An endoscope comprises: an insertion portion to be inserted into a body cavity; an operation portion provided continuously from a proximal end side of the insertion portion; and a cylinder in which a gas to be fed to the distal end of the insertion portion is compressed and filled, the cylinder being detachably attached to the operation portion.
|
1. An endoscope comprising:
an insertion portion to be inserted into a body cavity;
an operation portion provided continuously from a proximal end side of the insertion portion;
a cylinder in which a gas to be fed to the distal end of the insertion portion is compressed, filled, and stored, the cylinder being detachably attached to the operation portion;
a water-feeding unit that houses a liquid to be fed to the distal end of the insertion portion, the water-feeding unit being detachably attached to the operation portion;
a case that fully encloses the cylinder and the water-feeding unit; and
a coupling member that is attached to the case;
wherein a lower end of the coupling member is attached to openings of the cylinder and the water-feeding unit, and an upper end of the coupling member is directly attached to the operation portion;
wherein the liquid in the water-feeding unit is fed by feeding the gas in the cylinder to the water-feeding unit;
wherein the water-feeding unit comprises a pouched member which is filled with the liquid, the pouched member having an inner capacity that can be reduced; and
wherein the water-feeding unit feeds the liquid by increasing the external pressure of the pouched member by the gas in the cylinder.
2. The endoscope according to
wherein the cylinder and the water-feeding unit are integrated as an air/water-feeding unit, and are simultaneously attached to the operation portion.
3. The endoscope according to
wherein a valve is provided in an air-feeding duct that communicates the cylinder with the distal end of the insertion portion, and
the valve is operable to switch communication with and blockage against the air feeding duct on the cylinder side.
4. The endoscope according to
5. The endoscope according to
|
1. Field of the Invention
The present invention relates to an endoscope, and in particular, to an endoscope including an air-feeding section that feeds a gas from the distal end of an insertion portion.
2. Description of the Related Art
An endoscope has an operation portion to be held by an operator and performs observation of the inside of a body cavity by inserting an insertion portion continuously provided from the operation portion. The operation portion is provided with a universal cable extending from it in the related art, and a connector and the like provided at the distal end of the universal cable are connected to a peripheral apparatus such as a light source device or a processor and used. Therefore, the use range of the related-art endoscope is limited by the length of the universal cable, so that free movement while using the endoscope is impossible. In addition, during operation of the operation portion, the universal cable becomes entangled and obstructs the operation, resulting in low operability.
To solve this problem, an endoscope having no cable to connect the peripheral apparatus and the endoscope has been proposed. For example, in JP-A-2003-52620 and JP-A-2003-70737, endoscopes including an air/water-feeding pump, a water tank, and a pump-driving battery attached to the operation portion are described.
However, the endoscopes of JP-A-2003-52620 and JP-A-2003-70737 are large in consumption of the battery for driving the air/water-feeding pump, so that it needs a large-sized battery. In addition, the large-sized battery and the air/water-feeding pump increase the weight of the operation portion, resulting in poor portability and operability.
The invention was made in view of these circumstances, and it is an object to provide an endoscope which has an operation portion that can be reduced in weight and has excellent portability and operability.
In order to achieve the object, according to a first aspect of the invention, an endoscope comprises: an insertion portion to be inserted into a body cavity; an operation portion provided continuously from a proximal end side of the insertion portion; and a cylinder in which a gas to be fed to the distal end of the insertion portion is compressed and filled, the cylinder being detachably attached to the operation portion.
According to the first aspect of the invention, since a cylinder is attached to the operation portion so as to feed a gas, the related-art cable to connect the air-feeding pump and the operation portion becomes unnecessary. In addition, according to the first aspect of the invention, the cylinder filled with a gas is only attached to the operation portion, so that in comparison with the case where the air-feeding pump is provided in the operation portion, the operation portion can be reduced in weight. Furthermore, according to the first aspect of the invention, it becomes possible to feed a gas, so that electrical power is not necessary when feeding a gas by the cylinder, whereby the power consumption of the endoscope can be reduced. Therefore, a small-sized light-weight battery can be used as a power source of the endoscope, and by loading this battery in the operation portion, the operation portion can be reduced in weight and size. Thus, according to the first aspect of the invention, the operation portion can be reduced in weight and size, so that an endoscope with excellent portability and operability can be provided.
According to a second aspect of the invention, in the first aspect of the invention, a water-feeding unit that houses a liquid to be fed to the distal end of the insertion portion, the water-feeding unit being detachably attached to the operation portion, and the liquid in the water-feeding unit is fed by feeding the gas in the cylinder to the water-feeding unit.
According to the second aspect of the invention, the water-feeding unit is attached to the operation portion, so that the related-art cable to connect the water-feeding unit and the operation portion becomes unnecessary.
According to the second aspect of the invention, the liquid is fed by feeding the gas in the cylinder to the water-feeding unit, so that the water-feeding pump becomes unnecessary. Therefore, electrical power becomes unnecessary when feeding the liquid, whereby the power consumption of the endoscope can be further reduced. Thereby, a small-sized and light-weight battery can be used, so that the operation portion in which the battery is loaded can be reduced in size and weight.
According to a third aspect of the invention, in the second aspect of the invention, the water-feeding unit comprises a pouched member which is filled with the liquid, the pouched member having an inner capacity that can be reduced, and the water-feeding unit feeds the liquid by increasing the external pressure of the pouched member by the gas in the cylinder.
According to the third aspect of the invention, since the liquid is fed by increasing the external pressure of the pouched member, the liquid can always be fed regardless of the posture of the operation portion. In addition, the pouched member is filled with the liquid, so that there is no possibility that the liquid is exposed to the air and contaminated.
According to a fourth aspect of the invention, in the second or third aspect of the invention, the cylinder and the water-feeding unit are integrated as an air/water-feeding unit, and are simultaneously attached to the operation portion.
According to the fourth aspect of the invention, the cylinder and the water-feeding unit can be simultaneously attached to the operation portion. In addition, by integrating the cylinder and the water-feeding unit as an air/water-feeding unit, a duct for feeding the gas in the cylinder to the water-feeding unit can be provided in the air/water-feeding unit. Thereby, the ducts of the endoscope can be simplified.
According to a fifth aspect of the invention, in any one of the first through fourth aspects of the invention, a valve is provided in an air-feeding duct that communicates the cylinder with the distal end of the insertion portion, and the valve is operable to switch communication with and blockage against the air feeding duct on the cylinder side.
According to the fifth aspect of the invention, since the air-feeding duct on the cylinder side can be closed when the tube is in an unoperated state, it is possible that the gas in the cylinder does not leak to the outside when the tube is in an unoperated state. Therefore, the gas in the cylinder can be prevented from being wastefully used, so that a small-capacity cylinder can be used, and the operation portion can be downsized.
Hereinafter, a preferred embodiment of the endoscope (for example, a portable endoscope) of the invention is described in detail with reference to the accompanying drawings.
As shown in
At the operation portion 14, an air/water-feeding button 20, a suction button 22, a shutter button 24, and a function switching button 26 are arranged in parallel, and a pair of angle knobs 28 and 28 and lock levers 30 and 30 for locking the angle knobs 28 are provided. On the distal end side of the operation portion 14, a forceps insertion portion 32 is provided, and on the proximal end side of the operation portion 14, a cover 34 is attached so as to open and close, and inside the cover 34, a battery housing for housing a small-sized battery (not shown) is provided. As the battery, for example, a gum-type rechargeable battery or a fuel cell is used, and by this battery, electric power is supplied to a CCD and an LED, etc., described later.
The insertion portion 12 comprises, in order from the operation portion 14 side, a flexible portion 36, a bending portion 38, and a distal end 40, and the bending portion 38 is remotely operated to bend by rotating the angle knobs 28 and 28 on the operation portion 14. Thereby, the distal end 40 can be turned to a desired direction.
As shown in
An unillustrated LED is disposed rearward of the illuminating optical systems 46 and 46. This LED is wired to the battery housed inside the operation portion 14, and the LED is turned on by electrical power of the battery and illumination light is irradiated forward of the illuminating optical systems 46 and 46.
To the forceps opening 50, a suction tube 52A shown in
The suction tube 52A is connected to a suction valve 54 provided at the operation portion 14, and to this suction valve 54, a suction tube 52B is connected. The distal end of the suction tube 52B is disposed on a suction connector 56 provided at the operation portion 14. To the suction connector 56, a suction unit 18 (see
On the other hand, to the air/water-feeding nozzle 48, an air/water-feeding tube 60 is connected. The air/water-feeding tube 60 is branched into an air-feeding tube 62A and a water-feeding tube 63A, and these air-feeding tube 62A and water-feeding tube 63A are connected to an air/water-feeding valve 64. To the air/water-feeding valve 64, the air-feeding tube 62B and the water-feeding tube 63B are connected, and the ends of the air-feeding tube 62B and the water-feeding tube 63B are disposed at an air/water-feeding connector 66.
To the air/water-feeding connector 66, an air/water-feeding unit 16 is detachably attached. The construction of the air/water-feeding unit 16 is explained below.
As shown in these figures, the air/water-feeding unit 16 is entirely formed into a thin and long rectangular shape. The air/water-feeding unit 16 is disposed so that its longitudinal direction becomes orthogonal to the longitudinal direction of the operation portion 14 when it is attached to the air/water-feeding connector 66. The air/water-feeding connector 66 is disposed on the proximal end side of the operation portion 14 on the side opposite to the suction button 22 and the air/water-feeding button 20. Therefore, by attaching the air/water-feeding unit 16 to the air/water-feeding connector 66, the air/water-feeding unit 16 is disposed between the forefinger and the thumb of an operator's hand holding the operation portion 14. Thereby, the air/water-feeding unit 16 does not become an obstacle when controlling the operation portion 14. As the attaching position and attaching direction of the air/water-feeding unit 16, a position that does not obstruct the operator's hand holding the operation portion 14 is selected although these are not especially limited. Therefore, for example, it is also possible that the air/water-feeding connector 66 is provided on the proximal end of the operation portion 14, and the air/water-feeding unit 16 is attached to the air/water-feeding connector 66 along the longitudinal direction of the operation portion 14.
The air/water-feeding unit 16 mainly comprises a hollow case 70, a coupling member 72 serving as a cover of this case 70, and a cylinder 74 and a water-feeding unit 76 housed inside the case 70. The cylinder 74 and the water-feeding unit 76 are detachably attached to the hard coupling member 72, and the end of this coupling member 72 is detachably attached to the air/water-feeding connector 66.
As a coupling mechanism between the coupling member 72 and the air/water-feeding connector 66, for example, a mechanism called snap fit is used. In this mechanism, as shown in
The coupling mechanism between the coupling member 72 and the air/water-feeding connector 66 is not limited to the snap fit, and may be any coupling mechanism as long as it has a constant pulling-out strength. Therefore, for example, a tube fitting mechanism can also be used. In the tube fitting mechanism, a lock claw projecting from the inner circumferential surface of a cylindrical housing bites into a tube for secure coupling to the tube, and an open ring provided on the housing end is pressed in, whereby the open ring withdraws the lock claw outward and releases the engagement between the lock claw and the tube. It is also possible that such a tube fitting mechanism is used to couple the coupling member 72 to the air/water-feeding connector 66.
As shown in
In the air-feeding duct 78 and the water-feeding duct 80, an opening and closing valve 82 is disposed, and this opening and closing valve 82 switches communication and blockage of the air-feeding duct 78 and the water-feeding duct 80. The construction of the opening and closing valve 82 is described later.
The air-feeding duct 78 is provided with a regulator 84 to keep constant the pressure of a gas flowing in the air-feeding duct 78. The regulator 84 is provided with an adjust screw 86, and by rotating this adjust screw 86, the pressure of the gas flowing in the air-feeding duct 78 can be adjusted. On the distal end of the air-feeding duct 78, a hollow pin 88 is projectedly provided, and at the position of this hollow pin 88, the cylinder 74 is screwed and attached.
In the cylinder 74, a gas to be fed (for example, an inactive gas such as N2 or CO2, or the air) is compressed and filled. Although the volume of the gas inside the cylinder 74 is not especially limited, and for example, a gas filled to approximately 4 liters is used, and replaced every time treatment for a patient is finished. The cylinder 74 is carried filled with the gas and sealed by a cover (not shown), and by screwing this cylinder 74 to the coupling member 72, the hollow pin 88 punctures the cover of the cylinder 74, whereby the inside of the cylinder 74 is communicated with the regulator 84. Thereby, a high-pressure gas inside the cylinder 74 is fed to the regulator 84, and this high-pressure gas is adjusted to a desired pressure by the regulator 84. Then, by opening the opening and closing valve 82, the gas is fed to the air-feeding tube 62B via the air-feeding duct 78, and fed to the water-feeding unit 76 via the branched-feeding duct 78A.
As shown in
On the other hand, the housing case 90 is formed by a bottomed cylindrical case main body 94, a cover member 96 serving as a cover of the case main body 94, and a cap member 98 to be attached to the distal end of the cover member 96. The case main body 94, the cover member 96, and the cap member 98 are made of, for example, plastic so as to have a sufficient strength, and to make it more difficult to deform than the pouched member 92. The housing case 90 is required so as to make it more difficult to deform than the pouched member 92, and for example, a case made of the same material as that of the pouched member 92 and formed thicker than the pouched member 92 can be used.
The case main body 94 and the cover member 96 of the housing case 90 are fitted. When fitting, the outer circumferential surface of the case main body 94 and the inner circumferential surface of the cover member 96 come into contact throughout the circumference, and the hermetically sealing at the contact surface is kept. When fitting, it is also possible that the case main body 94 and the cover member 96 are coupled by using the snap-fit mechanism or the tube fitting mechanism so that a predetermined pulling-out strength is secured.
As shown in
In the end face of the cover member 96, air passage holes 96B and 96B . . . are formed around the cylindrical portion 96A. The air passage holes 96B, 96B communicate the inside and the outside of the housing case 90 with each other, and are formed into, for example, arc shapes as shown in
The housing case 90 and the pouched member 92 are assembled as follows. Namely, first, the cylindrical portion 92A of the pouched member 92 is fitted in the cylindrical portion 96A of the cover member 96. At this time, the brim 92B of the cylindrical portion 92A of the pouched member 92 is inserted while being elastically deformed. After insertion, the brim 92B elastically restores to its original shape, and engages with the end of the cylindrical portion 96A of the cover member 96. In this state, the cap member 98 is screwed to the cover member 96. Thereby, the brim 92B is sandwiched and fixed between the cap member 98 and the cover member 96, and airtight sealing between the cap member 98 and the cover member 96 is kept by the brim 92B. Next, while inserting the pouched member 92 in the case main body 94, the case main body 94 and the cover member 96 are fitted to each other. Thereby, the housing case 90 formed by the case main body 94, the cover member 96, and the cap member 98 is assembled and the pouched member 92 is housed inside the housing case 90, whereby the water-feeding unit 76 is formed.
The water-feeding unit 76 is detachably attached to the coupling member 72. As shown in
As described above, the cylinder 74 and the water-feeding unit 76 are attached to the coupling member 72. By attaching the case 70 to this coupling member 72, the air/water-feeding unit 16 is assembled. The air/water-feeding unit 16 is attached to the operation portion 14 by coupling the coupling member 72 to the air/water-feeding connector 66. After being attached, by operating the opening and closing valve 82, a gas is fed to the air-feeding duct 78 and a liquid is fed to the water-feeding duct 80.
The opening and closing valve 82 has, as schematically shown in
When the opening and closing valve 82 is operated after the air/water-feeding unit 16 is attached, the gas in the cylinder 74 is fed to the air-feeding tube 62B via the air-feeding duct 78, and a predetermined pressure is applied to the air-feeding tube 62B. Simultaneously, the gas in the cylinder 74 is fed to the inside of the housing case 90 (that is, between the housing case 90 and the pouched member 92) via the branched-feeding duct 78A, whereby a predetermined pressure is applied to the outside of the pouched member 92. Thereby, the liquid filled in the pouched member 92 is fed to the water-feeding tube 63B via the water-feeding duct 80, and a predetermined pressure is applied to the water-feeding tube 63B. In this state, by depressing the air/water-feeding button 20 of
The cylinder member 100 is formed into a roughly cylindrical shape, and to the bottom thereof, the air-feeding tube 62A is connected. At predetermined positions on the side surface of the cylinder member 100, the air-feeding tube 62B, the water-feeding tube 63A, and the water-feeding tube 63B are connected.
A spring 108 is provided at the upper side of the cylinder 100, and this spring 108 presses the outer piston member 102 upward. To the lower end of the outer piston member 102, a bottom plate 112 having a hole 112A is attached. On the bottom plate 112, a spring 110 is provided, and this spring 110 presses the inner piston member 104 upward. Therefore, as shown in
On the outer circumferential surface of the outer piston member 102, a groove 102A is formed in one turn around the circumference. This groove 102A communicates the water-feeding tube 63A with the water-feeding tube 63B only in the second depressed state of
In addition, on the outer circumferential surface of the outer piston member 102, a groove 102B is formed in one turn around the circumference, and furthermore, a through hole 102C pierced through the groove 102B and the inner circumferential surface of the outer piston member 102 is formed. The groove 102B is formed so as to communicate with the air-feeding tube 62B in the unoperated state of
On the other hand, inside the inner piston member 104, an air-feeding duct 104A that communicates the outer circumferential surface and the bottom surface of the inner piston member is formed. This air-feeding duct 104A is formed so as to communicate with the through hole 102C of the outer piston member 102 in the first depressed state of
According to the valve structure formed as described above, in the unoperated state of
As shown in
As shown in
In the water feeding operation described above, the outside of the pouched member 92 is always pressurized by a predetermined pressure by the gas from the cylinder 74, and in this state, the pressure inside the pouched member 92 is released by an operation on the air/water-feeding valve 64, whereby the pouched member 92 is pressurized by the gas outside and gradually crushed, the inner capacity thereof is gradually reduced, whereby the liquid is fed. Hereinafter, the state of the pouched member 92 in the water feeding operation is described.
By feeding the liquid filled in the pouched member 92 by thus feeding the gas to the outside of the pouched member 92, the liquid can always be fed from the pouched member 92 regardless of the posture of the water-feeding unit 76. Therefore, the water feeding operation can be reliably performed regardless of the posture of the operation portion 14 attached with the air/water-feeding unit 16.
According to the water-feeding unit 76 described above, a liquid is filled inside the pouched member 92, and this liquid does not come into contact with the gas outside and is not contaminated. Therefore, even when a sterile water is used as the liquid in the pouched member 92, there is no possibility that the liquid is contaminated, so that a clean liquid can always be fed.
Furthermore, according to the water-feeding unit 76 described above, the inner capacity of the pouched member 92 decreases so as to squeeze out the liquid filled inside, so that the liquid in the pouched member 92 can be used to the last drop. Therefore, the amount of liquid to be housed inside the pouched member 92 can be reduced. Thereby, the water-feeding unit 76 can be reduced in size and weight, so that the operation portion 14 can be reduced in size and weight, whereby the portability is improved.
Next, the suction unit 18 is explained.
The case 120 of the suction unit 18 can be disposed at any location as long as it is retained without change in posture, and for example, it is attached to a belt or pocket of an operator, hung down from an engaging portion of an examination stage (bed), or hung down from a curtain rail provided above the examination stage.
To the upper side of the liquid receiver tank 124, two pipes 128 and 130 are connected. The upper end of the pipe 128 is drawn out of the case 120, and to the upper end of this pipe 128, the end of the tube 17 is detachably attached. The other end of the tube 17 is detachably connected to a suction connector 56 of the operation portion 14 of the endoscope 10. Thereby, the inside of the liquid receiver tank 124 is communicated with the suction tube 52B via the pipe 128 and the tube 17.
On the other hand, the pipe 130 is connected to a suction port 126C of a nozzle unit 126. The nozzle unit 126 is a vacuum generator using the venturi effect, and has, as shown in
According to the nozzle unit 126 constructed as described above, when a gas is fed from the air supply port 126A, the gas is jetted from the nozzle 132 and flows into the diffuser 134, and at this time, the gas around the unit is led into the diffuser 134 and suctioned from the suction port 126C. Thereby, a suction force can be generated at the suction port 126C. The gas flown in the diffuser 134 is exhausted to the outside from the exhaust port 126B.
As shown in
The cylinder member 150 is roughly cylindrical, and to its bottom, the suction tube 52A is connected. To a predetermined position on the side surface of the cylinder member 150, the suction tube 52B is connected. At the upper side of the cylinder member 150, a spring 156 is provided, and this spring 156 presses the piston member 152 upward. Thereby, as shown in
A flow channel 152A is formed inside the piston member 152. This flow channel 152A is formed axially from the bottom of the piston member 152, and further communicated with the side surface of the piston member 152. The flow channel 152A is formed so as to communicate with the suction tube 52B in the depressed state of
The suction valve 54 is provided with a sensor 140 that detects depression of the piston member 152. The sensor 140 comprises, for example, contact sensors 140A and 140B, and the contact sensor 140A is attached to the lower end of the piston member 152, and the contact sensor 140B is attached to the bottom of the cylinder member 150. The contact sensors 140A and 140B come into contact with each other in the depressed state of
As described above, the sensor 140 is connected to the solenoid valve 136 of
Action of the endoscope 10 constructed as described above is explained.
As shown in
According to the embodiment, the cylinder 74 for air/water feeding is attached to the operation portion 14, so that the cable to connect the operation portion 14 and peripheral equipment for air/water feeding becomes unnecessary.
Furthermore, according to this embodiment, the air/water feeding operation is performed with the cylinder 74, so that the electrical power becomes unnecessary at the time of air/water feeding. Therefore, the power consumption of the entire endoscope 10 can be reduced, and as the battery to be loaded in the operation portion 14, a small-capacity, small-sized, and light-weight one can be used. Thereby, according to the embodiment, the operation portion 14 can be reduced in size and weight.
As described above, according to the embodiment, the operation portion 14 can be reduced in weight and size, and the cable extended from the operation portion 14 is eliminated, so that an endoscope 10 with excellent portability can be provided.
In addition, according to the embodiment, for the air/water valve 64, a structure without leakage of the gas when the tube is in an unoperated state is used, so that the consumption of the gas in the cylinder 74 can be reduced. Therefore, a cylinder 74 that is small in capacity, size, and weight can be used, whereby the operation portion 14 can be further reduced in size and weight.
Moreover, according to the embodiment, the cylinder 74 and the water-feeding unit 76 are integrated to form an air/water-feeding unit 16, so that the air-feeding duct and water-feeding duct can be connected simultaneously. In addition, by integrating the cylinder 74 and the water-feeding unit 76 as an air/water-feeding unit 16, the duct for the gas to be fed to the water-feeding unit 76 from the cylinder 74 (that is, the branched duct 78A) can be provided in the air/water-feeding unit 16, so that the duct construction on the endoscope 10 side can be simplified, and maintenance such as cleaning and sterilization can be easily performed.
In the embodiment described above, the air/water-feeding cylinder 74 (see
The air/water-feeding unit 160 is mainly formed by a case 70, a coupling member 72 serving as a cover of this case 70, a cylinder 74 to be housed inside the case 70, a water-feeding unit 76, a nozzle unit 126 and a liquid receiver tank 124.
The air-feeding duct 78 inside the coupling member 72 is branched at a position closer to the cylinder 74 than the regulator 84, and in this branched-feeding duct 78B, a regulator 161 and a solenoid valve 136 are disposed. The solenoid valve 136 is electrically connected to the sensor 140 of the suction valve 54, and when the suction valve 54 is operated, the solenoid valve 136 is opened to communicate the branched-feeding duct 78B. The regulator 84 adjusts the gas flowing in the duct to a pressure suitable for an air-feeding operation, and the regulator 161 adjusts the gas flowing in the duct to a pressure suitable for a suctioning operation.
The distal end of the branched-feeding duct 78B is connected to the air supply port 126A of the nozzle unit 126. In the nozzle unit 126, an exhaust port 126B is formed outward, and a suction port 126C is connected to the liquid receiver tank 124 via the pipe 130. The liquid receiver tank 124 communicates with a pipe 128, and this pipe 128 is connected to the suction tube 52B of the operation portion 14. Therefore, when the suction force inside the suction port 126C of the nozzle unit 126 is generated, the suction force is given to the suction tube 52B via the pipe 130, the liquid receiver tank 124, and the pipe 128. Inside the liquid receiver tank 124, an air-liquid separating filter 162 is provided so as to prevent the liquid from flowing into the nozzle unit 126.
In the endoscope constructed as described above, when the suction valve 54 is operated by the suction button 22, the sensor 140 detects this and the opening and closing valve 136 is opened. Thereby, the gas in the cylinder 74 is fed into the air supply port 126A of the nozzle unit 126, and a suction force is generated at the suction port 126C. Then, this suction force is transmitted to the suction tube 52B, and further transmitted to the suction tube 52A, whereby a suctioning object such as a body fluid and filth is suctioned from the forceps opening 50 at the distal end. Thereby, the suctioning object is suctioned into the liquid receiver tank 124.
Thus, according to the endoscope of
On the other hand, to the air supply port 126A of the nozzle unit 126, the air-feeding tube 62C is connected, and this air-feeding tube 62C is connected to a suction valve 166. To the suction valve 166, the air-feeding tube 62B is branched and connected, and by operating the suction valve 166, the air-feeding tube 62B and the air-feeding tube 62C are communicated with each other.
The cylinder member 170 is roughly cylindrical, and to its bottom, the suction tube 52A is connected. To predetermined positions on the side surface of the cylinder member 170, the suction tube 52B, the air-feeding tube 62B, and the air-feeding tube 62C are connected. At the upper part of the cylinder member 170, a spring 176 is provided, and this spring 176 presses the piston member 172 upward. Therefore, as shown in
A flow channel 172A is formed inside the piston member 172. This flow channel 172A is formed axially from the bottom surface of the piston member 172, and communicated with the side surface of the piston member 172. The flow channel 172A is formed so as to communicate with the suction tube 52B in the depressed state of
On the outer circumferential surface of the piston member 172, a groove 172B is formed in one turn around the circumference. This groove 172B is formed so as to connect the air-feeding tube 62B and the air-feeding tube 62C to each other in the depressed state of
According to the suction valve 166 constructed as described above, in the unoperated state of
As shown in
According to the endoscope of
In the endoscope 10 of the embodiment described above, the cylinder 74 is attached to the operation portion 14 via the coupling member 72, however, it is also possible that the cylinder 74 is directly attached to the operation portion 14. In addition, in the above-described embodiment, the cylinder 74 is attached to the outside of the operation portion 14, however, it is also possible that the cylinder 74 is attached to the inside of the operation portion 14. Furthermore, in the above-described embodiment, the cylinder 74 and the water-feeding unit 76 are integrated as an air/water-feeding unit 16 and are attached integrally to the operation portion 14, however, without being limited to this, it is also possible that the cylinder 74 and the water-feeding unit 76 are separately attached to the operation portion 14.
Moreover, the embodiment described above relates to an example of an endoscope having both the air-feeding section and the water-feeding section, however, the invention is also applicable to an endoscope having only an air-feeding section like a bronchoscope.
According to the invention, a cylinder is attached to the operation portion so as to feed a gas, so that the cable for feeding a gas extended from the operation portion becomes unnecessary. In addition, according to the invention, the electrical power becomes unnecessary when feeding the gas, so that the power consumption of the endoscope can be reduced, and a small-sized and light-weight battery can be loaded in the operation portion, whereby the portability is increased.
The entire disclosure of each and every foreign patent application from which the benefit of foreign priority has been claimed in the present application is incorporated herein by reference, as if fully set forth.
Patent | Priority | Assignee | Title |
10758647, | Jun 16 2017 | KARL STORZ SE & CO KG | Medical push button valve |
12075979, | Jul 11 2019 | Boston Scientific Scimed, Inc. | Endoscope air/water flush adaptor and method |
9161680, | Nov 26 2013 | UNITED STATES ENDOSCOPY GROUP, INC | Disposable air/water valve for an endoscopic device |
Patent | Priority | Assignee | Title |
3845765, | |||
3893649, | |||
4258721, | Jan 26 1978 | Self-contained portable hysteroscope | |
4552130, | Mar 01 1983 | Olympus Optical Co., Ltd. | Air and liquid supplying device for endoscopes |
4748970, | May 30 1986 | Olympus Optical Co., Ltd. | Endoscope systems |
4760838, | Jun 12 1986 | Olympus Optical Co., Ltd. | Endoscope apparatus and air-/liquid-supply device therefor |
4771766, | Jul 08 1986 | Kabushiki Kaisha Machida Seisakusho | Guide tube assembly of endoscope |
4800869, | Feb 13 1987 | Olympus Optical Co. Ltd. | Endoscope |
5297537, | Oct 22 1990 | Endoscopy Support Services, Inc. | Disposable liquid supply kit for use in an endoscope |
5554097, | Oct 05 1994 | United States Surgical Corporation | Surgical instrumentation kit |
5630783, | Aug 11 1995 | Portable cystoscope | |
5674183, | Dec 26 1994 | Adachi Company | Fiberscopes and spray modules |
6209596, | Mar 22 2000 | Method and device for mounting a flexible bag | |
6428507, | Nov 10 1995 | ERBE ELEKTROMEDIZIN GMBH | Method and device for rinsing |
6702738, | Aug 31 2001 | PENTAX Corporation | Portable endoscope with liquid and gas supply apparatus |
6764442, | Aug 10 2001 | PENTAX Corporation | Liquid and gas supply apparatus and portable endoscope with the same |
6855109, | Jul 18 2001 | Hoya Corporation | Portable endoscope |
20030018238, | |||
20030032862, | |||
EP721763, | |||
JP177704, | |||
JP2003126026, | |||
JP200352620, | |||
JP200370737, | |||
JP2006175221, | |||
JP54110638, | |||
JP5680228, | |||
JP62200302, | |||
JP63249543, | |||
JP8243070, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 24 2006 | KOHNO, SHINICHI | Fujinon Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017701 | /0547 | |
Mar 30 2006 | Fujinon Corporation | (assignment on the face of the patent) | / | |||
Feb 02 2009 | Fujinon Corporation | FUJIFILM Corporation | MERGER SEE DOCUMENT FOR DETAILS | 029309 | /0415 |
Date | Maintenance Fee Events |
Jan 24 2013 | ASPN: Payor Number Assigned. |
Mar 18 2016 | REM: Maintenance Fee Reminder Mailed. |
Aug 07 2016 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Aug 07 2015 | 4 years fee payment window open |
Feb 07 2016 | 6 months grace period start (w surcharge) |
Aug 07 2016 | patent expiry (for year 4) |
Aug 07 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 07 2019 | 8 years fee payment window open |
Feb 07 2020 | 6 months grace period start (w surcharge) |
Aug 07 2020 | patent expiry (for year 8) |
Aug 07 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 07 2023 | 12 years fee payment window open |
Feb 07 2024 | 6 months grace period start (w surcharge) |
Aug 07 2024 | patent expiry (for year 12) |
Aug 07 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |