Disclosed are bias charge rollers having an overcoat layer. The overcoat layer comprises an acrylonitrile-butadiene-styrene (abs) terpolymer and metal oxide particles optionally doped with a doping agent. The resulting bias charge rollers have reduced streaking and increased service lifetimes.
|
1. A bias charge roller, comprising:
a core;
a conductive layer; and
an overcoat layer which includes metal oxide particles and an acrylonitrile-butadiene-styrene (abs) terpolymer.
11. A cartridge for applying an electrical charge to an imaging member, comprising:
a bias charge roller to be situated in proximity to a surface of the associated imaging member; and
a power interface for supplying a voltage to the bias charge roller;
wherein the bias charge roller comprises a core, a conductive layer, and an overcoat layer; and
wherein the overcoat layer comprises metal oxide particles and an abs terpolymer.
16. An image forming apparatus for forming images on a recording medium comprising:
a) an electrophotographic imaging member having a charge-retentive surface to receive an electrostatic latent image thereon, wherein the electrophotographic imaging member comprises a substrate; an electrically conductive layer when the substrate is not electrically conductive; a charge generating layer; and a charge transport layer;
b) a development component to apply a developer material to the charge-retentive surface to develop the electrostatic latent image to form a developed image on the charge-retentive surface;
c) a transfer component for transferring the developed image from the charge-retentive surface to another member or a copy substrate;
d) a fusing member to fuse the developed image to the copy substrate; and
e) a bias charge roller for applying a charge to the charge-retentive surface;
wherein the bias charge roller comprises a core, a conductive layer, and an overcoat layer which includes an abs terpolymer and metal oxide particles.
3. The bias charge roller of
5. The bias charge roller of
6. The bias charge roller of
7. The bias charge roller of
8. The bias charge roller of
9. The bias charge roller of
10. The bias charge roller of
14. The apparatus of
15. The apparatus of
18. The image forming apparatus of
19. The image forming apparatus of
20. The image forming apparatus of
|
The present disclosure relates to overcoat layers useful in bias charge rollers, imaging apparatuses, and the rollers and apparatuses themselves. Among other advantages, the overcoat layers improve the lifetimes of the rollers and apparatuses while limiting streaking.
Electrostatographic and xerographic reproductions may be initiated by depositing a uniform charge on an imaging member, i.e. photoreceptor, followed by exposing the imaging member to a light image of an original document. Exposing the charged imaging member to a light image causes discharge in areas corresponding to non-image areas of the original document while the charge is maintained on image areas, creating an electrostatic latent image of the original document on the imaging member. The latent image is subsequently developed into a visible image by depositing a charged developing material, i.e. toner, onto the photoconductive surface layer, such that the developing material is attracted to the charged image areas on the imaging member. Thereafter, the developing material is transferred from the imaging member to a copy sheet or some other image support substrate to which the image may be permanently affixed for producing a reproduction of the original document. In a final step in the process, the imaging member is cleaned to remove any residual developing material therefrom, in preparation for subsequent imaging cycles.
Various devices and apparatuses have been used to create a uniform electrostatic charge or charge potential on the photoconductive surface of an imaging member before forming the latent image thereon. Charging of the imaging member may be broken down into two types: noncontact and contact charging. Traditionally, noncontact charging has been used. In this method, corona generating devices are utilized to apply a charge to the imaging member. In a typical corona generating device, a suspended electrode, or coronode, comprising a thin conductive wire is partially surrounded by a conductive shield. The device is placed in close proximity to the photoconductive surface of the imaging member. The coronade is electrically biased to a high voltage potential, causing ionization of surrounding air which results in the deposit of an electrical charge on an adjacent surface, namely the photoconductive surface of the imaging member.
Several problems have historically been associated with corona generating devices. Problems include the use of very high voltages, i.e. from 3,000 to 8,000 V, requiring the use of special insulation, inordinate maintenance of corotron wires, low charging efficiency, the need for erase lamps and lamp shields, arcing caused by non-uniformities between the coronode and the surface being charged, vibration and sagging of corona generating wires, contamination of corona wires, and, in general, inconsistent charging performance due to the effects of humidity and airborne chemical contaminants on the corona generating device.
Perhaps the most significant problem with corona generating devices is the generation of ozone and nitrogen oxides. Corona charging ionizes the air between the charging device and the imaging member and some diatomic oxygen (O2) is inevitably converted to ozone (O3). Ozone poses well-documented health and environmental hazards. Nitrogen oxides oxidize various machine components, adversely affecting the quality of the final output print produced.
A bias charge roller is a contact charger that has been developed and overcomes some of the deficiencies of corona generating devices. When used to charge an imaging member, a roller used to create a charge on another surface or substrate is commonly referred to as a bias charge roller. When used to charge an intermediate transfer member that transfers a developed image from an imaging member to a substrate member, this roller is sometimes called a bias transfer roll. Although both may differ in minor details particular to their applications, a bias transfer roll should also be considered a bias charge roller for purposes of this application.
Imaging apparatuses comprising bias charge rollers have a power supply for providing a voltage to the bias charge roller. The power supply may be a part of the bias charge roller or may be a separate component.
Bias charge rollers require their outer layer to have a resistivity within a desired range. Materials with resistivities which are too low will cause shorting and/or unacceptably high current flow to the imaging member. Materials with too high resistivities will require unacceptably high voltages. Other problems which can result if the resistivity is not within the required range include nonconformance at the contact nip and poor toner releasing properties. These adverse effects can also result in the bias charge roller having non-uniform resistivity across the length of the contact member. Other problems include resistivity that is susceptible to changes in temperature, relative humidity, and running time.
Bias charge rollers also cause wear and tear to imaging members because they physically contact the imaging member. One of the more common problems is the appearance of streaks along the process direction, i.e. the circumference, or white and dark spots associated with surface damage. These streaks may result in print defects that can shorten the lifetime of the bias charge roller, the imaging member, and the ink or toner cartridge. Streaking usually develops as a result of the degradation of the bias charge roller material and/or the buildup of debris along the process direction of the roller. Defects include scratches, abrasions, potholes, and the like.
It would be desirable to develop a bias charge roller that reduces streaking and has an increased service lifetime.
The present application discloses, in various embodiments, overcoat layers comprising an acrylonitrile-butadiene-styrene (ABS) terpolymer and metal oxide particles optionally doped with a doping agent. Bias charge rollers which comprise the overcoat layers and imaging apparatuses comprising the bias charge rollers are also disclosed. The overcoat layers reduce streaking and increase the service lifetime of the bias charge rollers.
In embodiments, a bias charge roller is disclosed which comprises a conductive core and an overcoat layer. The overcoat layer comprises an ABS terpolymer and metal oxide particles optionally doped with a doping agent.
The metal oxide may be titanium dioxide (TiO2).
The doping agent may be iron. The doping agent may also be antimony.
The metal oxide particles may comprises from about 40 to about 60 wt % of the overcoat layer.
The ABS terpolymer may comprise from about 40 to about 60 wt % of the overcoat layer.
The overcoat layer may have a thickness of from 1 μm to 15 μm.
The ABS terpolymer may comprises from about 15 to about 35 wt % acrylonitrile, from about 5 to about 30 wt % butadiene, and from about 40 to about 60 wt % styrene.
The doping agent may comprise from about 15 to about 50 wt % of the total weight of the metal oxide particles.
The metal oxide particles may have a surface resistivity of from 105 to 1014 Ω/sq.
In other embodiments, an apparatus for applying an electrical charge to a member to be charged is disclosed. The apparatus comprises a power supply for supplying a voltage and a bias charge roller situated in proximity to a surface of the member to be charged. The bias charge roller comprises an overcoat layer comprising an ABS terpolymer and metal oxide particles optionally doped with a doping agent.
An image forming apparatus for forming images on a recording medium is also disclosed. The image forming apparatus comprises an electrophotographic imaging member having a charge-retentive surface to receive an electrostatic latent image thereon, a development component to apply a developer material to the charge-retentive surface to develop the electrostatic latent image to form a developed image on the charge-retentive surface, a transfer component for transferring the developed image from the charge-retentive surface to another member or a copy substrate, a fusing member to fuse the developed image to the copy substrate, and a bias charge roller for applying a charge to the charge-retentive surface. The electrophotographic imaging member comprises a substrate, an electrically conductive layer when the substrate is not electrically conductive, a charge generating layer, and a charge transport layer. The bias charge roller comprises an overcoat layer comprised of an ABS terpolymer and metal oxide particles optionally doped with a doping agent.
These and other non-limiting characteristics of the disclosure are more particularly disclosed below.
The following is a brief description of the drawings, which are presented for the purposes of illustrating the exemplary embodiments disclosed herein and not for the purposes of limiting the same.
A more complete understanding of the components, processes, and apparatuses disclosed herein can be obtained by reference to the accompanying drawings. These figures are merely schematic representations based on convenience and the ease of demonstrating the present disclosure, and are, therefore, not intended to indicate relative size and dimensions of the devices or components thereof and/or to define or limit the scope of the exemplary embodiments.
Although specific terms are used in the following description for the sake of clarity, these terms are intended to refer only to the particular structure of the embodiments selected for illustration in the drawings, and are not intended to define or limit the scope of the disclosure. In the drawings and the following description below, it is to be understood that like numeric designations refer to components of like function.
The modifier “about” used in connection with a quantity is inclusive of the stated value and has the meaning dictated by the context (for example, it includes at least the degree of error associated with the measurement of the particular quantity). When used in the context of a range, the modifier “about” should also be considered as disclosing the range defined by the absolute values of the two endpoints. For example, the range of “from about 2 to about 10” also discloses the range “from 2 to 10”.
The present disclosure relates to overcoat layers that are useful in bias charge rollers of imaging apparatuses. The overcoat layers comprise an acrylonitrile-butadiene-styrene (ABS) terpolymer and metal oxide particles. The metal oxide particles can be doped with a doping agent. Bias charge rollers containing the overcoat layer are disclosed.
The present disclosure also relates to a cartridge to be placed in an imaging apparatus. The cartridge is useful for applying an electrical charge to an associated imaging member in the imaging apparatus. The cartridge comprises (1) a bias charge roller that can be situated in proximity to a surface of the imaging member and (2) a power supply for supplying a voltage to the bias charge roller. The bias charge roller comprises an overcoat layer comprised of an ABS terpolymer and metal oxide particles.
Also disclosed is an image forming apparatus for forming images on a recording medium. The image forming apparatus comprises an electrophotographic imaging member having a charge-retentive surface to receive an electrostatic latent image thereon, a development component to apply a developer material to the charge-retentive surface to develop the electrostatic latent image to form a developed image on the charge-retentive surface, a transfer component for transferring the developed image from the charge-retentive surface to another member or a copy substrate, a fusing member to fuse the developed image to the copy substrate, and a bias charge roller for applying a charge to the charge-retentive surface. The electrophotographic imaging member comprises a substrate, an electrically conductive layer when the substrate is not electrically conductive, a charge generating layer, and a charge transport layer. The bias charge roller comprises an overcoat layer comprised of an ABS terpolymer and metal oxide particles.
In
The overcoat layer for the bias charge roller should have a surface resistivity of from 105 to 1013 ohm/sq in order to achieve good print quality. The overcoat layer should adhere well to the conductive layer. As previously mentioned, the overcoat layer comprises an acrylonitrile-butadiene-styrene (ABS) terpolymer and metal oxide particles. The ABS terpolymer may comprise from about 30 to about 80 wt % or from about 40 to about 60 wt % of the overcoat layer. In particular embodiments, the ABS terpolymer comprises about 50 wt % of the overcoat layer. Acrylonitrile may comprise from about 15 to about 35 wt % of the ABS terpolymer. Butadiene may comprise from about 5 to about 30 wt % of the ABS terpolymer. Styrene may comprise from about 40 to about 60 wt % of the ABS terpolymer.
The metal oxide particles may comprise from about 20 to about 70 wt % or from about 40 to about 60 wt % of the overcoat layer. In particular embodiments, the metal oxide particles comprise about 50 wt % of the overcoat layer.
The metal oxide may generally be any conductive metal which can be oxidized. In particular embodiments, the metal may be titanium (Ti), tin (Sn), zinc (Zn), indium (In), silicon (Si), aluminum (Al), zirconium (Zr), molybdenum (Mb), nickel (Ni), cerium (Ce), lead (Pb), iron (Fe), or copper (Cu). In specific embodiments, the metal oxide is titanium dioxide (TiO2) or zinc oxide (ZnO).
The metal oxide particles may be surface treated or doped with a doping agent. Use of a doping agent may alter the properties of the metal oxide particles. In particular, the surface resistivity of the metal oxide particles may be affected. The doping agent may be antimony, iron, or aluminum. Surface treatments include, but are not limited to, mixing the metal oxide with aluminum laurate, alumina, zirconia, silica, silane, methicone, dimethicone, sodium metaphosphate, and the like, and mixtures thereof. Commercially available examples of TiO2 include MT-150W™ (surface treatment with sodium metaphosphate, available from Tayca Corporation), STR-60N™ (no surface treatment, available from Sakai Chemical Industry Co., Ltd.), FTL-100™ (no surface treatment, available from Ishihara Sangyo Laisha, Ltd.), STR-60™ (surface treatment with Al2O3, available from Sakai Chemical Industry Co., Ltd.), TTO-55N™ (no surface treatment, available from Ishihara Sangyo Laisha, Ltd.), TTO-55A™ (surface treatment with Al2O3, available from Ishihara Sangyo Laisha, Ltd.), MT-150AW™ (no surface treatment, available from Tayca Corporation), MT-150A™ (no surface treatment, available from Tayca Corporation), MT-100S™ (surface treatment with aluminum laurate and alumina, available from Tayca Corporation), MT-100HD™ (surface treatment with zirconia and alumina, available from Tayca Corporation), MT-100SA™ (surface treatment with silica and alumina, available from Tayca Corporation), and the like. When used, the doping agent may be present in the amount of from about 15 to about 50 wt % by weight of the particles.
The surface resistivity of the optionally doped metal oxide particles may be from about 105 Ω/sq to about 1014 Ω/sq.
The metal oxide may be present in suitable amounts, such as for example, from about 5 to about 80 weight percent, and more specifically, from about 30 to about 70 weight percent, of the overcoat layer. In embodiments, the metal oxide has a diameter of from about 5 to about 300 nanometers. More specifically, the metal oxide may possess a primary particle size diameter of from about 10 to about 25 nanometers, and yet more specifically, about 15 nanometers with an aspect ratio (i.e. ratio of longest axis to shortest axis) of from about 4 to about 5.
The overcoat layer may have a thickness of from about 0.1 μm to about 500 μm, or from about 1 μm to about 50 μm. In particular embodiments, the overcoat layer has a thickness of from 1 μm to 15 μm, including about 5 μm.
The overcoat layer may be applied by any suitable conventional technique such as spraying, dip coating, draw bar coating, gravure coating, silk screening, air knife coating, reverse roll coating, vacuum deposition, chemical treatment and the like. For convenience, the overcoat layer is preferably applied in the form of a dispersion or solution, where the ABS terpolymer and metal oxide particles are dispersed or dissolved in a solvent. Suitable solvents include xylene, 1-butanol, methyl ethyl ketone, and the like and mixtures thereof. The order in which the ingredients are added to the solution/dispersion is not important. The solution/dispersion can be deposited by conventional techniques such as by vacuum, heating and the like. The solvent is removed after deposition of the solution/dispersion by conventional techniques such as by vacuum, heating and the like. The overcoat layer may be cured or dried at a temperature of from about 40 to about 200° C. for a suitable period of time, such as from about 1 minute to about 10 hours, under stationary conditions or in an air flow.
The core 32 of the bias charge roller is used to support the bias charge roller, and may generally be made up of any conductive material. Exemplary materials include aluminum, iron, copper, or stainless steel. The shape of the core may be cylindrical, tubular, or any other suitable shape. The core may have a length of from 200 mm to 700 mm. The diameter of the core may be from about 1 mm to about 20 cm, or from about 5 mm to about 2 cm.
The conductive layer 34 of the bias charge roller surrounds the core 32. The conductive layer comprises a polymeric material such as, for example, neoprene, EPDM rubber, nitrile rubber, polyurethane rubber (polyester type), polyurethane rubber (polyether type), silicone rubber, VITON/FLUOREL rubber, epichlorohydrin rubber, or other similar materials having a DC volume resistivity in the range of 103 to 107 ohm-cm after suitable compounding with a conductive filler such as carbon particles, graphite, pyrolytic carbon, metal oxides, ammonium perchlorates or chlorates, alkali metal perchlorates or chlorates, conductive polymers like polyaniline, polypyrrole, polythiophene, and polyacetylene, and the like. The conductive filler may be present in the amount of from about 1 to about 30 parts by weight per 100 parts by weight of the polymeric material. Desirably, the conductive layer is deformable to ensure close proximity or contact with the imaging member surface. The Shore O hardness is typically from about 15 to about 80. The elastomer may be, for example, urethane rubber, epichlorohydrin elastomers, EPDM rubbers, styrene butadiene rubbers, fluoro-elastomers, silicone rubbers, or any other suitable material. The conductive layer may have any suitable thickness such as, for example, about 10 mm to about 20 cm, preferably from about 50 mm to about 3 cm. It is also possible to use a stiff, non-conformable conductive layer.
The power supply 10 may connect to the bias charge roller 30 via the core 32. The voltage provided by the power supply may be a standard line voltage or other voltage levels or signal frequencies which may be desirable in accordance with other limiting factors dependent upon the individual machine design. The power supply may provide a DC voltage, an AC voltage, or variations thereof.
In some applications, the bias charge roller may be provided in the form of a cartridge for easy insertion and removal from the image forming apparatus. As seen in
The overcoat layer of the present disclosure improves the lifetime of the bias charge roller and has improved print properties over time, i.e. it does not produce dark streaks. The overcoated bias charge roller also displays excellent charge uniformity. The overcoat layer also allows for refurbishing of a used bias charge roller; after applying the overcoat layer to the damaged surface, the bias charge roller can continue to be used.
The bias charge roller may be used in an image forming apparatus that forms images on a recording medium, such as that shown in
Referring to
The present disclosure will further be illustrated in the following non-limiting working examples, it being understood that these examples are intended to be illustrative only and that the disclosure is not intended to be limited to the materials, conditions, process parameters and the like recited herein. All proportions are by weight unless otherwise indicated.
A bias charge roller without an overcoat layer was used for comparison. The bias charge roller was tested for charge uniformity before being tested (i.e. t=0). The bias charge roller was then cycled 50,000 times in a Hodaka wear rate fixture. The bias charge roller was then tested for charge uniformity (t=50,000). The bias charge roller was also print tested in a copier after the wear testing.
An overcoat dispersion was prepared by mixing 50 wt % Sb-doped TiO2 (Passtran Type-IV 4410, commercially available from Mitsui Kinzoku Co., Ltd.) with 50 wt % ABS terpolymer (Blendex 200, commercially available from Chemtura Corp.) in tetrahydrofuran solvent. The sample was ball milled using ⅛″ stainless steel shot for 18 hours. The sample was then filtered through a cotton-tip filter. A 6 μm overcoat layer was coated on a bias charge roller identical to the one used in Comparative Example 1 using a Tsukiage coater. The bias charge roller was then dried in a convection oven for 10 minutes at 120° C. The resulting overcoat layer was 50 wt % carbon black and 50 wt % ABS terpolymer.
The bias charge roller was tested for charge uniformity at t=0. The bias charge roller was then cycled 50,000 times in a Hodaka wear rate fixture, and subjected to charge uniformity testing using the same procedure used at t=0. The bias charge roller was also print tested in a copier after the wear testing.
The procedure from Example 1 was followed except 50 wt % Fe-doped TiO2 (commercially available as TTO-F-1 from Ishihara Sangyo Kaisha, Ltd.) was used instead of 50 wt % Sb-doped TiO2.
The procedure from Example 1 was followed except 50 wt % undoped TiO2 (commercially available as MT-150W from Tayca Corp.) was used instead of 50 wt % Sb-doped TiO2.
The charge uniformity tests for Comparative Example 1 are shown in
Starting torque cycling was measured by running each of the bias charge rollers in a fixture equipped with a torque transducer. The results are shown in
The surface resistivity of the metal oxide particles of Examples 1-3 was measured using a Hiresta UP Resistivity Meter with a supply voltage of 10V. The results are shown in Table 1.
TABLE 1
Metal Oxide Particle
Surface Resistivity (Ω/sq)
Sb-doped TiO2
1.53 × 107
Fe-doped TiO2
2.06 × 1013
TiO2
4.54 × 1010
The results showed that the surface resistivity of the overcoat layers fell within the range needed to produce acceptable charge uniformity and print quality.
While particular embodiments have been described, alternatives, modifications, variations, improvements, and substantial equivalents that are or may be presently unforeseen may arise to applicants or other skilled in the art. Accordingly, the appended claims as filed and as they are amended are intended to embrace all such alternatives, modifications, variations, improvements, and substantial equivalents.
Lin, Liang-Bih, Gilmartin, Brian P., Koval, Jeanne M., Stuckey, Aaron M.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3684364, | |||
5248553, | Mar 16 1989 | TOYO INK MANUFACTURING CO , LTD | Coated molded article |
5613173, | Dec 22 1995 | Xerox Corporation | Biased roll charging apparatus having clipped AC input voltage |
6141516, | Jun 28 1996 | Xerox Corporation | Fluorinated carbon filled fluoroelastomer outer layer |
6807389, | Dec 13 2002 | Xerox Corporation | Bias charge roller with optimally induced AC corona |
6842594, | Dec 13 2002 | Xerox Corporation | Intermittent DC bias charge roll AC cleaning cycle |
6993270, | Oct 18 2002 | Seiko Epson Corporation | Belt member incorporated in image forming apparatus |
7177572, | Jun 25 2004 | Xerox Corporation | Biased charge roller with embedded electrodes with post-nip breakdown to enable improved charge uniformity |
7340200, | Jan 09 2004 | Ricoh Company, LTD | Charging unit and image forming apparatus incorporating the unit |
7623812, | Apr 28 2006 | Sharp Kabushiki Kaisha | Image forming apparatus, charging roller, production method of charging roller, production apparatus of charging roller |
20070003315, | |||
20080032219, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 12 2010 | KOVAL, JEANNE M | Xerox Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023946 | /0861 | |
Feb 12 2010 | STUCKEY, AARON M | Xerox Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023946 | /0861 | |
Feb 12 2010 | GILMARTIN, BRIAN P | Xerox Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023946 | /0861 | |
Feb 12 2010 | LIN, LIANG-BIH | Xerox Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023946 | /0861 | |
Feb 17 2010 | Xerox Corporation | (assignment on the face of the patent) | / | |||
Nov 07 2022 | Xerox Corporation | CITIBANK, N A , AS AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 062740 | /0214 | |
May 17 2023 | CITIBANK, N A , AS AGENT | Xerox Corporation | RELEASE OF SECURITY INTEREST IN PATENTS AT R F 062740 0214 | 063694 | /0122 | |
Jun 21 2023 | Xerox Corporation | CITIBANK, N A , AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 064760 | /0389 | |
Nov 17 2023 | Xerox Corporation | JEFFERIES FINANCE LLC, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 065628 | /0019 | |
Feb 06 2024 | Xerox Corporation | CITIBANK, N A , AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 066741 | /0001 | |
Feb 06 2024 | CITIBANK, N A , AS COLLATERAL AGENT | Xerox Corporation | TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT RF 064760 0389 | 068261 | /0001 |
Date | Maintenance Fee Events |
Jul 27 2012 | ASPN: Payor Number Assigned. |
Jan 22 2016 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Feb 14 2020 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jan 31 2024 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 21 2015 | 4 years fee payment window open |
Feb 21 2016 | 6 months grace period start (w surcharge) |
Aug 21 2016 | patent expiry (for year 4) |
Aug 21 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 21 2019 | 8 years fee payment window open |
Feb 21 2020 | 6 months grace period start (w surcharge) |
Aug 21 2020 | patent expiry (for year 8) |
Aug 21 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 21 2023 | 12 years fee payment window open |
Feb 21 2024 | 6 months grace period start (w surcharge) |
Aug 21 2024 | patent expiry (for year 12) |
Aug 21 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |