through the side surfaces of the submount, but this is also a relatively small percentage of overall light emitted from the LED.
In embodiments where it is desirable to reduce or eliminate this unconverted LED light emission out the submount side surfaces or the emission that encounters only one on conversion layer, different trench arrangements can be used at different points in the fabrication process. In one embodiment, trenches can be formed in the first conversion layer along the side surfaces of the LEDs with a portion of the first conversion layer remaining on the side surfaces. When the second conversion layer is formed it can fill the trenches. LED chips can be singulated along the trenches so that each of the LED chips can have a portion of the first and second conversion material along the side surfaces of the LED. In other embodiments trenches can be formed down through at least part of the submount before formation of the first conversion layer so that the first conversion layer can fill the trenches. The LED chips can then be singulated along the trenches leaving some of the first conversion layer on the side surfaces of the submount. In still other embodiments a second trench can be formed first conversion material after formation to fill the trenches in the submount. The second conversion layer can fill the second trenches so that the resulting singulated LED chips can have the first and second conversion material on the side surfaces of the submount. Trenches can also be formed from the bottom of the submount along the lines between the LED chips to aid in singulating.
As mentioned above, the LEDs 84 on the wafer can be probed at different points in the manufacturing process and the emission characteristics of each of the LEDs can be measured. As described above, probing can comprise making electrical contact to the exposed pedestals 98, 100 at each of the LEDs 84 and applying an electrical signal to the LEDs 84, causing them to emit light. A map of the emission characteristics of the wafer can be generated, that can be utilized to determine the amount and areas of macro or micro-machining needed for tuning each of the LEDs chips 82 so that they emit at or near a target emission.
In different embodiments one or more of the conversion layers can be applied at the LED chip or LED package level.
In this embodiment, however, the second conversion layer is not formed over the LED chips 122 at the wafer level. Instead, the LED wafer 120 is singulated into individual LED chips or groups of LED chips using the methods described above.
As described above, by allowing for the second conversion layer to be applied at the LED chip or package level conversion material for the second coating can be chosen to match with the emission of the LED with its first coating to achieve the desired emission characteristics for the LED chip. In some embodiments the LED chip can be probed prior to formation of the second conversion layer, and the conversion material for the second conversion layer can be chosen based on the findings from probing and the desired emission wavelength and/or hue. The second conversion layer can also comprise a preform that can be matched to a particular LED to provide the desired end emission characteristics. Multiple preforms of different characteristics can be pre-fabricated to match with differing emission characteristics of the LED chips with a first conversion layer.
Although the embodiments above have been described with reference to two conversion layers being formed on the LED chips, it is equally applicable to LED chips or LED packages where more than two conversion layers are formed. For example, in LED chips where three conversion layers are to be formed, the first conversion layer can be formed at the wafer level and the subsequent layers can be formed at the LED chip or package level. In other embodiments the first and second layers can be formed at the wafer level and the third at the LED chip or package level. For LED chips where more conversion layers are used, different embodiments can have different combinations of wafer level and LED chip or package level layer formation.
As mentioned above, the present invention can be used with many different LED wafers and LED chip structures.
Each of the LED chips 162 further comprise portions of the submount 164 arranged so that the LEDs 166 can be flip-chip mounted to it. The submount 164 can be made of many different materials, such as conducting or semiconducting materials or insulating materials. Some suitable materials include ceramics such as alumina, aluminum oxide, aluminum nitride or polymide. In other embodiments the submount wafer can comprise a printed circuit board (PCB), saffire or silicon, silicon carbide, or any other suitable material, such as commercially available T-Clad thermal clad insulated substrate material. The submount wafer 164 comprises a plurality of through-holes 180 that can be formed using known processes such as etching, with two or more of the through holes 180 arranged to cooperate with a respective one of the LEDs 166. In the embodiment shown, the through-holes 180 are arranged in sets of two, with each of the sets sized and spaced to align with the first and second contacts 176, 178 of a respective one of the LEDs 166.
A dielectric layer 182 can be included covering the surface of the submount 164, including the surfaces of the through-holes 180. The dielectric layer 182 electrically insulates the wafer such that electrical signals on the surfaces of the submount 164 do not spread into the submount 164. Different materials can be used for the dielectric layer, with suitable materials being silicon nitride or silicon oxide. For submount wafers made of an insulating material such as ceramic, it may not be necessary to include the dielectric layer for electrical isolation.
Each of the through-holes 180 can be filled with a conductive material to form conductive vias 184 through the submount 164. Each of the LED chips can have first and second bottom metal pads or traces 186, 188 on the bottom surface of its portion of the submount 164 that are arranged so that after dicing of the LED chips, they are electrically and physically separated by a space on the bottom surface. Each of the bottom traces 186, 188 is electrically coupled to a respective one of the vias 184. An electrical signal applied to the first bottom metal trace 186 is conducted to one of the LED chip's vias 184, with a signal applied to the second bottom metal trace 188 is conducted to the other of the LED chip's vias 184. Top traces 190 can be included on the top surface of the submount 164 for conducting signals from the vias 184 to the first and second contacts 176, 178. The LEDs 166 are mounted to the submount 164 by a conductive bond material 194, which is typically one or more bond/metal layers such as solder. The bond material typically bonds the first top trace 190 to the first contact 176 and the second top trace 192 to the second contact 178.
The LED wafer 160 can be covered by a first conversion layer 196 that is formed on the LED wafer 160 using the methods described above. The first conversion layer 196 can comprise the binder and phosphor materials described above and can be applied, cured and planarized as described above. In the embodiment shown, the LED chips 162 emit blue light and the first conversion layer 196 can comprise a red phosphor in a binder. The first conversion 196 can also be micromachined using the methods described above to remove portions of the first coating and to “tune” the emission characteristics of each of the LEDs chips 162. The LEDs wafer 160 can also be probed by contacting the first and second bottom traces 186, 188, causing the LEDs 166 to emit light. A map can be made of the emission characteristics of the LED chips across the wafer.
Referring now to
In different embodiments the LED chip wafer can be further processed to enhance light extraction of the LED chips. In one embodiment, the surfaces of the LED and/or the surfaces of the conversion coatings can be textured or roughened to enhance light extraction. In other embodiments, additional layers can be included to further enhance light extraction.
The spacer layer 214 also helps to planarize the surface of the LED chips since the surface of the chip can be rough. In one embodiment, the spacer layer 214 is at least as thick as the height of the texture (˜1 micron), but it is understood that the spacer layer can have many different thicknesses. The spacer layer 214 can be made of many different materials applied in many different ways, and can comprise multiple layers of different materials. In one embodiment, the spacer layer 214 comprises silicon spin coated on the surface of the LEDs 84.
It is understood that the present invention can be used with different LEDs and different coating arrangements having more than two conversion coatings.
Light from the LED chips 84 passes through the first, second and third coatings where at least some of the light is converted by the phosphors in the coating. The LED chips emit a white light combination of red, yellow and green light, with the phosphors in emission and excitation spectrums such that light emitted from the red phosphor is not substantially reabsorbed by the yellow or green phosphors, and light emitted from the yellow phosphor is not substantially absorbed by the green phosphor.
There can be Many different variations of the embodiments in
Although the present invention has been described in detail with reference to certain preferred configurations thereof, other versions are possible. For example, the present invention can be used with many different device configurations (geometries, shape, size and other elements on, in and around the chip) to improve device performance. Therefore, the spirit and scope of the invention should not be limited to the versions described above.
Patent | Priority | Assignee | Title |
10079327, | Jul 22 2013 | Lumileds LLC | Method of separating light emitting devices formed on a substrate wafer |
10347796, | Mar 02 2016 | Samsung Electronics Co., Ltd. | Light-emitting element mounting substrate and light-emitting package using the same |
10615306, | Jul 22 2013 | Lumileds LLC | Method of separating light emitting devices formed on a substrate wafer |
10897000, | Jul 26 2016 | Cree, Inc. | Light emitting diodes, components and related methods |
10930826, | Jul 26 2016 | Cree, Inc. | Light emitting diodes, components and related methods |
10964858, | Jul 26 2016 | CREELED, INC | Light emitting diodes, components and related methods |
10991862, | May 25 2018 | CREELED, INC | Light-emitting diode packages |
11024785, | May 25 2018 | CREELED, INC | Light-emitting diode packages |
11038081, | Jul 22 2013 | Lumileds LLC | Method of separating light emitting devices formed on a substrate wafer |
11038082, | Jul 22 2013 | Lumileds LLC | Method of separating light emitting devices formed on a substrate wafer |
11101411, | Jun 26 2019 | CREELED, INC | Solid-state light emitting devices including light emitting diodes in package structures |
11121298, | May 25 2018 | CREELED, INC | Light-emitting diode packages with individually controllable light-emitting diode chips |
11233183, | Aug 31 2018 | CREELED, INC | Light-emitting diodes, light-emitting diode arrays and related devices |
11335833, | Aug 31 2018 | CREELED, INC | Light-emitting diodes, light-emitting diode arrays and related devices |
11499684, | Apr 13 2020 | Nichia Corporation | Planar light source and the method of manufacturing the same |
12111024, | Apr 13 2020 | Nichia Corporation | Planar light source and the method of manufacturing the same |
12142711, | Jul 26 2016 | CREELED, INC | Light emitting diodes, components and related methods |
8748201, | Aug 20 2010 | OSRAM OLED GmbH | Process for producing a layer composite consisting of a luminescence conversion layer and a scattering layer |
8946987, | Nov 07 2007 | Industrial Technology Research Institute | Light emitting device and fabricating method thereof |
9117941, | Sep 02 2011 | YANG, WEN-KUN | LED package and method of the same |
9214606, | Mar 11 2013 | Samsung Electronics Co., Ltd. | Method of manufacturing light-emitting diode package |
9331253, | Sep 03 2014 | CREELED, INC | Light emitting diode (LED) component comprising a phosphor with improved excitation properties |
9437788, | Dec 19 2012 | CREELED, INC | Light emitting diode (LED) component comprising a phosphor with improved excitation properties |
D902448, | Aug 31 2018 | CREELED, INC | Light emitting diode package |
Patent | Priority | Assignee | Title |
4576796, | Jan 18 1984 | Pelam, Inc. | Centrifugal tissue processor |
4733335, | Dec 28 1984 | Koito Manufacturing Co., Ltd. | Vehicular lamp |
4918497, | Dec 14 1988 | Cree, Inc | Blue light emitting diode formed in silicon carbide |
4935665, | Dec 24 1987 | Mitsubishi Cable Industries Ltd. | Light emitting diode lamp |
4946547, | Oct 13 1989 | Cree, Inc | Method of preparing silicon carbide surfaces for crystal growth |
4966862, | Aug 28 1989 | Cree, Inc | Method of production of light emitting diodes |
5027168, | Dec 14 1988 | Cree, Inc | Blue light emitting diode formed in silicon carbide |
5200022, | Oct 03 1990 | Cree, Inc | Method of improving mechanically prepared substrate surfaces of alpha silicon carbide for deposition of beta silicon carbide thereon and resulting product |
5210051, | Mar 27 1990 | Cree, Inc | High efficiency light emitting diodes from bipolar gallium nitride |
5277840, | Mar 16 1988 | Mitsubishi Rayon Co., Ltd. | Phosphor paste compositions and phosphor coatings obtained therefrom |
5338944, | Sep 22 1993 | Cree, Inc | Blue light-emitting diode with degenerate junction structure |
5393993, | Dec 13 1993 | Cree, Inc | Buffer structure between silicon carbide and gallium nitride and resulting semiconductor devices |
5416342, | Jun 23 1993 | Cree, Inc | Blue light-emitting diode with high external quantum efficiency |
5523589, | Sep 20 1994 | Cree, Inc | Vertical geometry light emitting diode with group III nitride active layer and extended lifetime |
5604135, | Aug 12 1994 | Cree, Inc | Method of forming green light emitting diode in silicon carbide |
5614131, | May 01 1995 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Method of making an optoelectronic device |
5631190, | Oct 07 1994 | Cree, Inc | Method for producing high efficiency light-emitting diodes and resulting diode structures |
5739554, | May 08 1995 | Cree, Inc | Double heterojunction light emitting diode with gallium nitride active layer |
5766987, | Sep 22 1995 | Tessera, Inc | Microelectronic encapsulation methods and equipment |
5813753, | May 27 1997 | Philips Electronics North America Corp | UV/blue led-phosphor device with efficient conversion of UV/blues light to visible light |
5858278, | Feb 29 1996 | FUTABA DENSHI KOGYO, K K | Phosphor and method for producing same |
5912477, | Oct 07 1994 | Cree, Inc | High efficiency light emitting diodes |
5923053, | Sep 29 1995 | Siemens Aktiengesellschaft | Light-emitting diode having a curved side surface for coupling out light |
5959316, | Sep 01 1998 | Lumileds LLC | Multiple encapsulation of phosphor-LED devices |
5998925, | Jul 29 1996 | Nichia Corporation | Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material |
6001671, | Apr 18 1996 | Tessera, Inc | Methods for manufacturing a semiconductor package having a sacrificial layer |
6066861, | May 20 1998 | Osram GmbH | Wavelength-converting casting composition and its use |
6069440, | Jul 29 1996 | Nichia Corporation | Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material |
6087202, | Jun 03 1997 | STMICROELECTRONICS S A | Process for manufacturing semiconductor packages comprising an integrated circuit |
6120600, | May 08 1995 | Cree, Inc | Double heterojunction light emitting diode with gallium nitride active layer |
6132072, | Jun 13 1996 | Gentex Corporation | Led assembly |
6139304, | Dec 10 1996 | ITT Manufacturing Enterprises, Inc. | Mold for injection molding encapsulation over small device on substrate |
6153448, | May 13 1998 | TOSHIBA MEMORY CORPORATION | Semiconductor device manufacturing method |
6187606, | Oct 07 1997 | Cree, Inc | Group III nitride photonic devices on silicon carbide substrates with conductive buffer interlayer structure |
6201262, | Oct 07 1997 | Cree, Inc | Group III nitride photonic devices on silicon carbide substrates with conductive buffer interlay structure |
6252254, | Feb 06 1998 | General Electric Company | Light emitting device with phosphor composition |
6329224, | Apr 28 1998 | Tessera, Inc | Encapsulation of microelectronic assemblies |
6331063, | Nov 25 1997 | PANASONIC ELECTRIC WORKS CO , LTD | LED luminaire with light control means |
6338813, | Oct 15 1999 | Advanced Semiconductor Engineering, Inc. | Molding method for BGA semiconductor chip package |
6366018, | Oct 21 1998 | LIGHTSCAPE MATERIALS, INC | Apparatus for performing wavelength-conversion using phosphors with light emitting diodes |
6376277, | Nov 12 1998 | Micron Technology, Inc. | Semiconductor package |
6404125, | Oct 21 1998 | LIGHTSCAPE MATERIALS, INC | Method and apparatus for performing wavelength-conversion using phosphors with light emitting diodes |
6501100, | May 15 2000 | General Electric Company | White light emitting phosphor blend for LED devices |
6522065, | Mar 27 2000 | General Electric Company | Single phosphor for creating white light with high luminosity and high CRI in a UV led device |
6531328, | Oct 11 2001 | Solidlite Corporation | Packaging of light-emitting diode |
6583444, | Feb 18 1997 | Tessera, Inc | Semiconductor packages having light-sensitive chips |
6624058, | Jun 22 2000 | OKI SEMICONDUCTOR CO , LTD | Semiconductor device and method for producing the same |
6642652, | Jun 11 2001 | Lumileds LLC | Phosphor-converted light emitting device |
6653765, | Apr 17 2000 | CURRENT LIGHTING SOLUTIONS, LLC F K A GE LIGHTING SOLUTIONS, LLC | Uniform angular light distribution from LEDs |
6686676, | Apr 30 2001 | CURRENT LIGHTING SOLUTIONS, LLC F K A GE LIGHTING SOLUTIONS, LLC | UV reflectors and UV-based light sources having reduced UV radiation leakage incorporating the same |
6733711, | Sep 01 2000 | CURRENT LIGHTING SOLUTIONS, LLC F K A GE LIGHTING SOLUTIONS, LLC | Plastic packaging of LED arrays |
6744196, | Dec 11 2002 | SUZHOU LEKIN SEMICONDUCTOR CO , LTD | Thin film LED |
6759266, | Sep 04 2001 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Quick sealing glass-lidded package fabrication method |
6791119, | Feb 01 2001 | CREE LED, INC | Light emitting diodes including modifications for light extraction |
6791259, | Nov 30 1998 | ALLY BANK, AS COLLATERAL AGENT; ATLANTIC PARK STRATEGIC CAPITAL FUND, L P , AS COLLATERAL AGENT | Solid state illumination system containing a light emitting diode, a light scattering material and a luminescent material |
6793371, | Mar 09 2000 | N I R , INC | LED lamp assembly |
6812500, | Jun 26 1996 | Osram AG | Light-radiating semiconductor component with a luminescence conversion element |
6853010, | Sep 19 2002 | CREE LED, INC | Phosphor-coated light emitting diodes including tapered sidewalls, and fabrication methods therefor |
6860621, | Jul 10 2000 | OSRAM Opto Semiconductors GmbH | LED module and methods for producing and using the module |
6919683, | Nov 01 1999 | Samsung SDI Co., Ltd. | High-brightness phosphor screen and method for manufacturing the same |
6921929, | Jun 27 2003 | Lockheed Martin Corporation | Light-emitting diode (LED) with amorphous fluoropolymer encapsulant and lens |
6939481, | May 15 2000 | ALLY BANK, AS COLLATERAL AGENT; ATLANTIC PARK STRATEGIC CAPITAL FUND, L P , AS COLLATERAL AGENT | White light emitting phosphor blends for LED devices |
6958497, | May 30 2001 | CREE LED, INC | Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures |
7023019, | Sep 03 2001 | Panasonic Corporation | Light-emitting semiconductor device, light-emitting system and method for fabricating light-emitting semiconductor device |
7029935, | Sep 09 2003 | CREE LED, INC | Transmissive optical elements including transparent plastic shell having a phosphor dispersed therein, and methods of fabricating same |
7049159, | Oct 13 2000 | Lumileds LLC | Stenciling phosphor layers on light emitting diodes |
7078737, | Sep 02 2002 | Matsushita Electric Industrial Co., Ltd. | Light-emitting device |
7183586, | Nov 17 2004 | Nichia Corporation | Semiconductor element and manufacturing method for the same |
7183587, | Sep 09 2003 | CREE LED, INC | Solid metal block mounting substrates for semiconductor light emitting devices |
7202598, | Oct 17 2000 | Lumileds LLC | Light-emitting device with coated phosphor |
7217583, | Sep 21 2004 | CREELED, INC | Methods of coating semiconductor light emitting elements by evaporating solvent from a suspension |
7286296, | Apr 23 2004 | SEOUL SEMICONDUCTOR CO , LTD | Optical manifold for light-emitting diodes |
7601550, | Mar 03 2000 | Osram GmbH | Methods for producing a light emitting semiconductor body with a luminescence converter element |
7714342, | Jan 10 2006 | SAMSUNG ELECTRONICS CO , LTD | Chip coated light emitting diode package and manufacturing method thereof |
20010000622, | |||
20020001869, | |||
20020006040, | |||
20020056847, | |||
20020057057, | |||
20020070449, | |||
20020079837, | |||
20020096789, | |||
20020105266, | |||
20020123164, | |||
20020185965, | |||
20030006418, | |||
20030038596, | |||
20030066311, | |||
20030121511, | |||
20030207500, | |||
20040004435, | |||
20040012958, | |||
20040037949, | |||
20040038442, | |||
20040041159, | |||
20040041222, | |||
20040056260, | |||
20040106234, | |||
20040124429, | |||
20040164307, | |||
20040173806, | |||
20040188697, | |||
20040245530, | |||
20050001225, | |||
20050002168, | |||
20050006651, | |||
20050051782, | |||
20050072981, | |||
20050122031, | |||
20050184305, | |||
20050184638, | |||
20050196886, | |||
20050211991, | |||
20050265404, | |||
20050280894, | |||
20060001046, | |||
20060091788, | |||
20060145170, | |||
20060157721, | |||
20060267042, | |||
20060284195, | |||
20070012940, | |||
20070034995, | |||
20070096131, | |||
20070158668, | |||
20070158669, | |||
20070165403, | |||
20070215890, | |||
20070259206, | |||
20080006815, | |||
20080173884, | |||
20080179611, | |||
20080203410, | |||
20080283865, | |||
DE102005062514, | |||
DE19945672, | |||
EP732740, | |||
EP1059678, | |||
EP1138747, | |||
EP1198016, | |||
EP1724848, | |||
FR2704690, | |||
JP2000002802, | |||
JP2000208820, | |||
JP200164937, | |||
JP2002009097, | |||
JP2002050799, | |||
JP2002093830, | |||
JP2003115614, | |||
JP2003170465, | |||
JP2003258011, | |||
JP2003318448, | |||
JP2005298817, | |||
JP2006054209, | |||
KR20040017926, | |||
RE34861, | Oct 09 1990 | North Carolina State University | Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide |
WO33390, | |||
WO124283, | |||
WO3021668, | |||
WO2005101909, | |||
WO2006033695, | |||
WO2006036251, | |||
WO2006065015, | |||
WO2008003176, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 13 2008 | Cree, Inc. | (assignment on the face of the patent) | / | |||
Oct 15 2008 | CHAKRABORTY, ARPAN | Cree, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021825 | /0777 | |
Mar 01 2021 | Cree, Inc | CREELED, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 057017 | /0311 | |
Feb 07 2022 | SMART MODULAR TECHNOLOGIES, INC | CITIZENS BANK, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 058983 | /0001 | |
Feb 07 2022 | SMART High Reliability Solutions, LLC | CITIZENS BANK, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 058983 | /0001 | |
Feb 07 2022 | SMART EMBEDDED COMPUTING, INC | CITIZENS BANK, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 058983 | /0001 | |
Feb 07 2022 | CREELED, INC | CITIZENS BANK, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 058983 | /0001 |
Date | Maintenance Fee Events |
Jan 13 2016 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 31 2020 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jan 31 2024 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 31 2015 | 4 years fee payment window open |
Jan 31 2016 | 6 months grace period start (w surcharge) |
Jul 31 2016 | patent expiry (for year 4) |
Jul 31 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 31 2019 | 8 years fee payment window open |
Jan 31 2020 | 6 months grace period start (w surcharge) |
Jul 31 2020 | patent expiry (for year 8) |
Jul 31 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 31 2023 | 12 years fee payment window open |
Jan 31 2024 | 6 months grace period start (w surcharge) |
Jul 31 2024 | patent expiry (for year 12) |
Jul 31 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |