Methods and apparatus provide for voltage level shifting with concurrent synchronization. The apparatus includes level shifting logic that in response to a non-level shifted clock signal from a first voltage domain, provides level shifted concurrently synchronous differential data signals in a second voltage domain based on pre-level shifted differential data signals from the first voltage domain. The first voltage domain may be, for example, a core logic voltage domain in which core logic operates. The second voltage domain may be, for example, an input/output (I/O) voltage domain in which an I/O buffer operates. The voltage level of the level shifted concurrently synchronous differential data signals is shifted from the pre-level shifted differential data signals, and the timing of the level shifted concurrently synchronous differential data signals is concurrently referenced to the non-level shifted clock signal.
|
18. A method carried out by an electronic device comprising:
receiving input pre-level shifted differential data signals from logic operative in a first voltage domain;
in response to a non-level shifted clock signal from the first voltage domain, alternatively generate pumping current signals based on the input pre-level shifted differential data signals; and
providing level shifted concurrently synchronous differential data signals in a second voltage domain based on the pumping current signals.
1. An integrated circuit comprising level shifting logic operative to, in response to a non-level shifted clock signal from a first voltage domain, provide level shifted concurrently synchronous differential data signals in a second voltage domain based on input pre-level shifted differential data signals from the first voltage domain received by the level shifting logic, wherein the level shifting logic comprises current mirrors operable to alternatively generate pumping current signals based on the input pre-level shifted differential data signals.
11. level shifting logic comprising:
a plurality of current-mode pull-up enhancement circuits operative to, in response to a non-level shifted clock signal from a first voltage domain, generate a plurality of pumping current signals based on pre-level shifted differential data signals from the first voltage domain; and
a regenerative latch, operatively connected to the plurality of current-mode pull-up enhancement circuits, operative to output level shifted concurrently synchronous differential data signals in a second voltage domain based on the plurality of pumping current signals.
4. An integrated circuit comprising level shifting logic operative to, in response to a non-level shifted clock signal from a first voltage domain, provide level shifted concurrently synchronous differential data signals in a second voltage domain based on pre-level shifted differential data signals from the first voltage domain, wherein the level shifting logic comprises a plurality of current-mode pull-up enhancement circuits operative to, in response to the non-level shifted clock signal from the first voltage domain, generate a plurality of pumping current signals based on the pre-level shifted differential data signals.
21. A non-transitory computer readable medium storing instructions executable by one or more integrated circuit design systems that causes the one or more integrated circuit design systems to design an integrated circuit comprising level shifting logic operative to, in response to a non-level shifted clock signal from a first voltage domain, provide level shifted concurrently synchronous differential data signals in a second voltage domain based on input pre-level shifted differential data signals from the first voltage domain received by the level shifting logic, wherein the level shifting logic comprises current mirrors operable to alternatively generate pumping current signals based on the pre-level shifted differential data signals.
19. A method carried out by an electronic device comprising:
receiving pre-level shifted differential data signals from logic operative in a first voltage domain; and
in response to a non-level shifted clock signal from the first voltage domain, providing level shifted concurrently synchronous differential data signals in a second voltage domain based on the pre-level shifted differential data signals,
wherein providing the level shifted concurrently synchronous differential data signals comprises:
in response to the non-level shifted clock signal from the first voltage domain, generating a pumping current signal based on the pre-level shifted differential data signals; and
outputting the level shifted concurrently synchronous differential data signals based on the pumping current signal.
2. The integrated circuit of
3. The integrated circuit of
first logic, operative in the first voltage domain, operative to transmit the non-level shifted clock signal and the pre-level shifted differential data signals to the level shifting logic; and
second logic, operative in the second voltage domain, operative to receive the level shifted concurrently synchronous differential data signals from the level shifting logic.
5. The integrated circuit of
6. The integrated circuit of
wherein the regenerative latch is operative to output the level shifted concurrently synchronous differential based on the plurality of pull-down voltage signals and the plurality of pumping current signals.
7. The integrated circuit of
8. The integrated circuit of
synchronous current gating logic comprising a plurality of transistors, operative to generate a reference current signal in response to the non-level shifted clock signal and the pre-level shifted differential data signals from the first voltage domain; and
a current mirror, operatively connected to the synchronous current gating logic, operative to generate one of the plurality of pumping current signals that is substantially equal to the reference current signal.
9. The integrated circuit of
10. The integrated circuit of
wherein the plurality of current-mode pull-up enhancement circuits are operative to generate the plurality of pumping current signals in response to the first clock signal and a delayed second clock signal of the differential clock signal.
12. The level shifting logic of
synchronous current gating logic comprising a plurality of transistors, operative to generate a reference current signal in response to the non-level shifted clock signal and the pre-level shifted differential data signals from the first voltage domain; and
a current mirror, operatively connected to the synchronous current gating logic, operative to generate one of the plurality of pumping current signals that is substantially equal to the reference current signal.
13. The level shifting logic of
14. The level shifting logic of
wherein the plurality of current-mode pull-up enhancement circuits are operative to generate the plurality of pumping current signals in response to the first clock signal and a delayed second clock signal of the differential clock signal.
15. The level shifting logic of
wherein the regenerative latch is operative to output the level shifted concurrently synchronous differential based on the plurality of pull-down voltage signals and the plurality of pumping current signals.
16. The level shifting logic of
17. The level shifting logic of
20. The method of
generating a reference current signal in response to the non-level shifted clock signal and the pre-level shifted differential data signals from the first voltage domain; and
generating the pumping current signal that is substantially equal to the reference current signal.
|
The disclosure relates generally to methods and apparatus for voltage level shifting.
In integrated circuits having an input/output (I/O) circuit, because internal core logic can operate in an internal core logic voltage domain that is different from an I/O voltage domain in which the I/O circuit operates, voltage level shifting is required to propagate signals from the internal core logic to the I/O circuit. In addition, for high-speed synchronous I/O circuits, the output data signal is typically required to be synchronized with a clock through a flip-flop or a latch prior to being sent out, to clean up signal timing jitter from the upstream data path.
One technique for performing the voltage domain level shifting and the output data signal synchronization is to synchronize the data signal in the lower voltage domain (e.g., an internal core logic voltage domain) with a flip-flop or a latch, then shift the voltage level of the synchronized output data signal to the higher voltage domain (e.g., an I/O voltage domain) so that the signal can be driven out through an I/O buffer. Another technique for performing the voltage domain level shifting and the output data signal synchronization is to shift the voltage level of both the output data signal and the clock signal from the internal core logic voltage domain to the I/O voltage domain, then synchronize the level shifted output data signal with the level shifted clock signal in the I/O voltage domain with a flip-flop or a latch operating on the I/O power rail. Both techniques typically require two separate and sequential operations and corresponding circuits, for example, a synchronization operation followed by a level shifting operating or vice versa. In other words, an asynchronous level shifting scheme is employed by the above-mentioned techniques, which typically adds jitter to the resulting output data signal.
In addition, existing level shifting circuits may only rely on pull-down voltage signals generated by NMOS transistors to flip the logic polarity of the differential output data signals. As such, the duty cycle of the output signal may be distorted by the varying of the internal core logic voltage, especially when the internal core logic voltage is down to near the minimum common-collector voltage (VCCmin) of the technology process.
Accordingly, there exists a need for improved methods and apparatus for voltage level shifting.
The embodiments will be more readily understood in view of the following description when accompanied by the below figures and wherein like reference numerals represent like elements, wherein:
Briefly, methods and apparatus provide for voltage level shifting with concurrent synchronization. In one example, the apparatus includes level shifting logic that, in response to a non-level shifted clock signal from a first voltage domain, provides level shifted concurrently synchronous differential data signals in a second voltage domain based on pre-level shifted differential data signals from the first voltage domain. The first voltage domain may be, for example, a core logic voltage domain in which core logic operates. The second voltage domain may be, for example, an I/O voltage domain in which an I/O buffer operates. The voltage level of the level shifted concurrently synchronous differential data signals is shifted from the pre-level shifted differential data signals, and the timing of the level shifted concurrently synchronous differential data signals is concurrently referenced to the non-level shifted clock signal.
The level shifting logic may include a plurality of current-mode pull-up enhancement circuits. The plurality of current-mode pull-up enhancement circuits, in response to the non-level shifted clock signal from the first voltage domain, generate a plurality of pumping current signals based on the pre-level shifted differential data signals. The level shifting logic may also include a regenerative latch operatively connected to the plurality of current-mode pull-up enhancement circuits. The regenerative latch outputs the level shifted concurrently synchronous differential data signals based on the plurality of pumping current signals.
In one example, each one of the plurality of current-mode pull-up enhancement circuits may include synchronous current gating logic including a plurality of transistors. The synchronous current gating logic generates a reference current signal in response to the non-level shifted clock signal and the pre-level shifted differential data signals from the first voltage domain. Each one of the plurality of current-mode pull-up enhancement circuits may also include a current mirror operatively connected to the synchronous current gating logic. The current mirror generates one of the plurality of pumping current signals that is substantially equal to the reference current signal. The plurality of current-mode pull-up enhancement circuits may alternatively generate at least two pumping current signals. The non-level shifted clock signal from the first voltage domain may be a differential clock signal having a first clock signal and a second clock signal, and the plurality of current-mode pull-up enhancement circuits may generate the plurality of pumping current signals in response to the first clock signal and a delayed second clock signal of the differential clock signal.
In another example, the level shifting logic may include complementary pull-down logic operatively connected to the plurality of current-mode pull-up enhancement circuits and the regenerative latch. The complementary pull-down logic generates a plurality of pull-down voltage signals. The regenerative latch may output the level shifted concurrently synchronous differential data signals based on the plurality of pull-down voltage signals and the plurality of pumping current signals.
In still another example, the level shifting logic may include latching logic operatively connected to the complementary pull-down logic and the plurality of current-mode pull-up enhancement circuits. The latching logic may propagate latched pre-level shifted differential data signals to the complementary pull-down logic and the plurality of current-mode pull-up enhancement circuits.
In yet another example, the apparatus may include first logic operative in the first voltage domain. The first logic may be, for example, core logic, and transmit the non-level shifted clock signal and the pre-level shifted differential data signals to the level shifting logic. The apparatus may also include second logic operative in the second voltage domain. The second logic may be, for example, an I/O buffer, and receive the level shifted concurrently synchronous differential data signals from the level shifting logic.
Among other advantages, the method and apparatus for voltage level shifting with concurrent synchronization provide the ability to level shift and synchronize high-speed data signal at the same time without having to level shift the clock signal, thereby improving the deterministic jitter performance of the circuit. In addition, the duty cycle of the output differential data signals stays relatively constant with varying the internal core logic supply voltage, even down to near the minimum common-collector voltage (VCCmin) of the technology process, due to the existence of the current pumping mechanism to toggle the output polarity of the output differential data signals. Accordingly, the proposed techniques can improve the jitter performance and duty cycle distortion from the conventional techniques. Other advantages will be recognized by those of ordinary skill in the art.
The level shifting logic 102 receives pre-level shifted differential data signals 108, 110 and a non-level shifted clock signal (CLK) 112 from the first logic 104. The pre-level shifted differential data signals 108, 110 and the non-level shifted clock signal 112 are in the first voltage domain. In this example, the pre-level shifted differential data signals 108, 110 are differential data signals that include a first pre-level shifted differential data signal (DATA_IN_P) 108 and a second pre-level shifted differential data signal (DATA_IN_N) 110. As shown in the timing diagram of
As shown in
The level shifting logic 102 may also include complementary pull-down logic 210 operatively connected to the current-mode pull-up enhancement circuits 200, 202 and the regenerative latch 208. In this example, the complementary pull-down logic 210 receives the pre-level shifted differential data signals 108, 110, and generates and outputs a plurality of pull-down voltage signals 212, 214 (e.g., a first pull-down voltage signal PD_N 212, a second pull-down voltage signal PD_P 214). The two pull-down voltage signals 212, 214 are complementary to each other as shown in the timing diagram of
The first current mirror 402 may be, as known in the art, a circuit designed to copy a current through one active branch by controlling the current in another active branch of a circuit, keeping the output current constant regardless of loading. In this example, the first current mirror 402 includes two PMOS transistors 412, 414 (i.e., T4 412, T5 414) connected as shown in
Also referring to the timing diagram of
Still referring to
Still referring to
As shown in the timing diagram of
Moreover, at the same time, as the pumping current signals 204, 206 are gated by the non-level shifted clock signal 112, the level shifted concurrently synchronous differential data signals 114, 116 are also synchronized with the non-level shifted clock signal 112 without having to level shift the clock signal, thereby reducing the deterministic jitter. It is noted that, as the synchronous level shifting operation is done by both NMOS pull-down voltage and the PMOS current pumping pulse applied at the same time, the duty cycle distortion by the varying of the first voltage domain voltage level (e.g., VDD_CORE) is minimized. In particular, even when VDD_CORE is down to near the VCCmin of the technology process, due to the weak turn on of the NMOS pull-downs controlled by the pull-down voltage signals 212, 214, the polarity toggling at the regenerative latch 208 is primarily done by the pull-up pumping current signals 204, 206.
As shown in
Accordingly, in this example, the signal characteristics of the level shifted concurrently synchronous differential data signals 114, 116, especially when the bit rate of the data signal is at multi-Gbit/s level, are improved as the timing is further enhanced and the jitter is further reduced by adding the latching logic 600.
Block 702 may include, at block 704, in response to the non-level shifted clock signal 112 from the first voltage domain, generating pumping current signals 204, 206, by the current-mode pull-up enhancement circuits 200, 202, based on the pre-level shifted differential data signals 108, 110. In one example, block 704 may further include blocks 706 and 708. At block 706, the first reference current signal 410 may be generated, by the first synchronous current gating logic 400, in response to the non-level shifted clock signal 112 and the second pre-level shifted differential data signal 110 from the first voltage domain. Then at block 708, the first pumping current signal 204 that is substantially equal to the first reference current signal 410 is generated by the first current mirror 402.
Block 702 may also include, at block 710, outputting the level shifted concurrently synchronous differential data signals 114, 116, by the regenerative latch 208, based on the pumping current signals 204, 206. The pull-up current pump mechanism by the pumping current signals 204, 206 toggles the output polarity of the regenerative latch 208 to generate the level shifted concurrently synchronous differential data signals 114, 116 and to achieve the voltage level shifting. At the same time, as the pumping current signals 204, 206 are gated by the non-level shifted clock signal 112 at block 704, the synchronization of the level shifted concurrently synchronous differential data signals 114, 116 is achieved concurrently.
Also, integrated circuit design systems (e.g., work stations) are known that create wafers with integrated circuits based on executable instructions stored on a computer readable medium such as but not limited to CDROM, RAM, other forms of ROM, hard drives, distributed memory, etc. The instructions may be represented by any suitable language such as but not limited to hardware descriptor language (HDL), Verilog or other suitable language. As such, the logic and circuits described herein may also be produced as integrated circuits by such systems using the computer readable medium with instructions stored therein. For example, an integrated circuit with the aforedescribed logic and circuits may be created using such integrated circuit fabrication systems. The computer readable medium stores instructions executable by one or more integrated circuit design systems that causes the one or more integrated circuit design systems to design an integrated circuit. The designed integrated circuit includes level shifting logic that is operative to, in response to a non-level shifted clock signal from a first voltage domain, provide level shifted concurrently synchronous differential data signals in a second voltage domain based on pre-level shifted differential data signals from the first voltage domain, as well as other structure as disclosed herein.
Among other advantages, the method and apparatus for voltage level shifting with concurrent synchronization provide the ability to level shift and synchronize high-speed data signal at the same time without having to level shift the clock signal, thereby improving the deterministic jitter performance of the circuit. In addition, the duty cycle of the output differential data signals stays relatively constant with varying the internal core logic supply voltage, even down to near the minimum common-collector voltage (VCCmin) of the technology process, due to the existence of the current pumping mechanism to toggle the output polarity of the output differential data signals. Accordingly, the proposed techniques can improve the jitter performance and duty cycle distortion from the conventional techniques. Other advantages will be recognized by those of ordinary skill in the art.
The above detailed description of the invention and the examples described therein have been presented for the purposes of illustration and description only and not by limitation. It is therefore contemplated that the present invention cover any and all modifications, variations or equivalents that fall within the spirit and scope of the basic underlying principles disclosed above and claimed herein.
Fung, Richard W., Lau, Ricky, Ng, Ju Tung
Patent | Priority | Assignee | Title |
10637110, | Mar 11 2013 | ATIEVA INC | Bus bar for battery packs |
8564357, | Apr 20 2011 | Pacesetter, Inc.; Pacesetter, Inc | Voltage level shifting circuit |
8791743, | Feb 18 2013 | Apple Inc. | Balanced level shifter with wide operation range |
9124259, | Apr 20 2011 | Pacesetter, Inc. | Voltage level shifting circuit |
9584126, | Mar 15 2013 | ATIEVA INC | Bias circuit for a switched capacitor level shifter |
9954527, | Sep 29 2015 | Nvidia Corporation | Balanced charge-recycling repeater link |
9966584, | Mar 11 2013 | ATIEVA INC | Bus bar for battery packs |
Patent | Priority | Assignee | Title |
20030030474, | |||
20080290921, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 27 2010 | ATI Technologies ULC | (assignment on the face of the patent) | / | |||
Jul 27 2010 | NG, JU TUNG | ATI Technologies ULC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024747 | /0890 | |
Jul 27 2010 | FUNG, RICHARD W | ATI Technologies ULC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024747 | /0890 | |
Jul 27 2010 | LAU, RICKY | ATI Technologies ULC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024747 | /0890 |
Date | Maintenance Fee Events |
Mar 16 2016 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Mar 19 2020 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Mar 28 2024 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Oct 02 2015 | 4 years fee payment window open |
Apr 02 2016 | 6 months grace period start (w surcharge) |
Oct 02 2016 | patent expiry (for year 4) |
Oct 02 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 02 2019 | 8 years fee payment window open |
Apr 02 2020 | 6 months grace period start (w surcharge) |
Oct 02 2020 | patent expiry (for year 8) |
Oct 02 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 02 2023 | 12 years fee payment window open |
Apr 02 2024 | 6 months grace period start (w surcharge) |
Oct 02 2024 | patent expiry (for year 12) |
Oct 02 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |