A robot obstacle detection system including a robot housing which navigates with respect to a surface and a sensor subsystem aimed at the surface for detecting the surface. The sensor subsystem includes an emitter which emits a signal having a field of emission and a photon detector having a field of view which intersects the field of emission at a region. The subsystem detects the presence of an object proximate the mobile robot and determines a value of a signal corresponding to the object. It compares the value to a predetermined value, moves the mobile robot in response to the comparison, and updates the predetermined value upon the occurrence of an event.
|
9. A method for operating a mobile robot, the method comprising the steps of:
detecting the presence of a wall;
driving the robot, based on the detecting, to follow the wall until the wall is no longer detected;
rotating the robot to seek the wall while determining:
whether the wall is again detected,
whether the robot is in contact with the wall, and
whether the robot has turned a predetermined angle without detecting or contacting the wall; and
realigning the robot for travel along the wall in response to contacting or again detecting the wall.
11. A method for operating a mobile robot, the method comprising the steps of:
detecting the presence of a wall;
driving the robot, based on the detecting, to follow the wall until the wall is no longer detected;
rotating the robot to seek the wall while determining:
whether the wall is again detected,
whether the robot is in contact with the wall, and
whether the robot has turned a predetermined angle without detecting or contacting the wall; and
detecting a level of ambient light and detecting a level of robot emitted light relative to the ambient light.
13. A method for operating a mobile robot, the method comprising the steps of:
detecting the presence of a wall;
driving the robot, based on the detecting, to follow the wall until the wall is no longer detected;
rotating the robot to seek the wall while determining:
whether the wall is again detected,
whether the robot is in contact with the wall, and
whether the robot has turned a predetermined angle without detecting or contacting the wall; and
varying the radius of rotation of the robot in response to the difference between a detected signal strength and a target signal strength.
10. A method for operating a mobile robot, the method comprising the steps of:
detecting the presence of a wall;
driving the robot, based on the detecting, to follow the wall until the wall is no longer detected;
rotating the robot to seek the wall while determining:
whether the wall is again detected,
whether the robot is in contact with the wall, and
whether the robot has turned a predetermined angle without detecting or contacting the wall; and
terminating a wall seeking routine in response to determining that the robot has turned a predetermined angle without encountering the wall.
12. A method for operating a mobile robot, the method comprising the steps of:
detecting the presence of a wall;
driving the robot, based on the detecting, to follow the wall until the wall is no longer detected; and
rotating the robot to seek the wall while determining:
whether the wall is again detected,
whether the robot is in contact with the wall, and
whether the robot has turned a predetermined angle without detecting or contacting the wall,
wherein driving the robot comprises maintaining a range of detected signal strength as a function of the orientation of the robot with respect to the wall.
14. A method for operating a mobile robot, the method comprising the steps of:
detecting the presence of a wall;
driving the robot, based on the detecting, to follow the wall until the wall is no longer detected;
rotating the robot to seek the wall while determining:
whether the wall is again detected,
whether the robot is in contact with the wall, and
whether the robot has turned a predetermined angle without detecting or contacting the wall; and
terminating a wall following routine in response to determining that the robot has rotated 360 degrees in following the wall or in seeking the wall since last detecting the wall.
1. A method for operating a mobile robot, the method comprising the steps of:
detecting the presence of a wall;
driving the robot, based on the detecting, to follow the wall until the wall is no longer detected; and
rotating the robot to seek the wall while determining:
whether the wall is again detected,
whether the robot is in contact with the wall, and
whether the robot has turned a predetermined angle without detecting or contacting the wall,
wherein detecting comprises defining a finite volume of intersection space between a signal emission region and a detection region and driving the robot comprises causing the robot to be directed back towards the wall while the wall does not occupy the intersection space.
2. The method of
3. The method of
4. The method of
5. The method of
6. The method of
7. The method of
8. The method of
|
This U.S. patent application is a continuation of, and claims priority under 35 U.S.C. §120 from U.S. patent application Ser. No. 11/834,553 filed on Aug. 6, 2007, now U.S. Pat. No. 7,430,455 which is a continuation of Ser. No. 11/166,986, filed on Jun. 24, 2005, which is a continuation-in-part of U.S. patent application Ser. No. 10/453,202, filed on Jun. 3, 2003, now U.S. Pat. No. 7,155,308 which is a continuation-in-part of U.S. patent application Ser. No. 09/768,773, filed on Jan. 24, 2001, now U.S. Pat. No. 6,594,844, which claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application 60/177,703, filed on Jan. 24, 2000. U.S. patent application Ser. No. 11/166,986 also claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application 60/582,992, filed on Jun. 25, 2004. The disclosures of the prior applications are considered part of (and are hereby incorporated by reference in) the disclosure of this application.
This invention relates to an obstacle detection system for an autonomous robot, such as an autonomous cleaning robot.
There is a long felt need for autonomous robotic cleaning and processing devices for dusting, mopping, vacuuming, sweeping, lawn mowing, ice resurfacing, ice melting, and other operations. Although technology exists for complex robots which can, to some extent, “see” and “feel” their surroundings, the complexity, expense and power requirements associated with these types of robotic subsystems render them unsuitable for the consumer marketplace.
The assignee of the subject application has devised a less expensive, battery operated, autonomous cleaning robot which operates in various modes, including random bounce and wall-following modes. In the random bounce mode, the processing circuitry of the robot causes it to move in a straight line until the robot comes into contact with an obstacle; the robot then turns away from the obstacle and heads in a random direction. In the wall-following mode, the robot encounters a wall, follows it for a time, and then returns to the random mode. By using this combination of modes, robotic theory has proven that the floor, including the edges thereof, is adequately covered in an optimal time resulting in a power savings.
Unfortunately, however, presently available sensor subsystems such as sonar sensors for detecting obstacles on or in the floor or for detecting the wall in order to enter the wall-following mode (or to avoid bumping into the wall) are either too complex or too expensive or both. Tactile sensors are inefficient to ensure that walls or other obstacles can be effectively followed at a predetermined distance.
Some existing systems that disclose wall-following modes for autonomous robots are disclosed in International Publication No. WO 02/101477 A2, U.S. patent application Ser. No. 10/453,202 and U.S. Pat. No. 6,809,490, the disclosures of which are herein incorporated by reference in their entireties. In an embodiment of the system disclosed in the U.S. patent and application (and available commercially from iRobot Corporation as the ROOMBA® Robotic Floorvac), analog electronics (i.e., a comparator) are used to determine whether a sensor has detected the wall or not. The system is designed to follow along a wall at a predetermined distance to allow a cleaning mechanism (e.g., a side brush) to clean against a wall. In the ROOMBA® Robotic Floorvac, a mechanical shutter proximate the sensor can be manually adjusted by the user in order to make the robot follow an appropriate distance from the wall. This shutter is used since the sensor can be sensitive to the albedo of the wall. This manually adjusted shutter, while effective, detracts from the autonomous nature of mobile robots; thus, a fully independent wall-following scheme for a mobile robot is needed.
Accordingly, the control system of the present invention utilizes, in one embodiment, a synchronous detection scheme inputted directly into an A/D port on a microprocessor of the robot. This allows sensor values, and not merely the presence or absence of a wall, to be used to control the robot. The synchronous detection algorithm also allows readings to be taken with and without the sensor emitter powered, which allows the system to take into account ambient light.
In one aspect, the invention relates to a robot obstacle detection system that is simple in design, low cost, accurate, easy to implement, and easy to calibrate.
In an embodiment of the above aspect, such a robot detection system prevents an autonomous cleaning robot from driving off a stair or an obstacle that is too high.
In another aspect, the invention relates to a robotic wall detection system that is low cost, accurate, easy to implement, and easy to calibrate.
In an embodiment of the above aspect, such a robot wall detection system effects smoother robot operation in the wall-following mode.
In yet another aspect, the invention relates to a sensor subsystem for a robot that consumes a minimal amount of power.
In still another aspect, the invention relates to a sensor subsystem that is unaffected by surfaces of different reflectivity or albedo.
Another aspect of the invention results from the realization that a low cost, accurate, and easy-to-implement system for either preventing an autonomous robot from driving off a stair or over an obstacle which is too high or too low and/or for more smoothly causing the robot to follow a wall for more thorough cleaning can be effected by intersecting the field of view of a detector with the field of emission of a directed beam at a predetermined region and then detecting whether the floor or wall occupies that region. If the floor does not occupy the predefined region, a stair or some other obstacle is present and the robot is directed away accordingly. If a wall occupies the region, the robot is first turned away from the wall and then turned back towards the wall at decreasing radiuses of curvature until the wall once again occupies the region of intersection to effect smoother robot operation in the wall-following mode.
One embodiment of the invention features an autonomous robot having a housing that navigates in at least one direction on a surface. A first sensor subsystem is aimed at the surface for detecting obstacles on the surface. A second sensor subsystem is aimed at least proximate the direction of navigation for detecting walls. Each subsystem can include an optical emitter which emits a directed beam having a defined field of emission and a photon detector having a defined field of view which intersects the field of emission of the emitter at a finite, predetermined region.
Another embodiment of the robot obstacle detection system of this invention features a robot housing which navigates with respect to a surface and a sensor subsystem having a defined relationship with respect to the housing and aimed at the surface for detecting the surface. The sensor subsystem can include an optical emitter which emits a directed beam having a defined field of emission and a photon detector having a defined field of view which intersects the field of emission of the emitter at a region. A circuit in communication with the detector then redirects the robot when the surface does not occupy the region to avoid obstacles.
In certain embodiments, there are a plurality of sensor subsystems spaced from each other on the housing of the robot and the circuit includes logic for detecting whether any detector has failed to detect a beam from an emitter.
In one embodiment, the robot includes a surface cleaning brush. Other embodiments attach to the robot a buffing brush for floor polishing, a wire brush for stripping paint from a floor, a sandpaper drum for sanding a surface, a blade for mowing grass, etc. The emitter typically includes an infrared light source and, consequently, the detector includes an infrared photon detector. A modulator connected to the infrared light source modulates the directed infrared light source beam at a predetermined frequency, with the photon detector tuned to that frequency. The emitter usually includes an emitter collimator about the infrared light source for directing the beam and the detector then further includes a detector collimator about the infrared photon detector. The emitter collimator and the detector collimator may be angled with respect to the surface to define a finite region of intersection.
One embodiment of the robot wall detection system in accordance with the invention includes a robot housing which navigates with respect to a wall and a sensor subsystem having a defined relationship with respect to the housing and aimed at the wall for detecting the presence of the wall. The sensor subsystem includes an emitter which emits a directed beam having a defined field of emission and a detector having a defined field of view which intersects the field of emission of the emitter at a region. A circuit in communication with the detector redirects the robot when the wall occupies the region.
In another embodiment, there are a plurality of sensor subsystems spaced from each other on the housing of the robot and the circuit includes logic for detecting whether any detector has detected a beam from an emitter.
The circuit includes logic which redirects the robot away from the wall when the wall occupies the region and back towards the wall when the wall no longer occupies the region of intersection, typically at decreasing radiuses of curvature until the wall once again occupies the region of intersection to effect smooth operation of the robot in the wall-following mode.
The sensor subsystem for an autonomous robot which rides on a surface in accordance with this invention includes an optical emitter which emits a directed optical beam having a defined field of emission, a photon detector having a defined field of view which intersects the field of emission of the emitter at a region and a circuit in communication with a detector for providing an output when an object is not present in the region.
If the object is the surface, the output from the circuit causes the robot to be directed to avoid an obstacle. If, on the other hand, the object is a wall, the output from the circuit causes the robot to be directed back towards the wall.
If the object is diffuse, at least one of the detector and the emitter may be oriented normal to the object. Also, an optional lens for the emitter and a lens for the detector control the size and/or shape of the region. A control system may be included and configured to operate the robot in a plurality of modes including an obstacle following mode, whereby said robot travels adjacent to an obstacle. Typically, the obstacle following mode comprises alternating between decreasing the turning radius of the robot as a function of distance traveled, such that the robot turns toward said obstacle until the obstacle is detected, and such that the robot turns away from said obstacle until the obstacle is no longer detected. In one embodiment, the robot operates in obstacle following mode for a distance greater than twice the work width of the robot and less than approximately ten times the work width of the robot. In one example, the robot operates in obstacle following mode for a distance greater than twice the work width of the robot and less than five times the work width of the robot.
In another aspect, the invention relates to a method for operating a mobile robot, the method including the steps of detecting the presence of an object proximate the mobile robot, sensing a value of a signal corresponding to the object, comparing the value to a predetermined value, moving the mobile robot in response to the comparison, and updating the predetermined value upon the occurrence of an event. In another embodiment, the updated predetermined value is based at least in part on a product of the predetermined value and a constant. In certain embodiments, the event may include a physical contact between the mobile robot and the object or may include when a scaled value is less than the predetermined value. In one embodiment, the scaled value is based at least in part on a product of the value and a constant. The step of moving the mobile robot may include causing the robot to travel toward the object, when the value is less than the predetermined value, and/or causing the robot to travel away from the object, when the value is greater than the predetermined value.
In other embodiments, the method includes conditioning the value of the signal corresponding to the object. The detection step of the method may also include a first detection at a first distance to the object, and a second detection at a second distance to the object. The detection step may include emitting at least one signal and/or measuring at least one signal with at least one sensor. Embodiments of the above aspect may average a plurality of signals or filter one or more signals. In certain embodiments, a plurality of sensors are disposed on the mobile robot in a predetermined pattern that minimizes a variation in object reflectivity. Other embodiments vary the power of at least one emitted signal and/or vary the sensitivity of at least one sensor.
In various embodiments of the above aspect, at least one emitted signal or detected signal includes light having at least one of a visible wavelength and an infrared wavelength. In other embodiments of the above aspect, at least one emitted signal or detected signal includes an acoustic wave having at least one of an audible frequency and an ultrasonic frequency. Other embodiments of the above aspect include a mobile robot, the robot having at least one infrared emitter and at least one infrared detector, wherein the infrared emitter and the infrared detector are oriented substantially parallel to each other. In certain embodiments, the signal value corresponds to at least one of a distance to the object and an albedo of the object.
In another aspect, the invention relates to a method for operating a mobile robot, the method including the steps of detecting a presence of an object proximate the mobile robot, detecting an absence of the object, moving the robot a predetermined distance in a predetermined first direction, and rotating the robot in a predetermined second direction about a fixed point. In certain embodiments of the above aspect, the predetermined distance corresponds at least in part to a distance from a sensor located on the robot to a robot wheel axis. In one embodiment, the first direction is defined at least in part by a previous direction of motion of the robot prior to detecting the absence of the object.
In alternative embodiments, the fixed point is a point between a first wheel of the robot and the object. In some embodiments, the first wheel is proximate the object. In other embodiments, rotating the robot may cease on the occurrence of an event, the event including detecting a presence of an object, contacting an object, or rotating the robot beyond a predetermined angle. An additional step of moving in a third direction is included in other embodiments.
Other objects, features and advantages will occur to those skilled in the art from the following description of some embodiments of the invention and the accompanying drawings, in which:
Robotic cleaning device 10,
As delineated in the background of the invention, presently available obstacle sensor subsystems useful in connection with robot 10 are either too complex or too expensive or both. Moreover, robot 10, depicted in
Accordingly, any obstacle sensor subsystem must be inexpensive, simple in design, reliable, must not consume too much power, and must avoid certain obstacles but properly recognize and traverse obstacles which do not pose a threat to the operation of the robot.
Although the following disclosure relates to cleaning robots, the invention hereof is not limited to such devices and may be useful in other devices or systems wherein one or more of the design criteria listed above are important.
In one embodiment, depicted in
In general, for obstacle avoidance, circuitry is added to the robot and connected to detector 56 to redirect the robot when surface 58 does not occupy the region defining the intersection of the field of emission of emitter 52 and the field of view of detector 56. For wall-following, the circuitry redirects the robot when the wall occupies the region defined by the intersection of the field of emission of emitter 52 and the field of view of detector 56. Emitter collimator tube 60 forms directed beam 54 with a predefined field of emission and detector collimator tube 62 defines the field of view of the detector 56. In alternative embodiments, collimator tubes 60, 62 are not used.
In another embodiment, depicted in
The sensor subsystem is calibrated such that when floor or surface 58′,
By tuning the system to simply redirect the robot when there is no detectable overlap, i.e., when the detector fails to emit a signal, the logic interface required between the sensor subsystem and the control electronics (e.g., a microprocessor) is simple to design and requires no or little signal conditioning. The emitted IR beam may be modulated and the return beam filtered with a matching filter in order to provide robust operation in the presence of spurious signals, such as sunlight, IR-based remote control units, fluorescent lights, and the like. Conversely, for the wall sensor embodiment, the system is tuned to redirect the robot when there is a detectable overlap.
In one embodiment, as shown in
In the design shown in
For wall detection, emitter 102 and detector 100 are arranged as shown in
In another embodiment, depicted in
The logic of the circuitry associated with the cliff sensor embodiment modulates the emitter at a frequency of several kilohertz and detects any signal from the detector, step 150,
In the wall detection mode, the logic of the circuitry associated with the sensor subsystem modulates the emitter and detects signals from the detector as before, step 170,
As shown in
As shown in
The robot 600 depicted in
During the wall-following operation depicted in
The robot 600 continues to rotate in a direction R about the rotation point P until one of three events occurs.
The method used in one embodiment for following the wall is explained with reference to
Once the wall-following operational mode, or wall-following behavior of one embodiment is initiated (step 1301), the robot first sets its initial value for the steering at r0. The wall-following behavior then initiates the emit-detect routine in the wall-follower sensor (step 1310). The existence of a reflection for the IR transmitter portion of the sensor translates into the existence of an object within a predetermined distance from the sensor. The wall-following behavior then determines whether there has been a transition from a reflection (object within range) to a non-reflection (object outside of range) (step 1320). If there has been a transition (in other words, the wall is now out of range), the value of r is set to its most negative value and the robot will veer slightly to the right (step 1325). The robot then begins the emit-detect sequence again (step 1310). If there has not been a transition from a reflection to a non-reflection, the wall-following behavior then determines whether there has been a transition from non-reflection to reflection (step 1330). If there has been such a transition, the value of r is set to its most positive value and the robot will veer slightly left (step 1335). In one embodiment, veering or turning is accomplished by driving the wheel opposite the direction of turn at a greater rate than the other wheel (i.e., the left wheel when veering right, the right wheel when veering left). In an alternative embodiment, both wheels may drive at the same rate, and a rearward or forward caster may direct the turn.
In the absence of either type of transition event, the wall-following behavior reduces the absolute value of r (step 1340) and begins the emit-detect sequence (step 1310) anew. By decreasing the absolute value of r, the robot 10 begins to turn more sharply in whatever direction it is currently heading. In one embodiment, the rate of decreasing the absolute value of r is a constant rate dependant on the distance traveled.
The system then looks for either of two conditions to reset the threshold (T): (i) a bump event (i.e. contact with the wall) (step 1430) or (ii) if S times C1 exceeds T (step 1435), where in one embodiment C1 is 0.5. In general, C1 should be between 0 and 1, where a higher value causes the robot to follow closer to the wall. If T is to be reset, it is set to SC1 (step 1440). If neither condition is met, the system continues to move along the wall (step 1420) and take additional sensor readings (step 1425).
In the embodiment of the threshold-adjustment algorithm depicted in
Other embodiments of the wall-following sensor and system include the ability to vary the power or sensitivity of the emitter or detector. A stronger emitted signal, for example, would allow the robot to effectively follow the contours of a wall or other obstacle at a further distance. Such an embodiment would allow a robot to deliberately mop or vacuum, for example, an entire large room following the contours of the wall from the outer wall to the innermost point. This would be an extremely efficient way to clean large rooms devoid of furniture or other obstructions, such as ballrooms, conference centers, etc.
The sensor system may also take readings at various distances from the wall (e.g., at the wall and after a small amount of movement) to set the threshold. Such an embodiment would be particularly useful to increase the likelihood that the robot never touch obstacles (such as installation art pieces in museums) or walls in architecturally sensitive buildings (such as restored mansions and the like). Other embodiments of the wall detection system use multiple receivers at different distances or angles so as to accommodate differences caused by various reflective surfaces or single surfaces having different reflectivities due to surface coloration, cleanliness, etc. For example, some embodiments may have multiple detectors set at different depths and/or heights within the robot housing.
Other embodiments of the sensor subsystem may utilize an emitter to condition the value of the signal that corresponds to an object. For example, the detection sequence may include emitting a signal from an LED emitter and detecting the signal and corresponding value. The system may then detect a signal again, without emitting a corresponding signal. This would allow the robot to effectively minimize the effect of ambient light or walls of different reflectivities.
The wall-follower mode can be continued for a predetermined or random time, a predetermined or random distance, or until some additional criteria are met (e.g., bump sensor is activated, etc.). In one embodiment, the robot continues to follow the wall indefinitely. In another embodiment, minimum and maximum travel distances are determined, whereby the robot will remain in wall-following behavior until the robot has either traveled the maximum distance or traveled at least the minimum distance and encountered an obstacle. This implementation of wall-following behavior ensures the robot spends an appropriate amount of time in wall-following behavior as compared to its other operational modes, thereby decreasing systemic neglect and distributing coverage to all areas. By increasing wall-following, the robot is able to move in more spaces, but the robot is less efficient at cleaning any one space. In addition, by exiting the wall-following behavior after obstacle detection, the robot increases the users' perceived effectiveness.
Theoretically, the optimal distance for the robot to travel in wall-following behavior is a function of room size and configuration and robot size. In a preferred embodiment, the minimum and maximum distance to remain in wall-following are set based upon the approximate room size, the robot's width and a random component, where by the average minimum travel distance is 2 w/p, where w is the width of the work element of the robot and p is the probability that the robot will enter wall-following behavior in a given interaction with an obstacle. By way of example, in one embodiment, w is approximately between 15 cm and 25 cm, and p is 0.095 (where the robot encounters 6 to 15 obstacles, or an average of 10.5 obstacles, before entering an obstacle following mode). The minimum distance is then set randomly as a distance between approximately 115 cm and 350 cm; the maximum distance is then set randomly as a distance between approximately 170 cm and 520 cm. In certain embodiments the ratio between the minimum distance to the maximum distance is 2:3. For the sake of perceived efficiency, the robot's initial operation in an obstacle-following mode can be set to be longer than its later operations in obstacle following mode. In addition, users may place the robot along the longest wall when starting the robot, which improves actual as well as perceived coverage.
The distance that the robot travels in wall-following mode can also be set by the robot depending on the number and frequency of objects encountered (as determined by other sensors), which is a measure of room “clutter.” If more objects are encountered, the robot would wall follow for a greater distance in order to get into all the areas of the floor. Conversely, if few obstacles are encountered, the robot would wall follow less in order to not over-cover the edges of the space in favor of passes through the center of the space. An initial wall-following distance can also be included to allow the robot to follow the wall a longer or shorter distance during its initial period where the wall-following behavior has control.
In one embodiment, the robot may also leave wall-following mode if the robot turns more than, for example, 270 degrees and is unable to locate the wall (or object) or if the robot has turned a total of 360 degrees since entering the wall-following mode.
In certain embodiments, when the wall-following behavior is active and there is a bump, the align behavior becomes active. The align behavior turns the robot counter-clockwise to align the robot with the wall. The robot always turns a minimum angle. The robot monitors its wall sensor and if it detects a wall and then the wall detection goes away, the robot stops turning. This is because at the end of the wall follower range, the robot is well aligned to start wall-following. If the robot has not seen its wall detector go on and then off by the time it reaches its maximum angle, it stops anyway. This prevents the robot from turning around in circles when the wall is out of range of its wall sensor. When the most recent bump is within the side 60 degrees of the bumper on the dominant side, the minimum angle is set to 14 degrees and the maximum angle is 19 degrees. Otherwise, if the bump is within 30 degrees of the front of the bumper on the dominant side or on the non-dominant side, the minimum angle is 20 degrees and the maximum angle is 44 degrees. When the align behavior has completed turning, it cedes control to the wall-following behavior.
For reasons of cleaning thoroughness and navigation, the ability to follow walls is essential for cleaning robots. Dust and dirt tend to accumulate at room edges. The robot therefore follows walls that it encounters to insure that this special area is well cleaned. Also, the ability to follow walls enables a navigation strategy that promotes full coverage. Using this strategy, the robot can avoid becoming trapped in small areas. Such entrapments could otherwise cause the robot to neglect other, possibly larger, areas.
But, it is important that the detected distance of the robot from the wall does not vary according to the reflectivity of the wall. Proper cleaning would not occur if the robot positioned itself very close to a dark-colored wall but several inches away from a light-colored wall. By using the dual collimation system of the subject invention, the field of view of the infrared emitter and detector are restricted in such a way that there is a limited, selectable volume where the cones of visibility intersect. Geometrically, the sensor is arranged so that it can detect both diffuse and specular reflection. Additionally, a manual shutter may be utilized on or in the robot housing to further limit the intersection of the cones of visibility or adjust the magnitude of the detected signal. This arrangement allows the designer to select with precision the distance at which the robot follows the wall independent of the reflectivity of the wall.
One robot system 300,
There may be three or more cliff-detector subsystems, as shown in
In one embodiment, depicted in
C2 (404) is used to block any DC component of the signal, while R8 (407), R12 (408), and U1:B (406) implement an amplifier with a gain of approximately −100. CR2 (410), R5 (414), and C3 (416) implement a peak detector/rectifier. R11 (412) provides a discharge path for C3 (416). The output of this peak detector is then compared to the above mentioned reference voltage by U1:C (420). R4 (422) provide hystersis. R9 (424) is a current limiting resistor used so that the output of U1:C (420) may be used to drive an indicator LED (not shown). Jumper JU1 (426) provides a convenient test point for debugging.
An oscillator circuit as shown in
This embodiment of the invention achieves a high response to the signal of interest, while minimizing the response to unwanted signals, by sampling the photodetector 702 at specific intervals synchronized with the modulated output of the infrared emitter 706. In this embodiment, moving-window averages of four IR-on and four IR-off samples are taken. In the figure, samples 1, 3, 5, and 7 are summed to produce an average IR-on value; samples 2, 4, 6, and 8 are summed to produce an average IR-off value. The difference between those averages represents the signal of interest. Because of the synchronous sampling, stray light, whether DC or modulated, has little effect on the measured signal.
In
In other embodiments, a fiber optic source and detector may be used which operate similar to the sensor subsystems described above. The difference is that collimation is provided by the acceptance angle of two fiber optic cables. The fiber arrangement allows the emitter and detector to be located on a circuit board rather than mounted near the wheel of the robot. The cliff detector and wall detector can also be implemented using a laser as the source of the beam. The laser provides a very small spot size and may be useful in certain applications where the overall expense is not a priority design consideration. Infrared systems are desirable when cost is a primary design constraint. Infrared sensors can be designed to work well with all floor types. They are inexpensive and can be fitted into constrained spaces. In alternative embodiments audible or ultrasonic signals may be utilized for the emitter and/or detector.
Although specific features of the invention are shown in some drawings and not in others, this is for convenience only as each feature may be combined with any or all of the other features in accordance with the invention. The words “including,” “comprising,” “having,” and “with” as used herein are to be interpreted broadly and comprehensively and are not limited to any physical interconnection. Moreover, any embodiments disclosed in the subject application are not to be taken as the only possible embodiments.
Jones, Joseph L., Cross, Matthew, Ozick, Daniel, Casey, Christopher
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
2136324, | |||
2353621, | |||
2770825, | |||
3119369, | |||
3166138, | |||
3333564, | |||
3375375, | |||
3381652, | |||
3457575, | |||
3550714, | |||
3569727, | |||
3674316, | |||
3678882, | |||
3744586, | |||
3756667, | |||
3809004, | |||
3816004, | |||
3845831, | |||
3853086, | |||
3863285, | |||
3888181, | |||
3937174, | Dec 21 1972 | Sweeper having at least one side brush | |
3952361, | Oct 05 1973 | R. G. Dixon & Company Limited | Floor treating machines |
3989311, | May 14 1970 | Particle monitoring apparatus | |
3989931, | May 19 1975 | Rockwell International Corporation | Pulse count generator for wide range digital phase detector |
4012681, | Jan 03 1975 | Curtis Instruments, Inc. | Battery control system for battery operated vehicles |
4070170, | Aug 20 1975 | Aktiebolaget Electrolux | Combination dust container for vacuum cleaner and signalling device |
4099284, | Feb 20 1976 | Tanita Corporation | Hand sweeper for carpets |
4119900, | Dec 21 1973 | MITEC Moderne Industrietechnik GmbH | Method and system for the automatic orientation and control of a robot |
4175589, | Jul 28 1976 | Hitachi, Ltd. | Fluid pressure drive device |
4175892, | May 14 1970 | Particle monitor | |
4196727, | May 19 1978 | PROFESSIONAL MEDICAL PRODUCTS, INC , A DE CORP | See-through anesthesia mask |
4198727, | Jan 19 1978 | Baseboard dusters for vacuum cleaners | |
4199838, | Sep 15 1977 | Aktiebolaget Electrolux | Indicating device for vacuum cleaners |
4209254, | Feb 03 1978 | Thomson-CSF | System for monitoring the movements of one or more point sources of luminous radiation |
4297578, | Jan 09 1980 | Airborne dust monitor | |
4306329, | Dec 31 1978 | Nintendo Co., Ltd. | Self-propelled cleaning device with wireless remote-control |
4309758, | Aug 01 1978 | Imperial Chemical Industries Limited | Driverless vehicle autoguided by light signals and three non-directional detectors |
4328545, | Aug 01 1978 | Imperial Chemical Industries Limited | Driverless vehicle autoguide by light signals and two directional detectors |
4367403, | Jan 21 1980 | RCA Corporation | Array positioning system with out-of-focus solar cells |
4369543, | Apr 14 1980 | Remote-control radio vacuum cleaner | |
4401909, | Apr 03 1981 | FLEET CREDIT CORPORATION, A CORP OF RI | Grain sensor using a piezoelectric element |
4416033, | Oct 08 1981 | HOOVER COMPANY, THE | Full bag indicator |
4445245, | Aug 23 1982 | Surface sweeper | |
4465370, | |||
4477998, | May 31 1983 | Fantastic wall-climbing toy | |
4481692, | Mar 29 1983 | INTERLAVA AG, A SWISS CORP | Operating-condition indicator for vacuum cleaners |
4482960, | Nov 20 1981 | LMI TECHNOLOGIES INC | Robot tractors |
4492058, | Feb 14 1980 | Adolph E., Goldfarb | Ultracompact miniature toy vehicle with four-wheel drive and unusual climbing capability |
4513469, | Jun 13 1983 | Radio controlled vacuum cleaner | |
4518437, | Jul 05 1982 | Sommer, Schenk AG | Method and apparatus for cleaning a water tank |
4534637, | Dec 12 1981 | Canon Kabushiki Kaisha | Camera with active optical range finder |
4556313, | Oct 18 1982 | United States of America as represented by the Secretary of the Army | Short range optical rangefinder |
4575211, | Apr 18 1983 | Canon Kabushiki Kaisha | Distance measuring device |
4580311, | Feb 08 1984 | INTERLAVA AG, A SWISS CORP | Protective device for dust collecting devices |
4601082, | Feb 08 1984 | INTERLAVA AG, A SWISS CORP | Vacuum cleaner |
4618213, | Mar 17 1977 | Applied Elastomerics, Incorporated | Gelatinous elastomeric optical lens, light pipe, comprising a specific block copolymer and an oil plasticizer |
4620285, | Apr 24 1984 | NEC Corporation | Sonar ranging/light detection system for use in a robot |
4624026, | Sep 10 1982 | Tennant Company | Surface maintenance machine with rotary lip |
4626995, | Mar 26 1984 | NDC AUTOMATION, INC | Apparatus and method for optical guidance system for automatic guided vehicle |
4628454, | Jul 13 1982 | Kubota, Ltd. | Automatic running work vehicle |
4638445, | Jun 08 1984 | Autonomous mobile robot | |
4644156, | Jan 18 1984 | ALPS Electric Co., Ltd. | Code wheel for reflective optical rotary encoders |
4649504, | May 22 1984 | CAE Electronics, Ltd. | Optical position and orientation measurement techniques |
4652917, | Oct 28 1981 | Honeywell Inc. | Remote attitude sensor using single camera and spiral patterns |
4654492, | Apr 12 1984 | BBC Aktiengesellschaft Brown, Boveri & Cie | Switch drive |
4654924, | Dec 31 1985 | Panasonic Corporation of North America | Microcomputer control system for a canister vacuum cleaner |
4660969, | Aug 08 1984 | Canon Kabushiki Kaisha | Device for searching objects within wide visual field |
4662854, | Jul 12 1985 | Union Electric Corp. | Self-propellable toy and arrangement for and method of controlling the movement thereof |
4674048, | Oct 26 1983 | Automax Kabushiki-Kaisha | Multiple robot control system using grid coordinate system for tracking and completing travel over a mapped region containing obstructions |
4679152, | Feb 20 1985 | NEC Corporation | Navigation system and method for a mobile robot |
4680827, | Sep 28 1985 | Interlava AG | Vacuum cleaner |
4696074, | Nov 21 1984 | SI MA C S P A - MACCHINE ALIMENTARI, VIA GARIBALDI N 20, CAPITAL LIRAS | Multi-purpose household appliance particularly for cleaning floors, carpets, laid carpetings, and the like |
4700301, | Mar 12 1981 | Method of automatically steering agricultural type vehicles | |
4700427, | Oct 17 1985 | Method of automatically steering self-propelled floor-cleaning machines and floor-cleaning machine for practicing the method | |
4703820, | May 31 1984 | Imperial Chemical Industries, PLC | Vehicle guidance means |
4710020, | May 16 1986 | E T M REALTY TRUST | Beacon proximity detection system for a vehicle |
4716621, | Jul 26 1985 | Dulevo S.p.A. | Floor and bounded surface sweeper machine |
4728801, | May 07 1986 | Thorn EMI Protech Limited | Light scattering smoke detector having conical and concave surfaces |
4733343, | Feb 18 1985 | Toyoda Koki Kabushiki Kaisha | Machine tool numerical controller with a trouble stop function |
4733430, | Dec 09 1986 | Panasonic Corporation of North America | Vacuum cleaner with operating condition indicator system |
4733431, | Dec 09 1986 | Matsushita Appliance Corporation | Vacuum cleaner with performance monitoring system |
4735136, | Dec 23 1986 | Whirlpool Corporation | Full receptacle indicator for compactor |
4735138, | Mar 25 1986 | Neopost Limited | Electromechanical drives for franking machines |
4748336, | May 01 1985 | Nippondenso Co., Ltd. | Optical dust detector assembly for use in an automotive vehicle |
4748833, | Oct 21 1980 | 501 Nagasawa Manufacturing Co., Ltd. | Button operated combination lock |
4756049, | Jun 21 1985 | Murata Kaiki Kabushiki Kaisha | Self-propelled cleaning truck |
4767213, | Feb 05 1986 | Interlava AG | Optical indication and operation monitoring unit for vacuum cleaners |
4769700, | Nov 20 1981 | LMI TECHNOLOGIES INC | Robot tractors |
4777416, | May 16 1986 | E T M REALTY TRUST | Recharge docking system for mobile robot |
4782550, | Feb 12 1988 | VON SCHRADER MANUFACTURING COMPANY, LLP | Automatic surface-treating apparatus |
4796198, | Oct 17 1986 | The United States of America as represented by the United States | Method for laser-based two-dimensional navigation system in a structured environment |
4806751, | Sep 30 1985 | ALPS Electric Co., Ltd. | Code wheel for a reflective type optical rotary encoder |
4811228, | Sep 17 1985 | NATIONSBANK OF NORTH CAROLINA, N A | Method of navigating an automated guided vehicle |
4813906, | Oct 19 1985 | Tomy Kogyo Co., Inc. | Pivotable running toy |
4815157, | Oct 28 1986 | Kabushiki Kaisha Hoky; KABUSHIKI KISHA HOKY ALSO TRADING AS HOKY CORPORATION , 498, KOMAGIDAI, NAGAREYAMA-SHI, CHIBA 270-01, JAPAN | Floor cleaner |
4817000, | Mar 10 1986 | SI Handling Systems, Inc. | Automatic guided vehicle system |
4818875, | Mar 30 1987 | The Foxboro Company | Portable battery-operated ambient air analyzer |
4829442, | May 16 1986 | E T M REALTY TRUST | Beacon navigation system and method for guiding a vehicle |
4829626, | Oct 01 1986 | Allaway Oy | Method for controlling a vacuum cleaner or a central vacuum cleaner |
4832098, | Apr 16 1984 | MICHELIN RECHERCHE ET TECHNIQUE S A | Non-pneumatic tire with supporting and cushioning members |
4851661, | Feb 26 1988 | The United States of America as represented by the Secretary of the Navy | Programmable near-infrared ranging system |
4854000, | May 23 1988 | Cleaner of remote-control type | |
4854006, | Mar 30 1987 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD , 1006, OAZA-KADOMA, KADOMA-SHI, OSAKA-FU, 571 JAPAN | Floor nozzle for vacuum cleaner |
4855915, | Mar 13 1987 | Autoguided vehicle using reflective materials | |
4857912, | Jul 27 1988 | The United States of America as represented by the Secretary of the Navy; UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE NAVY | Intelligent security assessment system |
4858132, | Sep 11 1987 | NATIONSBANK OF NORTH CAROLINA, N A | Optical navigation system for an automatic guided vehicle, and method |
4867570, | Dec 10 1985 | Canon Kabushiki Kaisha | Three-dimensional information processing method and apparatus for obtaining three-dimensional information of object by projecting a plurality of pattern beams onto object |
4880474, | Oct 08 1986 | Hitachi, Ltd. | Method and apparatus for operating vacuum cleaner |
4887415, | Jun 10 1988 | Automated lawn mower or floor polisher | |
4891762, | Feb 09 1988 | Method and apparatus for tracking, mapping and recognition of spatial patterns | |
4893025, | Dec 30 1988 | University of Southern California | Distributed proximity sensor system having embedded light emitters and detectors |
4901394, | Apr 20 1988 | Matsushita Electric Industrial Co., Ltd. | Floor nozzle for electric cleaner |
4905151, | Mar 07 1988 | Transitions Research Corporation | One dimensional image visual system for a moving vehicle |
4912643, | Oct 30 1986 | Institute for Industrial Research and Standards | Position sensing apparatus |
4918441, | Dec 22 1988 | BLUE LEAF I P , INC | Non-contact sensing unit for row crop harvester guidance system |
4919224, | May 09 1988 | Industrial Technology Research Institute | Automatic working vehicular system |
4919489, | Apr 20 1988 | Grumman Aerospace Corporation | Cog-augmented wheel for obstacle negotiation |
4920060, | Oct 14 1986 | Hercules Incorporated | Device and process for mixing a sample and a diluent |
4920605, | Oct 16 1987 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Electric cleaner |
4933864, | Oct 04 1988 | Transitions Research Corporation | Mobile robot navigation employing ceiling light fixtures |
4937912, | Feb 09 1988 | Interlava AG | Mounting device for sensors and pick-ups |
4953253, | May 30 1987 | Kabushiki Kaisha Toshiba | Canister vacuum cleaner with automatic operation control |
4954962, | Sep 06 1988 | Pyxis Corporation | Visual navigation and obstacle avoidance structured light system |
4955714, | Jun 26 1986 | STAR GAZE INTERNATIONAL, INC | System for simulating the appearance of the night sky inside a room |
4956891, | Feb 21 1990 | Tennant Company | Floor cleaner |
4961303, | Jul 10 1989 | BLUE LEAF I P , INC | Apparatus for opening conditioning rolls |
4961304, | Oct 20 1989 | CNH America LLC; BLUE LEAF I P , INC | Cotton flow monitoring system for a cotton harvester |
4962453, | Feb 07 1989 | TRANSITIONS RESEARCH CORPORATION, A CT CORP | Autonomous vehicle for working on a surface and method of controlling same |
4971591, | Apr 25 1989 | Vehicle with vacuum traction | |
4973912, | Apr 15 1988 | Daimler-Benz Aktiengesellschaft | Method for contactless measurement of a resistance arranged in the secondary circuit of a transformer and device for carrying out the method |
4974283, | Dec 16 1987 | HAKO-WERKE GMBH & CO | Hand-guided sweeping machine |
4977618, | Apr 21 1988 | Photonics Corporation | Infrared data communications |
4977639, | Aug 15 1988 | MITSUBISHI DENKI KABUSHIKI KAISHA, A CORP OF JAPAN; MITSUBISHI ELECTRIC HOME APPLIANCE CO , LTD | Floor detector for vacuum cleaners |
4986663, | Dec 21 1988 | SOCIETA CAVI PIRELLI S P A , A CORP OF ITALY | Method and apparatus for determining the position of a mobile body |
5001635, | Jan 08 1988 | Sanyo Electric Co., Ltd. | Vehicle |
5002145, | Jan 29 1988 | NEC Corporation | Method and apparatus for controlling automated guided vehicle |
5012886, | Dec 11 1986 | Azurtec | Self-guided mobile unit and cleaning apparatus such as a vacuum cleaner comprising such a unit |
5018240, | Apr 27 1990 | Cimex Limited | Carpet cleaner |
5020186, | Jan 24 1990 | Black & Decker Inc. | Vacuum cleaners |
5022812, | Sep 26 1988 | Northrop Grumman Systems Corporation | Small all terrain mobile robot |
5023788, | Apr 25 1989 | TOKIMEC INC | Control apparatus of working robot to flatten and finish the concreted floor |
5024529, | Jan 29 1988 | Electro Scientific Industries, Inc | Method and system for high-speed, high-resolution, 3-D imaging of an object at a vision station |
5032775, | Jun 07 1989 | Kabushiki Kaisha Toshiba | Control apparatus for plane working robot |
5033151, | Dec 16 1988 | Interlava AG | Control and/or indication device for the operation of vacuum cleaners |
5033291, | Dec 11 1989 | Tekscan, Inc. | Flexible tactile sensor for measuring foot pressure distributions and for gaskets |
5040116, | Sep 06 1988 | Transitions Research Corporation | Visual navigation and obstacle avoidance structured light system |
5045769, | Nov 14 1989 | UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE NAVY | Intelligent battery charging system |
5049802, | Mar 01 1990 | FMC Corporation | Charging system for a vehicle |
5051906, | Jun 07 1989 | CAREFUSION 303, INC | Mobile robot navigation employing retroreflective ceiling features |
5062819, | Jan 28 1991 | Toy vehicle apparatus | |
5084934, | Jan 24 1990 | Black & Decker Inc. | Vacuum cleaners |
5086535, | Oct 22 1990 | Racine Industries, Inc. | Machine and method using graphic data for treating a surface |
5090321, | Jun 28 1985 | ICI Australia Ltd | Detonator actuator |
5093955, | Aug 29 1990 | Tennant Company | Combined sweeper and scrubber |
5094311, | Feb 22 1991 | FANUC ROBOTICS NORTH AMERICA, INC | Limited mobility transporter |
5105502, | Dec 06 1988 | Matsushita Electric Industrial Co., Ltd. | Vacuum cleaner with function to adjust sensitivity of dust sensor |
5105550, | Mar 25 1991 | Wilson Sporting Goods Co. | Apparatus for measuring golf clubs |
5109566, | Jun 28 1990 | Matsushita Electric Industrial Co., Ltd. | Self-running cleaning apparatus |
5115538, | Jan 24 1990 | Black & Decker Inc. | Vacuum cleaners |
5127128, | Jul 27 1989 | Goldstar Co., Ltd. | Cleaner head |
5136675, | Dec 20 1990 | Lockheed Martin Corporation | Slewable projection system with fiber-optic elements |
5136750, | Nov 07 1988 | Matsushita Electric Industrial Co., Ltd. | Vacuum cleaner with device for adjusting sensitivity of dust sensor |
5142985, | Jun 04 1990 | ALLIANT TECHSYSTEMS INC | Optical detection device |
5144471, | Jun 27 1989 | Victor Company of Japan, Ltd. | Optical scanning system for scanning object with light beam and displaying apparatus |
5144714, | Feb 22 1990 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Vacuum cleaner |
5144715, | Aug 18 1989 | Matsushita Electric Industrial Co., Ltd. | Vacuum cleaner and method of determining type of floor surface being cleaned thereby |
5152028, | Dec 15 1989 | Matsushita Electric Industrial Co., Ltd. | Upright vacuum cleaner |
5152202, | Jul 03 1991 | CAMOZZI PNEUMATICS, INC ; INGERSOLL MACHINE TOOLS, INC | Turning machine with pivoted armature |
5155684, | Oct 25 1988 | Tennant Company | Guiding an unmanned vehicle by reference to overhead features |
5163202, | Mar 24 1988 | Matsushita Electric Industrial Co. Ltd. | Dust detector for vacuum cleaner |
5163320, | Dec 13 1989 | Bridgestone Corporation | Tire inspection device |
5164579, | Apr 30 1979 | DIFFRACTO LTD | Method and apparatus for electro-optically determining the dimension, location and attitude of objects including light spot centroid determination |
5165064, | Mar 22 1991 | Cyberotics, Inc.; CYBEROTICS, INC , A CORP OF MA | Mobile robot guidance and navigation system |
5170352, | May 07 1990 | FMC Corporation | Multi-purpose autonomous vehicle with path plotting |
5173881, | Mar 19 1991 | Vehicular proximity sensing system | |
5182833, | May 11 1989 | Matsushita Electric Industrial Co., Ltd. | Vacuum cleaner |
5202742, | Oct 03 1990 | Aisin Seiki Kabushiki Kaisha | Laser radar for a vehicle lateral guidance system |
5204814, | Nov 13 1990 | CUTTING EDGE ROBOTICS, INC | Autonomous lawn mower |
5206500, | May 28 1992 | AMERICAN CAPITAL FINANCIAL SERVICES, INC , AS SUCCESSOR ADMINISTRATIVE AGENT | Pulsed-laser detection with pulse stretcher and noise averaging |
5208521, | Sep 07 1991 | Fuji Jukogyo Kabushiki Kaisha | Control system for a self-moving vehicle |
5216777, | Nov 26 1990 | MATSUSHITA ELECTRIC INDUSTRIAL CO LTD | Fuzzy control apparatus generating a plurality of membership functions for determining a drive condition of an electric vacuum cleaner |
5227985, | Aug 19 1991 | University of Maryland; UNIVERSITY OF MARYLAND A NON-PROFIT ORGANIZATION OF MD | Computer vision system for position monitoring in three dimensions using non-coplanar light sources attached to a monitored object |
5233682, | Apr 10 1990 | Matsushita Electric Industrial Co., Ltd. | Vacuum cleaner with fuzzy control |
5239720, | Oct 24 1991 | Advance Machine Company | Mobile surface cleaning machine |
5251358, | Nov 26 1990 | Matsushita Electric Industrial Co., Ltd. | Vacuum cleaner with fuzzy logic |
5261139, | Nov 23 1992 | Raised baseboard brush for powered floor sweeper | |
5276618, | Feb 26 1992 | The United States of America as represented by the Secretary of the Navy; UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE NAVY | Doorway transit navigational referencing system |
5276939, | Feb 14 1991 | Sanyo Electric Co., Ltd. | Electric vacuum cleaner with suction power responsive to nozzle conditions |
5277064, | Apr 08 1992 | General Motors Corporation; Delco Electronics Corp. | Thick film accelerometer |
5279672, | Jun 29 1992 | KARCHER NORTH AMERICA, INC | Automatic controlled cleaning machine |
5284452, | Jan 15 1993 | Atlantic Richfield Company | Mooring buoy with hawser tension indicator system |
5284522, | Jun 28 1990 | Matsushita Electric Industrial Co., Ltd. | Self-running cleaning control method |
5293955, | Dec 30 1991 | GOLDSTAR CO , LTD | Obstacle sensing apparatus for a self-propelled cleaning robot |
5303448, | Jul 08 1992 | Tennant Company | Hopper and filter chamber for direct forward throw sweeper |
5307273, | Aug 27 1991 | GOLDSTAR CO , LTD | Apparatus and method for recognizing carpets and stairs by cleaning robot |
5309592, | Jun 23 1992 | XARAZ PROPERTIES LLC | Cleaning robot |
5310379, | Feb 03 1993 | Mattel, Inc | Multiple configuration toy vehicle |
5315227, | Jan 29 1993 | Solar recharge station for electric vehicles | |
5319827, | Aug 14 1991 | Gold Star Co., Ltd. | Device of sensing dust for a vacuum cleaner |
5319828, | Nov 04 1992 | Tennant Company | Low profile scrubber |
5321614, | Jun 06 1991 | FLOORBOTICS, INC | Navigational control apparatus and method for autonomus vehicles |
5323483, | Jun 25 1991 | Goldstar Co., Ltd. | Apparatus and method for controlling speed of suction motor in vacuum cleaner |
5324948, | Oct 27 1992 | Energy, United States Department of | Autonomous mobile robot for radiologic surveys |
5341186, | Jan 13 1992 | Olympus Optical Co., Ltd. | Active autofocusing type rangefinder optical system |
5341540, | Jun 07 1989 | Onet, S.A. | Process and autonomous apparatus for the automatic cleaning of ground areas through the performance of programmed tasks |
5341549, | Sep 23 1991 | W SCHLAFHORST AG & CO | Apparatus for removing yarn remnants |
5345649, | Apr 21 1993 | Fan brake for textile cleaning machine | |
5353224, | Dec 07 1990 | GOLDSTAR CO , LTD , A CORP OF KOREA | Method for automatically controlling a travelling and cleaning operation of vacuum cleaners |
5363305, | Jul 02 1990 | NEC Corporation | Navigation system for a mobile robot |
5363935, | May 14 1993 | Carnegie Mellon University | Reconfigurable mobile vehicle with magnetic tracks |
5369347, | Mar 25 1992 | SAMSUNG KWANG-JU ELECTRONICS CO , LTD | Self-driven robotic cleaning apparatus and driving method thereof |
5369838, | Nov 16 1992 | Advance Machine Company | Automatic floor scrubber |
5386862, | Oct 02 1992 | The Goodyear Tire & Rubber Company | Pneumatic tire having improved wet traction |
5399951, | May 12 1992 | UNIVERSITE JOSEPH FOURIER | Robot for guiding movements and control method thereof |
5400244, | Jun 25 1991 | Kabushiki Kaisha Toshiba | Running control system for mobile robot provided with multiple sensor information integration system |
5404612, | Aug 18 1993 | Yashima Electric Co., Ltd. | Vacuum cleaner |
5410479, | Aug 17 1992 | Ultrasonic furrow or crop row following sensor | |
5435405, | May 14 1993 | Carnegie Mellon University | Reconfigurable mobile vehicle with magnetic tracks |
5440216, | Jun 08 1993 | SAMSUNG KWANG-JU ELECTRONICS CO , LTD | Robot cleaner |
5442358, | Aug 16 1991 | Kaman Aerospace Corporation | Imaging lidar transmitter downlink for command guidance of underwater vehicle |
5444965, | Sep 24 1990 | Continuous and autonomous mowing system | |
5446356, | Sep 09 1993 | Samsung Electronics Co., Ltd. | Mobile robot |
5451135, | Apr 02 1993 | Carnegie Mellon University | Collapsible mobile vehicle |
5454129, | Sep 01 1994 | Self-powered pool vacuum with remote controlled capabilities | |
5455982, | Apr 22 1994 | Advance Machine Company | Hard and soft floor surface cleaning apparatus |
5465525, | Dec 29 1993 | Tomokiyo White Ant Co. Ltd. | Intellectual working robot of self controlling and running |
5465619, | Sep 08 1993 | Xerox Corporation | Capacitive sensor |
5467273, | Jan 12 1992 | RAFAEL LTD | Large area movement robot |
5471560, | Jan 09 1987 | Honeywell Inc. | Method of construction of hierarchically organized procedural node information structure including a method for extracting procedural knowledge from an expert, and procedural node information structure constructed thereby |
5491670, | Jan 21 1993 | System and method for sonic positioning | |
5497529, | Jul 20 1993 | Electrical apparatus for cleaning surfaces by suction in dwelling premises | |
5498948, | Oct 14 1994 | GM Global Technology Operations LLC | Self-aligning inductive charger |
5502638, | Feb 10 1992 | Honda Giken Kogyo Kabushiki Kaisha | System for obstacle avoidance path planning for multiple-degree-of-freedom mechanism |
5505072, | Nov 15 1994 | Tekscan, Inc. | Scanning circuit for pressure responsive array |
5507067, | May 12 1994 | ELX HOLDINGS, L L C ; Electrolux LLC | Electronic vacuum cleaner control system |
5510893, | Aug 18 1993 | Digital Stream Corporation | Optical-type position and posture detecting device |
5511147, | Jan 12 1994 | UTI Corporation | Graphical interface for robot |
5515572, | May 12 1994 | ELX HOLDINGS, L L C ; Electrolux LLC | Electronic vacuum cleaner control system |
5534762, | Sep 27 1993 | SAMSUNG KWANG-JU ELECTRONICS CO , LTD | Self-propelled cleaning robot operable in a cordless mode and a cord mode |
5537017, | May 22 1992 | Siemens Aktiengesellschaft | Self-propelled device and process for exploring an area with the device |
5537711, | May 05 1995 | Electric board cleaner | |
5539953, | Jan 22 1992 | Floor nozzle for vacuum cleaners | |
5542146, | May 12 1994 | ELX HOLDINGS, L L C ; Electrolux LLC | Electronic vacuum cleaner control system |
5542148, | Jan 26 1995 | TYMCO, Inc. | Broom assisted pick-up head |
5546631, | Oct 31 1994 | Waterless container cleaner monitoring system | |
5548511, | Oct 29 1992 | Axxon Robotics, LLC | Method for controlling self-running cleaning apparatus |
5551525, | Aug 19 1994 | Vanderbilt University | Climber robot |
5553349, | Feb 21 1994 | Aktiebolaget Electrolux | Vacuum cleaner nozzle |
5555587, | Jul 20 1995 | The Scott Fetzer Company | Floor mopping machine |
5560077, | Nov 25 1994 | Vacuum dustpan apparatus | |
5568589, | Sep 30 1992 | Self-propelled cleaning machine with fuzzy logic control | |
5608306, | Mar 15 1994 | ERICSSON-GE MOBILE COMMUNICATIONS, INC | Rechargeable battery pack with identification circuit, real time clock and authentication capability |
5608894, | Mar 18 1994 | Fujitsu Limited | Execution control system |
5608944, | Jun 05 1995 | Healthy Gain Investments Limited | Vacuum cleaner with dirt detection |
5610488, | Nov 05 1991 | Seiko Epson Corporation | Micro robot |
5611106, | Jan 19 1996 | Tennant Company | Carpet maintainer |
5611108, | Apr 25 1994 | KARCHER NORTH AMERICA, INC | Floor cleaning apparatus with slidable flap |
5613261, | Apr 14 1994 | MONEUAL, INC | Cleaner |
5613269, | Oct 26 1992 | MIWA SCIENCE LABORATORY INC | Recirculating type cleaner |
5621291, | Mar 31 1994 | Samsung Electronics Co., Ltd. | Drive control method of robotic vacuum cleaner |
5622236, | Oct 30 1992 | S. C. Johnson & Son, Inc. | Guidance system for self-advancing vehicle |
5634237, | Mar 29 1995 | Self-guided, self-propelled, convertible cleaning apparatus | |
5634239, | May 16 1995 | Aktiebolaget Electrolux | Vacuum cleaner nozzle |
5636402, | Jun 15 1994 | MONEUAL, INC | Apparatus spreading fluid on floor while moving |
5642299, | Sep 01 1993 | HARDIN, LARRY C | Electro-optical range finding and speed detection system |
5646494, | Mar 29 1994 | SAMSUNG KWANG-JU ELECTRONICS CO , LTD | Charge induction apparatus of robot cleaner and method thereof |
5647554, | Jan 23 1990 | Sanyo Electric Co., Ltd. | Electric working apparatus supplied with electric power through power supply cord |
5650702, | Jul 07 1994 | S C JOHNSON & SON, INC | Controlling system for self-propelled floor cleaning vehicles |
5652489, | Aug 26 1994 | MONEUAL, INC | Mobile robot control system |
5682313, | Jun 06 1994 | Aktiebolaget Electrolux | Method for localization of beacons for an autonomous device |
5682839, | Jul 15 1993 | Perimeter Technologies Incorporated | Electronic animal confinement system |
5696675, | Jul 01 1994 | MONEUAL, INC | Route making system for a mobile robot |
5698861, | Aug 01 1994 | KONAMI DIGITAL ENTERTAINMENT CO , LTD | System for detecting a position of a movable object without contact |
5709007, | Jun 10 1996 | Remote control vacuum cleaner | |
5710506, | Feb 07 1995 | BENCHMARQ MICROELECTRONICS,INC | Lead acid charger |
5714119, | Mar 24 1994 | YOSHIHIRO KIUCHI | Sterilizer |
5717169, | Oct 13 1994 | Schlumberger Technology Corporation | Method and apparatus for inspecting well bore casing |
5717484, | Mar 22 1994 | MONEUAL, INC | Position detecting system |
5720077, | May 30 1994 | Minolta Co., Ltd. | Running robot carrying out prescribed work using working member and method of working using the same |
5732401, | Mar 29 1996 | INTELLITECS INTERNATIONAL, INC BY MERGER INTO GLH DWC, INC AND CHANGE OF NAME | Activity based cost tracking systems |
5735959, | Jun 15 1994 | MONEUAL, INC | Apparatus spreading fluid on floor while moving |
5745235, | Mar 26 1996 | Egemin Naamloze Vennootschap | Measuring system for testing the position of a vehicle and sensing device therefore |
5752871, | Nov 30 1995 | Tomy Co., Ltd. | Running body |
5756904, | Aug 30 1996 | Tekscan, Inc | Pressure responsive sensor having controlled scanning speed |
5761762, | Jul 13 1995 | Eishin Technology Co., Ltd. | Cleaner and bowling maintenance machine using the same |
5764888, | Jul 19 1996 | Dallas Semiconductor Corporation | Electronic micro identification circuit that is inherently bonded to someone or something |
5767437, | Mar 20 1997 | Digital remote pyrotactic firing mechanism | |
5767960, | Jun 14 1996 | Ascension Technology Corporation; ROPER ASCENSION ACQUISITION, INC | Optical 6D measurement system with three fan-shaped beams rotating around one axis |
5777596, | Nov 13 1995 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Touch sensitive flat panel display |
5778486, | Oct 31 1995 | Daewoo Electronics Co., Ltd. | Indicator device for a vacuum cleaner dust container which has an additional pressure controller |
5781697, | Jun 02 1995 | Samsung Electronics Co., Ltd. | Method and apparatus for automatic running control of a robot |
5781960, | Apr 25 1996 | Aktiebolaget Electrolux | Nozzle arrangement for a self-guiding vacuum cleaner |
5786602, | Apr 30 1979 | DIFFRACTO LTD | Method and apparatus for electro-optically determining the dimension, location and attitude of objects |
5787545, | Jul 04 1994 | Automatic machine and device for floor dusting | |
5793900, | Dec 29 1995 | Stanford University | Generating categorical depth maps using passive defocus sensing |
5794297, | Mar 31 1994 | Techtronic Floor Care Technology Limited | Cleaning members for cleaning areas near walls used in floor cleaner |
5812267, | Jul 10 1996 | NAVY, THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY | Optically based position location system for an autonomous guided vehicle |
5814808, | Aug 28 1995 | PANASONIC ELECTRIC WORKS CO , LTD | Optical displacement measuring system using a triangulation including a processing of position signals in a time sharing manner |
5815880, | Aug 08 1995 | MONEUAL, INC | Cleaning robot |
5815884, | Nov 27 1996 | Yashima Electric Co., Ltd. | Dust indication system for vacuum cleaner |
5819008, | Oct 18 1995 | KENKYUSHO, RIKAGAKU | Mobile robot sensor system |
5819360, | Sep 19 1995 | Windshied washer apparatus with flow control coordinated with a wiper displacement range | |
5819936, | May 31 1995 | Eastman Kodak Company | Film container having centering rib elements |
5820821, | Mar 24 1994 | KIUCHI, YOSHIHIRO | Sterilizer |
5821730, | Aug 18 1997 | ICC-NEXERGY, INC | Low cost battery sensing technique |
5825981, | Mar 11 1996 | Komatsu Ltd. | Robot system and robot control device |
5828770, | Feb 20 1996 | BANK OF MONTREAL | System for determining the spatial position and angular orientation of an object |
5831597, | May 24 1996 | PROSISA OVERSEAS, INC | Computer input device for use in conjunction with a mouse input device |
5839156, | Dec 19 1995 | SAMSUNG KWANG-JU ELECTRONICS CO , LTD | Remote controllable automatic moving vacuum cleaner |
5839532, | Mar 22 1995 | Honda Giken Kogyo Kabushiki Kaisha | Vacuum wall walking apparatus |
5841259, | Aug 07 1993 | SAMSUNG KWANG-JU ELECTRONICS CO , LTD | Vacuum cleaner and control method thereof |
5867800, | Mar 29 1994 | Aktiebolaget Electrolux | Method and device for sensing of obstacles for an autonomous device |
5869910, | Feb 11 1994 | Power supply system for self-contained mobile robots | |
5896611, | May 04 1996 | Ing. Haaga Werkzeugbau KG | Sweeping machine |
5903124, | Sep 30 1996 | MONEUAL, INC | Apparatus for positioning moving body allowing precise positioning of moving body |
5905209, | Jul 22 1997 | Tekscan, Inc. | Output circuit for pressure sensor |
5907886, | Feb 16 1996 | Branofilter GmbH | Detector device for filter bags for vacuum cleaners |
5910700, | Mar 20 1998 | Dust sensor apparatus | |
5916008, | Jun 20 1997 | T. K. Wong & Associates, Ltd. | Wall descending toy with retractable wheel and cover |
5924167, | Jun 07 1996 | Royal Appliance Mfg. Co. | Cordless wet mop and vacuum assembly |
5926909, | Aug 28 1996 | Remote control vacuum cleaner and charging system | |
5933102, | Sep 24 1997 | TouchSensor Technologies, LLC | Capacitive sensitive switch method and system |
5933913, | Jun 07 1996 | Royal Appliance Mfg. Co. | Cordless wet mop and vacuum assembly |
5935179, | Apr 30 1996 | Aktiebolaget Electrolux | System and device for a self orienting device |
5940346, | Dec 13 1996 | Arizona State University | Modular robotic platform with acoustic navigation system |
5940927, | Apr 30 1996 | Aktiebolaget Electrolux | Autonomous surface cleaning apparatus |
5940930, | May 12 1997 | SAMSUNG KWANG-JU ELECTRONICS CO , LTD | Remote controlled vacuum cleaner |
5942869, | Feb 13 1997 | Honda Giken Kogyo Kabushiki Kaisha | Mobile robot control device |
5943730, | Nov 24 1997 | Tennant Company | Scrubber vac-fan seal |
5943733, | Mar 31 1995 | Dulevo International S.p.A. | Sucking and filtering vehicle for dust and trash collecting |
5947225, | Apr 14 1995 | MONEUAL, INC | Automatic vehicle |
5950408, | Jul 25 1997 | MTD Products Inc; MTD Products, Inc | Bag-full indicator mechanism |
5959423, | Jun 08 1995 | MONEUAL, INC | Mobile work robot system |
5968281, | Jun 07 1996 | Royal Appliance Mfg. Co. | Method for mopping and drying a floor |
5974348, | Dec 13 1996 | System and method for performing mobile robotic work operations | |
5974365, | Oct 23 1997 | The United States of America as represented by the Secretary of the Army | System for measuring the location and orientation of an object |
5983448, | Jun 07 1996 | ROYAL APPLIANCE MFG CO | Cordless wet mop and vacuum assembly |
5984880, | Jan 20 1998 | Tactile feedback controlled by various medium | |
5987383, | Apr 28 1997 | Trimble Navigation | Form line following guidance system |
5989700, | Jan 05 1996 | Tekscan Incorporated; Tekscan, Incorporated | Pressure sensitive ink means, and methods of use |
5991951, | Jun 03 1996 | MONEUAL, INC | Running and working robot not susceptible to damage at a coupling unit between running unit and working unit |
5995884, | Mar 07 1997 | Computer peripheral floor cleaning system and navigation method | |
5998953, | Aug 22 1997 | MONEUAL, INC | Control apparatus of mobile that applies fluid on floor |
5998971, | Dec 10 1997 | NEC Corporation | Apparatus and method for coulometric metering of battery state of charge |
6000088, | Jun 07 1996 | Royal Appliance Mfg. Co. | Cordless wet mop and vacuum assembly |
6009358, | Jun 25 1997 | The Toro Company | Programmable lawn mower |
6021545, | Apr 21 1995 | VORWERK & CO , INTERHOLDING GMBH | Vacuum cleaner attachment for the wet cleaning of surfaces |
6023813, | Apr 07 1998 | Spectrum Industrial Products, Inc. | Powered floor scrubber and buffer |
6023814, | Sep 15 1997 | YASHIMA ELECTRIC CO , LTD | Vacuum cleaner |
6025687, | Sep 26 1997 | MONEUAL, INC | Mobile unit and controller for mobile unit |
6026539, | Mar 04 1998 | BISSELL Homecare, Inc | Upright vacuum cleaner with full bag and clogged filter indicators thereon |
6030465, | Jun 26 1996 | Panasonic Corporation of North America | Extractor with twin, counterrotating agitators |
6032542, | Jul 07 1997 | Tekscan, Inc. | Prepressured force/pressure sensor and method for the fabrication thereof |
6036572, | Mar 04 1998 | Drive for toy with suction cup feet | |
6038501, | Feb 27 1997 | MONEUAL, INC | Autonomous vehicle capable of traveling/stopping in parallel to wall and controlling method thereof |
6040669, | Oct 22 1996 | Robert Bosch GmbH | Control device for an optical sensor |
6041471, | Apr 09 1998 | MADVAC INC | Mobile walk-behind sweeper |
6041472, | Nov 06 1995 | BISSELL Homecare, Inc | Upright water extraction cleaning machine |
6046800, | Jan 31 1997 | Kabushiki Kaisha Topcon | Position detection surveying device |
6049620, | Dec 15 1995 | Apple Inc | Capacitive fingerprint sensor with adjustable gain |
6052821, | Jun 26 1996 | U S PHILIPS CORPORATION | Trellis coded QAM using rate compatible, punctured, convolutional codes |
6055042, | Dec 16 1997 | Caterpillar Inc.; Caterpillar Inc | Method and apparatus for detecting obstacles using multiple sensors for range selective detection |
6055702, | Sep 09 1998 | Yashima Electric Co., Ltd. | Vacuum cleaner |
6061868, | Oct 26 1996 | ALFRED KAERCHER GMBH & CO KG | Traveling floor cleaning appliance |
6065182, | Jun 07 1996 | ROYAL APPLIANCE MFG CO | Cordless wet mop and vacuum assembly |
6073432, | Jul 25 1997 | MTD Products Inc | Bag-full indicator mechanism |
6076025, | Jan 29 1997 | Honda Giken Kogyo K.K. | Mobile robot steering method and control device |
6076026, | Sep 30 1997 | TEMIC AUTOMOTIVE OF NORTH AMERICA, INC | Method and device for vehicle control events data recording and securing |
6076226, | Jan 27 1997 | Robert J., Schaap | Controlled self operated vacuum cleaning system |
6076227, | Aug 25 1997 | U.S. Philips Corporation | Electrical surface treatment device with an acoustic surface type detector |
6081257, | Feb 15 1996 | Airbus Helicopters Deutschland GmbH | Control stick rotatably positionable in three axes |
6088020, | Aug 12 1998 | HANGER SOLUTIONS, LLC | Haptic device |
6094775, | Mar 05 1997 | BSH Bosch und Siemens Hausgerate GmbH | Multifunctional vacuum cleaning appliance |
6099091, | Jan 20 1998 | Pentair Pool Products, INC | Traction enhanced wheel apparatus |
6101670, | Dec 31 1998 | Dust collection tester for a vacuum cleaner | |
6101671, | Jun 07 1996 | ROYAL APPLIANCE MFG CO | Wet mop and vacuum assembly |
6108031, | May 08 1997 | Harris Corporation | Virtual reality teleoperated remote control vehicle |
6108076, | Dec 21 1998 | Trimble Navigation Limited | Method and apparatus for accurately positioning a tool on a mobile machine using on-board laser and positioning system |
6108269, | Oct 01 1998 | Garmin Corporation | Method for elimination of passive noise interference in sonar |
6108597, | Mar 06 1996 | GMD-Forschungszentrum Informationstechnik GmbH | Autonomous mobile robot system for sensor-based and map-based navigation in pipe networks |
6112143, | Aug 06 1998 | Caterpillar Inc. | Method and apparatus for establishing a perimeter defining an area to be traversed by a mobile machine |
6112996, | Jun 03 1996 | Minolta Co., Ltd. | IC card and autonomous running and working robot having an IC card mounting apparatus |
6119057, | Mar 21 1997 | MONEUAL, INC | Autonomous vehicle with an easily set work area and easily switched mode |
6122798, | Aug 29 1997 | Sanyo Electric Co., Ltd. | Dust suction head for electric vacuum cleaner |
6124694, | Mar 18 1999 | DIVERSEY, INC | Wide area navigation for a robot scrubber |
6125498, | Dec 05 1997 | BISSELL Homecare, Inc | Handheld extraction cleaner |
6131237, | Jul 09 1997 | BISSELL Homecare, Inc | Upright extraction cleaning machine |
6138063, | Feb 28 1997 | MONEUAL, INC | Autonomous vehicle always facing target direction at end of run and control method thereof |
6142252, | Jul 11 1996 | MONEUAL, INC | Autonomous vehicle that runs while recognizing work area configuration, and method of selecting route |
6146278, | Jan 10 1997 | KONAMI DIGITAL ENTERTAINMENT CO , LTD | Shooting video game machine |
6154279, | Apr 09 1998 | NEWMAN, JOHN W | Method and apparatus for determining shapes of countersunk holes |
6154694, | May 11 1998 | Kabushiki Kaisha Tokai Rika Denki Seisakusho | Data carrier system |
6160479, | May 07 1996 | Assa Abloy IP AB | Method for the determination of the distance and the angular position of an object |
6167332, | Jan 28 1999 | International Business Machines Corporation | Method and apparatus suitable for optimizing an operation of a self-guided vehicle |
6167587, | Jul 09 1997 | BISSELL Homecare, Inc | Upright extraction cleaning machine |
6192548, | Jul 09 1997 | BISSELL Homecare, Inc. | Upright extraction cleaning machine with flow rate indicator |
6216307, | Sep 25 1998 | CMA Manufacturing Co. | Hand held cleaning device |
6220865, | Jan 22 1996 | Vincent J., Macri | Instruction for groups of users interactively controlling groups of images to make idiosyncratic, simulated, physical movements |
6226830, | Aug 20 1997 | Philips Electronics North America Corporation | Vacuum cleaner with obstacle avoidance |
6230362, | Jul 09 1997 | BISSELL Homecare, Inc. | Upright extraction cleaning machine |
6237741, | Mar 12 1998 | Cavanna S.p.A. | Process for controlling the operation of machines for processing articles, for example for packaging food products, and the machine thereof |
6240342, | Feb 03 1998 | Siemens Aktiengesellschaft | Path planning process for a mobile surface treatment unit |
6243913, | Oct 27 1997 | ALFRED KAERCHER GMBH & CO KG | Cleaning device |
6255793, | May 30 1995 | F ROBOTICS ACQUISITIONS LTD | Navigation method and system for autonomous machines with markers defining the working area |
6259979, | Oct 17 1997 | KOLLMORGEN AUTOMATION AB | Method and device for association of anonymous reflectors to detected angle positions |
6261379, | Jun 01 1999 | Polar Light Limited | Floating agitator housing for a vacuum cleaner head |
6263539, | Dec 23 1999 | Carpet/floor cleaning wand and machine | |
6263989, | Mar 27 1998 | FLIR DETECTION, INC | Robotic platform |
6272936, | Feb 20 1998 | Tekscan, Inc | Pressure sensor |
6278918, | Feb 28 2000 | CNH America LLC; BLUE LEAF I P , INC | Region of interest selection for a vision guidance system |
6282526, | Jan 20 1999 | The United States of America as represented by the Secretary of the Navy; NAVY, UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE | Fuzzy logic based system and method for information processing with uncertain input data |
6283034, | Jul 30 1999 | Remotely armed ammunition | |
6285778, | Sep 19 1991 | Yazaki Corporation | Vehicle surroundings monitor with obstacle avoidance lighting |
6285930, | Feb 28 2000 | CNH America LLC; BLUE LEAF I P , INC | Tracking improvement for a vision guidance system |
6300737, | Sep 19 1997 | HUSQVARNA AB | Electronic bordering system |
6321337, | |||
6321515, | Mar 18 1997 | HUSQVARNA AB | Self-propelled lawn mower |
6323570, | Apr 05 1999 | Matsushita Electric Industrial Co., Ltd. | Rotary brush device and vacuum cleaner using the same |
6324714, | May 08 1998 | ALFRED KAERCHER GMBH & CO KG | Sweeping machine |
6327741, | Jan 27 1997 | Robert J., Schaap | Controlled self operated vacuum cleaning system |
6332400, | Jan 24 2000 | The United States of America as represented by the Secretary of the Navy | Initiating device for use with telemetry systems |
6339735, | Dec 29 1998 | MTD Products Inc | Method for operating a robot |
6362875, | Dec 10 1999 | Cognex Technology and Investment Corporation | Machine vision system and method for inspection, homing, guidance and docking with respect to remote objects |
6370453, | Jul 31 1998 | TECHNISCHE FACHHOCHSCHULE BERLIN | Service robot for the automatic suction of dust from floor surfaces |
6374155, | Nov 24 1999 | Vision Robotics Corporation | Autonomous multi-platform robot system |
6381802, | Apr 24 2000 | Samsung Kwangju Electronics Co., Ltd. | Brush assembly of a vacuum cleaner |
6385515, | Jun 15 2000 | CNH America LLC; BLUE LEAF I P , INC | Trajectory path planner for a vision guidance system |
6388013, | Jan 04 2001 | Equistar Chemicals, LP | Polyolefin fiber compositions |
6389329, | Nov 27 1997 | Mobile robots and their control system | |
6400048, | Apr 03 1998 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Rotary brush device and vacuum cleaner using the same |
6401294, | Jul 09 1997 | BISSELL Homecare, Inc. | Upright extracton cleaning machine with handle mounting |
6408226, | Apr 24 2001 | National Technology & Engineering Solutions of Sandia, LLC | Cooperative system and method using mobile robots for testing a cooperative search controller |
6412141, | Jul 09 1997 | BISSELL Homecare, Inc. | Upright extraction cleaning machine |
6415203, | May 10 1999 | Sony Corporation | Toboy device and method for controlling the same |
6421870, | Feb 04 2000 | Tennant Company | Stacked tools for overthrow sweeping |
6427285, | Oct 17 1996 | Nilfisk-Advance, Inc. | Floor surface cleaning machine |
6430471, | Dec 17 1998 | MONEUAL, INC | Control system for controlling a mobile robot via communications line |
6431296, | Mar 27 1998 | FLIR DETECTION, INC | Robotic platform |
6437227, | Oct 11 1999 | Nokia Mobile Phones LTD | Method for recognizing and selecting a tone sequence, particularly a piece of music |
6437465, | Apr 03 1998 | Matsushita Electric Industrial Co., Ltd. | Rotary brush device and vacuum cleaner using the same |
6438456, | Apr 24 2001 | Sandia Corporation | Portable control device for networked mobile robots |
6438793, | Jul 09 1997 | BISSELL Homecare, Inc. | Upright extraction cleaning machine |
6442476, | Apr 15 1998 | COMMONWEALTH SCIENTIFIC AND INSUSTRIAL RESEARCH ORGANISATION; Research Organisation | Method of tracking and sensing position of objects |
6443509, | Mar 21 2000 | MTD Products Inc | Tactile sensor |
6444003, | Jan 08 2001 | Filter apparatus for sweeper truck hopper | |
6446302, | Jun 14 1999 | BISSEL INC ; BISSELL INC | Extraction cleaning machine with cleaning control |
6454036, | May 15 2000 | 'Bots, Inc. | Autonomous vehicle navigation system and method |
6457206, | Oct 20 2000 | GOOGLE LLC | Remote-controlled vacuum cleaner |
6459955, | Nov 18 1999 | The Procter & Gamble Company | Home cleaning robot |
6463368, | Aug 10 1998 | Siemens Aktiengesellschaft | Method and device for determining a path around a defined reference position |
6465982, | Jan 08 1998 | HUSQVARNA AB | Electronic search system |
6473167, | Jun 14 2001 | Ascension Technology Corporation; ROPER ASCENSION ACQUISITION, INC | Position and orientation determination using stationary fan beam sources and rotating mirrors to sweep fan beams |
6480762, | Sep 27 1999 | Olympus Corporation | Medical apparatus supporting system |
6481515, | May 30 2000 | Procter & Gamble Company, The | Autonomous mobile surface treating apparatus |
6490539, | Feb 28 2000 | CNH America LLC; BLUE LEAF I P , INC | Region of interest selection for varying distances between crop rows for a vision guidance system |
6491127, | Aug 14 1998 | Nomadic Technologies | Powered caster wheel module for use on omnidirectional drive systems |
6493612, | Dec 18 1998 | Dyson Technology Limited | Sensors arrangement |
6493613, | Dec 29 1998 | MTD Products Inc | Method for operating a robot |
6496754, | Nov 17 2000 | Samsung Kwangju Electronics Co., Ltd. | Mobile robot and course adjusting method thereof |
6496755, | Nov 24 1999 | Vision Robotics Corporation | Autonomous multi-platform robot system |
6502657, | Sep 22 2000 | The Charles Stark Draper Laboratory, Inc. | Transformable vehicle |
6504610, | Jan 22 1997 | Siemens Aktiengesellschaft | Method and system for positioning an autonomous mobile unit for docking |
6507773, | Jun 14 2001 | SHARPER IMAGE ACQUISITION LLC, A DELAWARE LIMITED LIABILITY COMPANY | Multi-functional robot with remote and video system |
6525509, | Jan 08 1998 | HUSQVARNA AB | Docking system for a self-propelled working tool |
6532404, | Nov 27 1997 | Mobile robots and their control system | |
6535793, | May 01 2000 | iRobot Corporation | Method and system for remote control of mobile robot |
6540607, | Apr 26 2001 | WARNER BROS ENTERTAINMENT INC | Video game position and orientation detection system |
6548982, | Nov 19 1999 | Regents of the University of Minnesota | Miniature robotic vehicles and methods of controlling same |
6553612, | Dec 18 1998 | Dyson Technology Limited | Vacuum cleaner |
6556722, | May 30 1997 | British Broadcasting Corporation | Position determination |
6556892, | Apr 03 2000 | Sony Corporation | Control device and control method for robot |
6557104, | May 02 1997 | KINGLITE HOLDINGS INC | Method and apparatus for secure processing of cryptographic keys |
6563130, | Oct 21 1998 | Canadian Space Agency | Distance tracking control system for single pass topographical mapping |
6571415, | Dec 01 2000 | Healthy Gain Investments Limited | Random motion cleaner |
6571422, | Aug 01 2000 | Healthy Gain Investments Limited | Vacuum cleaner with a microprocessor-based dirt detection circuit |
6572711, | Dec 01 2000 | Healthy Gain Investments Limited | Multi-purpose position sensitive floor cleaning device |
6574536, | Jan 29 1996 | MONEUAL, INC | Moving apparatus for efficiently moving on floor with obstacle |
6580246, | Aug 13 2001 | DIVERSEY, INC | Robot touch shield |
6584376, | Aug 31 1999 | Swisscom AG | Mobile robot and method for controlling a mobile robot |
6586908, | Jan 08 1998 | HUSQVARNA AB | Docking system for a self-propelled working tool |
6587573, | Mar 20 2000 | Gentex Corporation | System for controlling exterior vehicle lights |
6590222, | Dec 18 1998 | Dyson Technology Limited | Light detection apparatus |
6594551, | Jun 14 2001 | Sharper Image Corporation | Robot for expressing moods |
6594844, | Jan 24 2000 | iRobot Corporation | Robot obstacle detection system |
6601265, | Dec 18 1998 | Dyson Technology Limited | Vacuum cleaner |
6604021, | Jun 21 2001 | ADVANCED TELECOMMUNICATIONS RESEARCH INSTITUTE INTERNATIONAL | Communication robot |
6604022, | Jun 14 2001 | Sharper Image Corporation | Robot for autonomous operation |
6605156, | Jul 23 1999 | Dyson Technology Limited | Robotic floor cleaning device |
6611120, | Apr 18 2001 | Samsung Gwangju Electronics Co., Ltd. | Robot cleaning system using mobile communication network |
6611734, | Jun 14 2001 | SHARPER IMAGE ACQUISITION LLC, A DELAWARE LIMITED LIABILITY COMPANY | Robot capable of gripping objects |
6611738, | Jul 12 1999 | MC ROBOTICS | Multifunctional mobile appliance |
6615108, | May 11 1998 | MTD Products Inc | Area coverage with an autonomous robot |
6615885, | Oct 31 2000 | FLIR DETECTION, INC | Resilient wheel structure |
6622465, | Jul 10 2001 | Deere & Company | Apparatus and method for a material collection fill indicator |
6624744, | Oct 05 2001 | WILSON, WILLIAM NEIL | Golf cart keyless control system |
6625843, | Aug 02 2000 | KOREA HYDRO & NUCLEAR POWER CO , LTD | Remote-controlled mobile cleaning apparatus for removal and collection of high radioactive waste debris in hot-cell |
6629028, | Jun 29 2000 | PAROMTCHIK, IGOR EVGUENYEVITCH | Method and system of optical guidance of mobile body |
6639659, | Apr 24 2001 | HEXAGON TECHNOLOGY CENTER GMBH | Measuring method for determining the position and the orientation of a moving assembly, and apparatus for implementing said method |
6658325, | Jan 16 2001 | Mobile robotic with web server and digital radio links | |
6658354, | Mar 15 2002 | American GNC Corporation | Interruption free navigator |
6658692, | Jan 14 2000 | BISSEL INC ; BISSELL INC | Small area deep cleaner |
6658693, | Oct 12 2000 | BISSEL INC ; BISSELL INC | Hand-held extraction cleaner with turbine-driven brush |
6661239, | Jan 02 2001 | iRobot Corporation | Capacitive sensor systems and methods with increased resolution and automatic calibration |
6662889, | Apr 04 2000 | FLIR DETECTION, INC | Wheeled platforms |
6668951, | Mar 27 1998 | FLIR DETECTION, INC | Robotic platform |
6670817, | Jun 07 2001 | Eastman Kodak Company | Capacitive toner level detection |
6671592, | Dec 18 1998 | Dyson Technology Limited | Autonomous vehicular appliance, especially vacuum cleaner |
6687571, | Apr 24 2001 | National Technology & Engineering Solutions of Sandia, LLC | Cooperating mobile robots |
6690134, | Jan 24 2001 | iRobot Corporation | Method and system for robot localization and confinement |
6690993, | Oct 12 2000 | BROOKS AUTOMATION HOLDING, LLC; Brooks Automation US, LLC | Reticle storage system |
6697147, | Jun 29 2002 | Samsung Electronics Co., Ltd. | Position measurement apparatus and method using laser |
6711280, | May 25 2001 | STAFSUDD, OSCAR M ; KANELLAKOPOULOS, IOANNIS; NELSON, PHYLLIS R ; BAMBOS, NICHOLAS | Method and apparatus for intelligent ranging via image subtraction |
6732826, | Apr 18 2001 | Samsung Gwangju Electronics Co., Ltd. | Robot cleaner, robot cleaning system and method for controlling same |
6737591, | May 25 1999 | LIVESCRIBE INC | Orientation sensing device |
6741054, | May 02 2000 | Vision Robotics Corporation | Autonomous floor mopping apparatus |
6741364, | Aug 13 2002 | Harris Corporation | Apparatus for determining relative positioning of objects and related methods |
6748297, | Oct 31 2002 | Samsung Gwangju Electronics Co., Ltd. | Robot cleaner system having external charging apparatus and method for docking with the charging apparatus |
6756703, | Feb 27 2002 | Trigger switch module | |
6760647, | Jul 25 2000 | Axxon Robotics, LLC | Socially interactive autonomous robot |
6764373, | Oct 29 1999 | Sony Corporation | Charging system for mobile robot, method for searching charging station, mobile robot, connector, and electrical connection structure |
6769004, | Apr 27 2000 | FLIR DETECTION, INC | Method and system for incremental stack scanning |
6774596, | May 28 1999 | Dyson Technology Limited | Indicator for a robotic machine |
6779380, | Jan 08 1999 | WAP Reinigungssysteme GmbH & Co. | Measuring system for the control of residual dust in safety vacuum cleaners |
6781338, | Jan 24 2001 | iRobot Corporation | Method and system for robot localization and confinement |
6809490, | Jun 12 2001 | iRobot Corporation | Method and system for multi-mode coverage for an autonomous robot |
6810305, | Feb 16 2001 | Procter & Gamble Company, The | Obstruction management system for robots |
6830120, | Jan 25 1996 | Neutrogena Corporation | Floor working machine with a working implement mounted on a self-propelled vehicle for acting on floor |
6832407, | Aug 25 2000 | Healthy Gain Investments Limited | Moisture indicator for wet pick-up suction cleaner |
6836701, | May 10 2002 | Royal Appliance Mfg. Co. | Autonomous multi-platform robotic system |
6841963, | Aug 07 2001 | Samsung Gwangju Electronics Co., Ltd. | Robot cleaner, system thereof and method for controlling same |
6845297, | May 01 2000 | iRobot Corporation | Method and system for remote control of mobile robot |
6856811, | Feb 01 2002 | Warren L., Burdue | Autonomous portable communication network |
6859010, | Mar 14 2003 | LG Electronics Inc. | Automatic charging system and method of robot cleaner |
6859682, | Mar 28 2002 | FUJIFILM Corporation | Pet robot charging system |
6860206, | Dec 14 2001 | FLIR DETECTION, INC | Remote digital firing system |
6865447, | Jun 14 2001 | SHARPER IMAGE ACQUISITION LLC, A DELAWARE LIMITED LIABILITY COMPANY | Robot capable of detecting an edge |
6870792, | Aug 03 2000 | iRobot Corporation | Sonar Scanner |
6871115, | Oct 11 2002 | Taiwan Semiconductor Manufacturing Co., Ltd | Method and apparatus for monitoring the operation of a wafer handling robot |
6883201, | Jan 03 2002 | iRobot Corporation | Autonomous floor-cleaning robot |
6886651, | Jan 07 2002 | Massachusetts Institute of Technology | Material transportation system |
6888333, | Jul 02 2003 | TELADOC HEALTH, INC | Holonomic platform for a robot |
6901624, | Jun 05 2001 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Self-moving cleaner |
6906702, | Mar 19 1999 | Canon Kabushiki Kaisha | Coordinate input device and its control method, and computer readable memory |
6914403, | Mar 27 2002 | Sony Corporation | Electrical charging system, electrical charging controlling method, robot apparatus, electrical charging device, electrical charging controlling program and recording medium |
6917854, | Feb 21 2000 | WITTENSTEIN GMBH & CO KG | Method for recognition determination and localization of at least one arbitrary object or space |
6925357, | Jul 25 2002 | TELADOC HEALTH, INC | Medical tele-robotic system |
6925679, | Mar 16 2001 | Vision Robotics Corporation | Autonomous vacuum cleaner |
6929548, | Apr 23 2002 | Apparatus and a method for more realistic shooting video games on computers or similar devices | |
6938298, | Oct 30 2000 | Mobile cleaning robot for floors | |
6940291, | Jan 02 2001 | iRobot Corporation | Capacitive sensor systems and methods with increased resolution and automatic calibration |
6941199, | Jul 20 1998 | Procter & Gamble Company, The | Robotic system |
6956348, | Jan 28 2004 | iRobot Corporation | Debris sensor for cleaning apparatus |
6957712, | Apr 18 2001 | Samsung Gwangju Electronics Co., Ltd. | Robot cleaner, system employing the same and method for re-connecting to external recharging device |
6960986, | May 10 2000 | Riken | Support system using data carrier system |
6965209, | Jan 24 2001 | iRobot Corporation | Method and system for robot localization and confinement |
6965211, | Mar 27 2002 | Sony Corporation | Electrical charging system, electrical charging controlling method, robot apparatus, electrical charging device, electrical charging controlling program and recording medium |
6968592, | Mar 27 2001 | Hitachi, Ltd. | Self-running vacuum cleaner |
6971140, | Oct 22 2002 | LG Electronics Inc. | Brush assembly of cleaner |
6975246, | May 13 2003 | Elbit Systems of America, LLC | Collision avoidance using limited range gated video |
6980229, | Oct 16 2001 | Information Decision Technologies, LLC | System for precise rotational and positional tracking |
6985556, | Dec 27 2002 | GE Medical Systems Global Technology Company, LLC | Proximity detector and radiography system |
6993954, | Jul 27 2004 | Tekscan, Inc | Sensor equilibration and calibration system and method |
6999850, | Nov 17 2000 | Sensors for robotic devices | |
7013527, | Jun 08 1999 | DIVERSEY, INC | Floor cleaning apparatus with control circuitry |
7024278, | Sep 13 2002 | iRobot Corporation | Navigational control system for a robotic device |
7024280, | Jun 14 2001 | SHARPER IMAGE ACQUISITION LLC, A DELAWARE LIMITED LIABILITY COMPANY | Robot capable of detecting an edge |
7027893, | Aug 25 2003 | ATI Industrial Automation, Inc. | Robotic tool coupler rapid-connect bus |
7030768, | Sep 30 2003 | Water softener monitoring device | |
7031805, | Feb 06 2003 | Samsung Gwangju Electronics Co., Ltd. | Robot cleaner system having external recharging apparatus and method for docking robot cleaner with external recharging apparatus |
7032469, | Nov 12 2002 | Raytheon Company | Three axes line-of-sight transducer |
7053578, | Jul 08 2002 | ALFRED KAERCHER GMBH & CO KG | Floor treatment system |
7054716, | Sep 06 2002 | Royal Appliance Mfg. Co. | Sentry robot system |
7057120, | Apr 09 2003 | Malikie Innovations Limited | Shock absorbent roller thumb wheel |
7057643, | May 30 2001 | Minolta Co., Ltd. | Image capturing system, image capturing apparatus, and manual operating apparatus |
7065430, | Mar 28 2002 | FUJIFILM Corporation | Receiving apparatus |
7066291, | Dec 04 2000 | UNIBAP AB | Robot system |
7069124, | Oct 28 2002 | Workhorse Technologies, LLC | Robotic modeling of voids |
7079923, | Sep 26 2001 | MTD Products Inc | Robotic vacuum cleaner |
7085623, | Aug 15 2002 | ASM International NV | Method and system for using short ranged wireless enabled computers as a service tool |
7085624, | Nov 03 2001 | Dyson Technology Limited | Autonomous machine |
7113847, | May 07 2002 | Royal Appliance Mfg. Co.; ROYAL APPLIANCE MFG CO | Robotic vacuum with removable portable vacuum and semi-automated environment mapping |
7133746, | Jul 11 2003 | MTD Products Inc | Autonomous machine for docking with a docking station and method for docking |
7142198, | Dec 10 2001 | SAMSUNG ELECTRONICS CO , LTD | Method and apparatus for remote pointing |
7148458, | Mar 29 2004 | iRobot Corporation | Circuit for estimating position and orientation of a mobile object |
7155308, | Jan 24 2000 | iRobot Corporation | Robot obstacle detection system |
7167775, | Sep 26 2001 | MTD Products Inc | Robotic vacuum cleaner |
7171285, | Apr 03 2003 | LG Electronics Inc. | Mobile robot using image sensor and method for measuring moving distance thereof |
7173391, | Jun 12 2001 | iRobot Corporation | Method and system for multi-mode coverage for an autonomous robot |
7174238, | Sep 02 2003 | Mobile robotic system with web server and digital radio links | |
7188000, | Sep 13 2002 | iRobot Corporation | Navigational control system for a robotic device |
7193384, | Jul 29 2003 | Innovation First, Inc. | System, apparatus and method for managing and controlling robot competitions |
7196487, | Aug 19 2004 | iRobot Corporation | Method and system for robot localization and confinement |
7201786, | Dec 19 2003 | Healthy Gain Investments Limited | Dust bin and filter for robotic vacuum cleaner |
7206677, | Mar 15 2001 | Aktiebolaget Electrolux | Efficient navigation of autonomous carriers |
7211980, | Jul 05 2006 | Humatics Corporation | Robotic follow system and method |
7246405, | Oct 09 2003 | HUNAN GRAND-PRO ROBOT TECHNOLOGY CO , LTD | Self-moving vacuum cleaner with moveable intake nozzle |
7248951, | Mar 15 2001 | Aktiebolaget Electrolux | Method and device for determining position of an autonomous apparatus |
7275280, | Feb 28 2001 | Aktiebolaget Electrolux | Wheel support arrangement for an autonomous cleaning apparatus |
7283892, | Apr 03 2006 | SERVO-ROBOT INC | Hybrid compact sensing apparatus for adaptive robotic processes |
7288912, | Jan 28 2004 | iRobot Corporation | Debris sensor for cleaning apparatus |
7318248, | Nov 13 2006 | HUNAN GRAND-PRO ROBOT TECHNOLOGY CO , LTD | Cleaner having structures for jumping obstacles |
7320149, | Nov 22 2002 | BISSEL INC ; BISSELL INC | Robotic extraction cleaner with dusting pad |
7324870, | Jan 06 2004 | Samsung Electronics Co., Ltd. | Cleaning robot and control method thereof |
7328196, | Dec 31 2003 | Vanderbilt University | Architecture for multiple interacting robot intelligences |
7332890, | Jan 21 2004 | iRobot Corporation | Autonomous robot auto-docking and energy management systems and methods |
7352153, | Jun 25 2004 | HUNAN GRAND-PRO ROBOT TECHNOLOGY CO , LTD | Mobile robotic system and battery charging method therefor |
7359766, | Dec 22 2003 | LG Electronics Inc. | Robot cleaner and operating method thereof |
7360277, | Mar 24 2004 | Techtronic Floor Care Technology Limited | Vacuum cleaner fan unit and access aperture |
7363108, | Feb 05 2003 | Sony Corporation | Robot and control method for controlling robot expressions |
7388879, | Aug 28 2000 | Sony Corporation | Communication device and communication method network system and robot apparatus |
7389166, | Jun 28 2005 | S C JOHNSON & SON, INC | Methods to prevent wheel slip in an autonomous floor cleaner |
7408157, | Sep 27 2006 | HUNAN GRAND-PRO ROBOT TECHNOLOGY CO , LTD | Infrared sensor |
7418762, | Mar 05 2003 | Hitachi, LTD; HITACHI HOME & LIFE SOLUTIONS | Self-propelled cleaning device and charger using the same |
7430455, | Jan 24 2000 | iRobot Corporation | Obstacle following sensor scheme for a mobile robot |
7430462, | Oct 20 2004 | Infinite Electronics Inc. | Automatic charging station for autonomous mobile machine |
7441298, | Dec 02 2005 | iRobot Corporation | Coverage robot mobility |
7444206, | Sep 26 2001 | MTD Products Inc | Robotic vacuum cleaner |
7448113, | Jan 03 2002 | IRobert | Autonomous floor cleaning robot |
7459871, | Jan 28 2004 | iRobot Corporation | Debris sensor for cleaning apparatus |
7467026, | Sep 22 2003 | Honda Motor Co. Ltd. | Autonomously moving robot management system |
7474941, | Jul 24 2003 | Samsung Gwangju Electronics Co., Ltd. | Robot cleaner |
7503096, | Dec 27 2005 | E-Supply International Co., Ltd. | Dust-collectable mobile robotic vacuum cleaner |
7515991, | Mar 17 2003 | Hitachi, Ltd.; Hitachi Home and Life Solutions, Inc. | Self-propelled cleaning device and method of operation thereof |
7555363, | Sep 02 2005 | VORWERK & CO INTERHOLDING GMBH | Multi-function robotic device |
7557703, | Jul 11 2005 | Honda Motor Co., Ltd. | Position management system and position management program |
7568259, | Dec 13 2005 | HUNAN GRAND-PRO ROBOT TECHNOLOGY CO , LTD | Robotic floor cleaner |
7571511, | Jan 03 2002 | iRobot Corporation | Autonomous floor-cleaning robot |
7578020, | Jun 28 2005 | S C JOHNSON & SON, INC | Surface treating device with top load cartridge-based cleaning system |
7600521, | Sep 23 2004 | LG Electronics Inc. | System for automatically exchanging cleaning tools of robot cleaner, and method therefor |
7603744, | Apr 02 2004 | Royal Appliance Mfg. Co. | Robotic appliance with on-board joystick sensor and associated methods of operation |
7617557, | Apr 02 2004 | Royal Appliance Mfg. Co. | Powered cleaning appliance |
7620476, | Feb 18 2005 | iRobot Corporation | Autonomous surface cleaning robot for dry cleaning |
7636982, | Jan 03 2002 | iRobot Corporation | Autonomous floor cleaning robot |
7647144, | Feb 28 2001 | Aktiebolaget Electrolux | Obstacle sensing system for an autonomous cleaning apparatus |
7650666, | Dec 22 2005 | KYUNGMIN MECHATRONICS CO , LTD | Robot cleaner |
7660650, | Oct 08 2003 | FIGLA CO , LTD | Self-propelled working robot having horizontally movable work assembly retracting in different speed based on contact sensor input on the assembly |
7663333, | Jun 12 2001 | iRobot Corporation | Method and system for multi-mode coverage for an autonomous robot |
7693605, | Jul 30 2004 | LG Electronics Inc. | Apparatus and method for calling mobile robot |
7706917, | Jul 07 2004 | iRobot Corporation | Celestial navigation system for an autonomous robot |
7765635, | Sep 05 2006 | LG Electronics Inc. | Cleaning robot |
7801645, | Mar 14 2003 | Sharper Image Acquisition LLC | Robotic vacuum cleaner with edge and object detection system |
7805220, | Mar 14 2003 | Sharper Image Acquisition LLC | Robot vacuum with internal mapping system |
7809944, | May 02 2001 | Sony Corporation | Method and apparatus for providing information for decrypting content, and program executed on information processor |
7849555, | Apr 24 2006 | Samsung Electronics Co., Ltd. | Robot cleaning system and dust removing method of the same |
7853645, | Oct 07 1997 | AUTOMATION MIDDLEWARE SOLUTIONS, INC | Remote generation and distribution of command programs for programmable devices |
7920941, | Feb 27 2004 | SAMSUNG ELECTRONICS CO , LTD | Dust detection method and apparatus for cleaning robot |
7937800, | Apr 21 2004 | HUNAN GRAND-PRO ROBOT TECHNOLOGY CO , LTD | Robotic vacuum cleaner |
7957836, | Aug 05 2004 | SAMSUNG ELECTRONICS CO , LTD | Method used by robot for simultaneous localization and map-building |
20010004719, | |||
20010013929, | |||
20010020200, | |||
20010025183, | |||
20010037163, | |||
20010043509, | |||
20010045883, | |||
20010047231, | |||
20010047895, | |||
20020011367, | |||
20020011813, | |||
20020016649, | |||
20020021219, | |||
20020027652, | |||
20020036779, | |||
20020081937, | |||
20020095239, | |||
20020097400, | |||
20020104963, | |||
20020108209, | |||
20020112742, | |||
20020113973, | |||
20020116089, | |||
20020120364, | |||
20020124343, | |||
20020153185, | |||
20020156556, | |||
20020159051, | |||
20020166193, | |||
20020169521, | |||
20020173877, | |||
20020189871, | |||
20030009259, | |||
20030019071, | |||
20030023356, | |||
20030024986, | |||
20030025472, | |||
20030028286, | |||
20030030399, | |||
20030058262, | |||
20030060928, | |||
20030067451, | |||
20030097875, | |||
20030120389, | |||
20030124312, | |||
20030126352, | |||
20030137268, | |||
20030146384, | |||
20030192144, | |||
20030193657, | |||
20030216834, | |||
20030221114, | |||
20030229421, | |||
20030229474, | |||
20030233171, | |||
20030233177, | |||
20030233870, | |||
20030233930, | |||
20040016077, | |||
20040020000, | |||
20040030448, | |||
20040030449, | |||
20040030450, | |||
20040030451, | |||
20040030570, | |||
20040030571, | |||
20040031113, | |||
20040049877, | |||
20040055163, | |||
20040068351, | |||
20040068415, | |||
20040068416, | |||
20040074038, | |||
20040076324, | |||
20040083570, | |||
20040088079, | |||
20040093122, | |||
20040098167, | |||
20040111184, | |||
20040111821, | |||
20040113777, | |||
20040117064, | |||
20040117846, | |||
20040118998, | |||
20040128028, | |||
20040133316, | |||
20040134336, | |||
20040134337, | |||
20040143919, | |||
20040148419, | |||
20040148731, | |||
20040153212, | |||
20040156541, | |||
20040158357, | |||
20040181706, | |||
20040187249, | |||
20040187457, | |||
20040196451, | |||
20040200505, | |||
20040204792, | |||
20040210345, | |||
20040210347, | |||
20040211444, | |||
20040221790, | |||
20040236468, | |||
20040244138, | |||
20040255425, | |||
20050000543, | |||
20050010330, | |||
20050010331, | |||
20050021181, | |||
20050067994, | |||
20050085947, | |||
20050137749, | |||
20050144751, | |||
20050150074, | |||
20050150519, | |||
20050154795, | |||
20050156562, | |||
20050165508, | |||
20050166354, | |||
20050166355, | |||
20050172445, | |||
20050183229, | |||
20050183230, | |||
20050187678, | |||
20050192707, | |||
20050204717, | |||
20050209736, | |||
20050211880, | |||
20050212929, | |||
20050213082, | |||
20050213109, | |||
20050217042, | |||
20050218852, | |||
20050222933, | |||
20050229340, | |||
20050229355, | |||
20050235451, | |||
20050251292, | |||
20050255425, | |||
20050258154, | |||
20050273967, | |||
20050288819, | |||
20060000050, | |||
20060010638, | |||
20060020369, | |||
20060020370, | |||
20060021168, | |||
20060025134, | |||
20060037170, | |||
20060044546, | |||
20060060216, | |||
20060061657, | |||
20060064828, | |||
20060087273, | |||
20060089765, | |||
20060100741, | |||
20060119839, | |||
20060143295, | |||
20060146776, | |||
20060190133, | |||
20060190146, | |||
20060196003, | |||
20060220900, | |||
20060259194, | |||
20060259494, | |||
20060288519, | |||
20060293787, | |||
20070006404, | |||
20070017061, | |||
20070028574, | |||
20070032904, | |||
20070043459, | |||
20070061041, | |||
20070114975, | |||
20070150096, | |||
20070157415, | |||
20070157420, | |||
20070179670, | |||
20070226949, | |||
20070234492, | |||
20070244610, | |||
20070250212, | |||
20070266508, | |||
20080007203, | |||
20080039974, | |||
20080052846, | |||
20080091304, | |||
20080184518, | |||
20080276407, | |||
20080281470, | |||
20080282494, | |||
20080294288, | |||
20080302586, | |||
20080307590, | |||
20090007366, | |||
20090038089, | |||
20090049640, | |||
20090055022, | |||
20090102296, | |||
20090292393, | |||
20100011529, | |||
20100049365, | |||
20100063628, | |||
20100107355, | |||
20100257690, | |||
20100257691, | |||
20100263158, | |||
AU2003275566, | |||
D258901, | Oct 16 1978 | Wheeled figure toy | |
D278732, | Aug 25 1981 | TOMY KOGYO CO , INC , A JAPAN CORP | Animal-like figure toy |
D292223, | May 17 1985 | Showscan Film Corporation | Toy robot or the like |
D298766, | Apr 11 1986 | Playtime Products, Inc. | Toy robot |
D318500, | Aug 08 1988 | Monster Robots Inc.; MONSTER ROBOTS INC | Monster toy robot |
D345707, | Dec 18 1992 | U.S. Philips Corporation | Dust sensor device |
D375592, | Aug 29 1995 | Aktiebolaget Electrolux | Vacuum cleaner |
D464091, | Oct 10 2000 | Sharper Image Corporation | Robot with two trays |
D471243, | Feb 09 2001 | iRobot Corporation | Robot |
D474312, | Jan 11 2002 | Healthy Gain Investments Limited | Robotic vacuum cleaner |
D478884, | Aug 23 2002 | Motorola, Inc. | Base for a cordless telephone |
D510066, | May 05 2004 | iRobot Corporation | Base station for robot |
DE102004041021, | |||
DE102005046813, | |||
DE10242257, | |||
DE10357636, | |||
DE19849978, | |||
DE199311014, | |||
DE2128842, | |||
DE3317376, | |||
DE3404202, | |||
DE3536907, | |||
DE4338841, | |||
DE4414683, | |||
DK199803389, | |||
EP792726, | |||
EP1018315, | |||
EP1172719, | |||
EP1228734, | |||
EP1331537, | |||
EP1380246, | |||
EP1553472, | |||
EP1642522, | |||
EP265542, | |||
EP281085, | |||
EP294101, | |||
EP307381, | |||
EP358628, | |||
EP433697, | |||
EP437024, | |||
EP479273, | |||
EP554978, | |||
EP615719, | |||
EP845237, | |||
EP861629, | |||
EP930040, | |||
ES2238196, | |||
FR2601443, | |||
FR2828589, | |||
GB2128842, | |||
GB2225221, | |||
GB2267360, | |||
GB2283838, | |||
GB2284957, | |||
GB2300082, | |||
GB2404330, | |||
GB2417354, | |||
GB702426, | |||
JP10055215, | |||
JP10117973, | |||
JP10118963, | |||
JP10177414, | |||
JP10214114, | |||
JP10295595, | |||
JP11015941, | |||
JP11102220, | |||
JP11162454, | |||
JP11174145, | |||
JP11175149, | |||
JP11178764, | |||
JP11178765, | |||
JP11212642, | |||
JP11213157, | |||
JP11248806, | |||
JP11282532, | |||
JP11282533, | |||
JP11295412, | |||
JP11508810, | |||
JP11510935, | |||
JP1162454, | |||
JP20000275321, | |||
JP20000353014, | |||
JP2000047728, | |||
JP2000056006, | |||
JP2000056831, | |||
JP2000066722, | |||
JP2000075925, | |||
JP2001022443, | |||
JP2001067588, | |||
JP2001087182, | |||
JP2001121455, | |||
JP2001125641, | |||
JP2001216482, | |||
JP2001258807, | |||
JP2001265437, | |||
JP2001275908, | |||
JP2001289939, | |||
JP2001306170, | |||
JP2001320781, | |||
JP2001525567, | |||
JP2002204768, | |||
JP2002204769, | |||
JP2002247510, | |||
JP2002323925, | |||
JP2002333920, | |||
JP2002355206, | |||
JP2002360471, | |||
JP2002360479, | |||
JP2002360482, | |||
JP2002366227, | |||
JP2002369778, | |||
JP2002532178, | |||
JP200278650, | |||
JP2003010076, | |||
JP2003010088, | |||
JP2003015740, | |||
JP2003028528, | |||
JP2003036116, | |||
JP2003047579, | |||
JP2003052596, | |||
JP2003061882, | |||
JP2003084994, | |||
JP200310076, | |||
JP2003167628, | |||
JP2003180586, | |||
JP2003180587, | |||
JP2003186539, | |||
JP2003190064, | |||
JP2003241836, | |||
JP2003262520, | |||
JP2003285288, | |||
JP2003304992, | |||
JP2003310489, | |||
JP2003310509, | |||
JP2003330543, | |||
JP200338401, | |||
JP200338402, | |||
JP2003505127, | |||
JP20035296, | |||
JP2004123040, | |||
JP2004148021, | |||
JP2004160102, | |||
JP2004166968, | |||
JP2004174228, | |||
JP2004198330, | |||
JP2004219185, | |||
JP2005118354, | |||
JP2005135400, | |||
JP2005211360, | |||
JP2005224265, | |||
JP2005230032, | |||
JP2005245916, | |||
JP2005296511, | |||
JP2005352707, | |||
JP2006043071, | |||
JP2006155274, | |||
JP2006164223, | |||
JP2006227673, | |||
JP2006247467, | |||
JP2006260161, | |||
JP2006293662, | |||
JP2006296697, | |||
JP2007034866, | |||
JP2007213180, | |||
JP2009015611, | |||
JP20100198552, | |||
JP2026312, | |||
JP2283343, | |||
JP2555263, | |||
JP26312, | |||
JP3051023, | |||
JP3197758, | |||
JP3201903, | |||
JP3356170, | |||
JP3375843, | |||
JP4019586, | |||
JP4074285, | |||
JP4084921, | |||
JP5023269, | |||
JP5040519, | |||
JP5042076, | |||
JP5046239, | |||
JP5046246, | |||
JP5054620, | |||
JP5150827, | |||
JP5150829, | |||
JP5257527, | |||
JP5257533, | |||
JP5285861, | |||
JP53021869, | |||
JP53110257, | |||
JP57064217, | |||
JP59005315, | |||
JP59033511, | |||
JP59094005, | |||
JP59099308, | |||
JP59112311, | |||
JP59120124, | |||
JP59131668, | |||
JP59164973, | |||
JP59184917, | |||
JP59212924, | |||
JP59226909, | |||
JP6003251, | |||
JP60089213, | |||
JP60211510, | |||
JP60259895, | |||
JP6026312, | |||
JP61023221, | |||
JP6105781, | |||
JP6109712, | |||
JP6137828, | |||
JP62070709, | |||
JP62074018, | |||
JP62120510, | |||
JP62154008, | |||
JP62164431, | |||
JP62189057, | |||
JP62263507, | |||
JP62263508, | |||
JP6293095, | |||
JP63079623, | |||
JP63158032, | |||
JP63183032, | |||
JP63241610, | |||
JP6327598, | |||
JP7059702, | |||
JP7129239, | |||
JP7222705, | |||
JP7270518, | |||
JP7281752, | |||
JP7295636, | |||
JP7313417, | |||
JP8000393, | |||
JP8083125, | |||
JP8089449, | |||
JP8089451, | |||
JP8123548, | |||
JP8152916, | |||
JP816776, | |||
JP8263137, | |||
JP8322774, | |||
JP8335112, | |||
JP9043901, | |||
JP9044240, | |||
JP9047413, | |||
JP9066855, | |||
JP9145309, | |||
JP9160644, | |||
JP9179625, | |||
JP9185410, | |||
JP9206258, | |||
JP9233712, | |||
JP9251318, | |||
JP9265319, | |||
JP9269807, | |||
JP9269810, | |||
JP9319432, | |||
JP9319434, | |||
JP9325812, | |||
JP943901, | |||
28268, | |||
WO4430, | |||
WO36962, | |||
WO38026, | |||
WO38028, | |||
WO38029, | |||
WO78410, | |||
WO106904, | |||
WO106905, | |||
WO180703, | |||
WO191623, | |||
WO2058527, | |||
WO2062194, | |||
WO2067744, | |||
WO2067745, | |||
WO2067752, | |||
WO2074150, | |||
WO2075356, | |||
WO2075469, | |||
WO2075470, | |||
WO2081074, | |||
WO2101477, | |||
WO239864, | |||
WO239868, | |||
WO269774, | |||
WO269775, | |||
WO275350, | |||
WO3015220, | |||
WO3024292, | |||
WO3026474, | |||
WO3040546, | |||
WO3040845, | |||
WO3040846, | |||
WO3062850, | |||
WO3062852, | |||
WO2004004533, | |||
WO2004004534, | |||
WO2004005956, | |||
WO2004006034, | |||
WO2004025947, | |||
WO2004043215, | |||
WO2004058028, | |||
WO2005006935, | |||
WO2005036292, | |||
WO2005055795, | |||
WO2005055796, | |||
WO2005076545, | |||
WO2005077243, | |||
WO2005077244, | |||
WO2005081074, | |||
WO2005082223, | |||
WO2005083541, | |||
WO2005098475, | |||
WO2005098476, | |||
WO2006046400, | |||
WO2006068403, | |||
WO2006073248, | |||
WO2007036490, | |||
WO2007065033, | |||
WO2007137234, | |||
WO9526512, | |||
WO9530887, | |||
WO9617258, | |||
WO9715224, | |||
WO9740734, | |||
WO9741451, | |||
WO9853456, | |||
WO9905580, | |||
WO9916078, | |||
WO9928800, | |||
WO9938056, | |||
WO9938237, | |||
WO9943250, | |||
WO9959042, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 23 2008 | iRobot Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Sep 25 2015 | 4 years fee payment window open |
Mar 25 2016 | 6 months grace period start (w surcharge) |
Sep 25 2016 | patent expiry (for year 4) |
Sep 25 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 25 2019 | 8 years fee payment window open |
Mar 25 2020 | 6 months grace period start (w surcharge) |
Sep 25 2020 | patent expiry (for year 8) |
Sep 25 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 25 2023 | 12 years fee payment window open |
Mar 25 2024 | 6 months grace period start (w surcharge) |
Sep 25 2024 | patent expiry (for year 12) |
Sep 25 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |