A method for monitoring a function of a safety unit, in particular of a bilge blower of a boat with a combustion engine, connected via a manually operated switch to a voltage supply. The current flowing through the safety unit is measured and an acoustic alarm is triggered, if a sensor voltage derived from the measured current falls below a reference voltage.
|
1. A method for monitoring a function of a safety unit connected via a manually operated switch to a voltage supply, which comprises the steps of:
measuring a current flowing through the safety unit;
triggering an acoustic alarm, if a sensor voltage derived from the current measured falls below a reference voltage; and
supplying the sensor voltage to a non-inverting input and the reference voltage to an inverting input of a first comparator, the first comparator activating the acoustic alarm, if the sensor voltage is lower than the reference voltage.
6. A device for monitoring a function of a safety unit connected via a manually operated switch to a voltage supply, the device comprising:
means for picking up a current flowing through the safety unit; and
means for generating an acoustic alarm, if an output voltage of the current sensed falls below a reference voltage, said means for generating the acoustic alarm coupled to said means for picking up the current, said means for generating the acoustic alarm having an acoustic alarm-signalling device and a comparator with a first input to which a sensor voltage derived from the current measure is supplied, a second input to which the reference voltage is supplied, and an output on which a control signal for selecting said acoustic alarm-signalling device can be tapped.
19. A switching circuit for monitoring a function of a safety unit connected via an electrical circuit with a manually operated switch to a voltage supply, the switching circuit comprising:
means for picking up a current flowing through the electrical circuit;
means for generating a sensor voltage which is proportional to the current measured;
means for comparing the sensor voltage with a reference voltage;
means for generating an acoustic alarm, if the sensor voltage differs from the reference voltage, said means for generating the acoustic alarm having an acoustic alarm-signalling device; and
said means for comparing the sensor voltage having a comparator with a first input to which the sensor voltage derived from the current measured is supplied, a second input to which the reference voltage is supplied, and an output on which a control signal for selecting said acoustic alarm-signalling device can be tapped.
2. The method according to
3. The method according to
4. The method according to
5. The method according to
7. The device according to
8. The device according to
9. The device according to
a supply line for a voltage supply; and
a electronic switch having a gate/base connected to said output of said comparator, said electronic switch is wired between said supply line and said acoustic alarm-signalling device.
10. The device according to
further comprising a timer circuit; and
wherein said means for generating the acoustic alarm has a further comparator with a first input receiving the reference voltage, a second input receiving the sensor voltage derived from the current measured, and an output on which a control signal for selecting said timer circuit can be tapped.
11. The device according to
further comprising a supply line for a voltage supply; and
further comprising an electronic switch having a gate/base connected to said output of said further comparator, said electronic switch is wired between said supply line and said acoustic alarm-signalling device.
12. The device according to
13. The device according to
14. The device according to
said acoustic alarm-signalling device is an piezoelectric alarm-signalling device having a driver circuit; and
said pulse generator has an output connected to said driver circuit of said piezoelectric alarm-signalling device.
15. The device according to
16. The device according to
17. The device according to
an electronic power switch; and
a hand switch for activating and deactivating said electronic power switch connected in parallel to said means for picking up the current flowing through the safety unit, used to preset the current sensor for heavy or light loads.
18. The device according to
20. The switching circuit according to
|
This application claims the priority, under 35 U.S.C. §119(e), of provisional application No. 61/116,476, filed Nov. 20, 2008; the prior application is herewith incorporated by reference in its entirety.
The invention relates to a method for monitoring the function of a safety unit connected to a voltage supply, in particular to a 12V or 24V battery.
The invention specifically relates to a monitoring system for an electrical circuit, in particular of a DC electrical circuit in vehicles, in particular in a motorized sail boat having a combustion engine, the monitoring method relating substantially to two conditions which could occur in safety units operated by a corresponding switching circuit. One of these conditions is an incomplete or interrupted switching circuit between the enabling switch and ground. The other condition is a situation in which a safety unit not needed at the moment is, nevertheless, operated, for example due to inattentiveness of the operator or because the latter does not notice the operation of the safety unit. In both cases described, it is desirable to draw the attention of the operator to this situation, in particular by an appropriate alarm.
A preferred safety unit of the monitoring system according to the invention is the bilge blower of a boat driven by a combustion engine (inboard engine) operated with a volatile fuel, such as, for example, gasoline or diesel. The combustion engine is usually arranged in the so-called bilge in the stern area of the boat, for example of a sporting boat. By bilge, one understands the lowermost hull of a ship, situated directly above the planks or above the keel.
Due to the arrangement of the engine in the bilge, it is practically inevitable that combustible gases escape from the engine and fuel-tank system. These gases could accumulate, forming an explosive mixture, which in turn involves the danger that, upon starting the combustion engine, due to a spark discharge or due to the commutator sparking of an electric motor used as the starter, the explosive mixture ignites and the boat is destroyed.
Due to this situation of danger, such boats with an inboard engine include at least one bilge blower as a safety unit. The blower, which is expediently also arranged in the bilge, i.e. in the engine room, is usually operated by an electrical circuit, which in turn is connected with the on-board battery (battery of the starter or of the on-board network) of usually 12VDC or 24DC.
A provision of the United States Coast Regulation and other directives concerning the operating method and the operational conditions of such bilge blowers provide that these bilge blowers must have been in operation for at least 4 minutes before the combustion engine can be started. This period is meant for removing the combustible gas mixture out of the bilge, i.e. out of the engine room and for aerating the latter, so that no more explosive gas mixture will be present in it. Further directives or recommendations concern the function of these blowers, for example the fact that they can also be in operation while the combustion engine is running idling or with very little power, or while the boat is running at a very low speed.
Even though such directives recommend operating these blowers continuously during the use of the boat, such a continuous operation is neither necessary nor economic in view of the unnecessary energy consumption. Therefore, one tries to operate these blowers and safety units only as long as necessary.
Irrespective of whether such safety units, such as, in particular, bilge blowers, are operated continuously or for limited periods only, the harsh environment, in which these safety units are located, involves the danger of undesired interruptions of electrical circuits, contacting errors, or faulty units, with the consequence that the electrical supply circuit is interrupted (open circuit). In the preferred application of the invention on a boat, such faults and interruptions of the electrical circuit are often not recognizable, due to the given environmental conditions. For example, the correct operation of the bilge blower is often not easily audible for the boatsman. Similarly, in glaring sunlight, the position lights or the like prescribed on a boat are not easily and doubtlessly visually recognizable. Furthermore, such acoustic or optical monitorings of the safety unit would require the conscious and perfect attention of the boatsman, which is not necessarily guaranteed.
If, for example, in a concrete application, an enabling switch for the bilge blower has been put into the ON position, it will not be guaranteed that the bilge blower or another safety unit will actually be current-carrying, i.e. supplied with power. The reason for this could be a contacting error, a defective blower motor or another interruption of the electrical supply circuit.
On the other hand, it cannot be excluded that a perfectly functioning safety unit is actually not deactivated by the boatsman or vehicle driver, after this unit has fulfilled its task and is not needed at the moment. In particular, the bilge blower, which is directly connected with the supply battery through the enabling switch or ignition switch of the boat, will be continuously in operation, as long as the blower is not switched off. This situation could lead to a complete emptying of the vehicle or supply battery, which is extremely undesirable. Similar situations arise for other safety units, such as, for example, position lamps, whose functioning should be guaranteed for reasons of safety, whose continuous operation should, however, be avoided, if possible, both for saving energy and for reasons of safety in view of avoiding a complete emptying of the vehicle battery.
It is accordingly an object of the invention to provide a method and a device for monitoring the function of a safety unit which overcomes the above-mentioned disadvantages of the prior art devices of this general type. The invention is based on the task to provide a method as reliable as possible and a device as simple and cost-advantageous as possible for monitoring the function of such a safety unit, in particular of a bilge blower.
With the foregoing and other objects in view there is provided, in accordance with the invention, a method for monitoring a function of a safety unit connected via a manually operated switch to a voltage supply. The method includes the steps of: measuring a current flowing through the safety unit; and triggering an acoustic alarm, if a sensor voltage derived from the current measured falls below a reference voltage.
According to the invention, upon actuation of the enabling switch into its ON position, first of all, the current flowing between the voltage source, in particular the vehicle battery, and the safety unit, is detected. If no current flow is detected, an acoustic alarm will be triggered. The acoustic alarm signals to the operator that the electrical circuit between the on-board battery and the safety unit is interrupted, so that this unit is not in operation.
For detecting the current, a shunt is particularly suitable. The shunt is a reliable current meter and is, in addition, cost-saving and, therefore, economic. Furthermore, current detection by such a shunt enables the generation of a voltage signal, in the following referred to as a sensor voltage, which through the value of resistance of the shunt is proportional to the measured current.
The detected sensor voltage is preferably first amplified and suitably low-pass filtered in order to filter out high-frequency disturbances, in particular initial current peaks or the like. For this purpose, an operational amplifier, expediently switched as an active low pass, is particularly suited.
For this, the voltage potentials tapped on both sides of the shunt are preferably supplied to the two inputs, i.e. the inverting input and the non-inverting input, of the operational amplifier. If the electrical circuit is interrupted, no current will flow through the shunt, with the consequence that no voltage will drop through the shunt. Therefore, the voltages or voltage values on the two inputs of the operational amplifier are identical, so that no voltage signal can be tapped on its output, or a low level is applied on the output of the operational amplifier, respectively.
If, on the other hand, the electrical circuit of the safety unit is not interrupted, the load current of the safety unit will flow through the shunt and the corresponding voltage drop through the shunt will be detected by the operational amplifier, with the consequence that the latter supplies on its output an amplified voltage signal or a high level, respectively. The voltage level is suitably compared with a reference voltage. If the corresponding (amplified) sensor voltage falls below the reference voltage, which will be the case in particular in case of a low level on the output of the operational amplifier, the acoustic alarm will be triggered. A comparator, to whose inputs the sensor voltage and the reference voltage are supplied, is particularly well suited for this. If the sensor voltage falls below the reference voltage, a corresponding control signal (low or high level) will be generated on the output of the comparator, the signal, in turn, being used for selecting an acoustic alarm-signalling device, for example a piezoelectric alarm-signalling device.
To provide a further functionality, also in the form of an acoustic alarm, for the case that the perfectly operating safety unit is not switched off by the operator, a comparison of the sensor voltage with the reference voltage is also used for activating a timer circuit, if the electrical circuit of the safety unit is not interrupted and the enabling switch is put into its ON position. For this purpose, a further comparator is particularly well suited, whose output will supply a control signal for the timer circuit, when the sensor voltage is equal to, or higher than, the reference voltage. The timer circuit is in that case set, for example, to a time interval of 10 or 15 minutes, after expiry of which the acoustic alarm will be triggered.
The timer circuit is connected on the output side preferably with a pulse generator for selecting the acoustic alarm-signalling device. The pulse generator, in turn, is connected on the output side expediently with a driver circuit for the piezoelectric alarm-signalling device.
The timer function and, thus, the alarm function for monitoring the operating time of the safety unit, can suitably also be deactivated. For this purpose, a hand switch is provided, which is expediently wired into an electrical circuit for the voltage supply of the timer circuit. In the voltage supply for the timer circuit, preferably an electronic switch, in particular a bipolar transistor is also wired. The latter's gate (base) is suitably connected with the output of the comparator selecting the timer circuit.
Another electronic switch, preferably also in the form of a bipolar transistor, is suitably wired into a further electrical circuit of the voltage supply supplying the acoustic alarm-signalling device or the pulse generator connected upstream of the acoustic alarm-signalling device with power separately, i.e. independently of the timer circuit. The gate (base) of this further electronic switch is conducted to the output of the comparator directly connected with the alarm-signalling device or the pulse generator.
The supply voltage is in this case also generated by the vehicle battery, but is subjected before to a voltage limitation, in particular by a Zener diode, and to a linear control for voltage stabilization.
The enabling switch suitably includes a safety fuse and an indicator lamp, the fuse being connected downstream of the vehicle battery, but upstream of the switching contacts properly speaking of the enabling switch. The indicator lamp is connected between the fuse and the switching contacts of the enabling switch and is connected to ground. If the fuse responds and if, thus, the electrical circuit between the on-board battery and the enabling switch is interrupted, no current will flow through the indicator lamp, so that this lamp will not illuminate, even if the enabling switch has been put into ON position. This signals to the boatsman or vehicle driver that there is an interruption in the electrical circuit for the safety unit, which must be located between the on-board battery and the enabling switch, because the indicator lamp has gone out.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in a method and a device for monitoring the function of a safety unit, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
Corresponding parts are marked with the same reference numbers in all figures. Referring now to the figures of the drawing in detail and first, particularly, to
The output side of the operational amplifier 7 is connected to two comparators 10a and 10b, to whose input side, a reference voltage Vref is also supplied. Instead of the two comparators 10a and 10b, a low-power low-offset voltage dual comparator, for example, of type LM 239, can be provided. The sensor voltage Vsen generated by the operational amplifier 7 and tappable on the latter's output side is supplied to the non-inverting input (+) of the first comparator 10a as well as to the inverting input (−) of the second comparator 10b. Analogously, the reference signal or the reference voltage Vref, respectively, is supplied to the inverting input (−) of the first comparator 10a as well as to the non-inverting input (+) of the second comparator 10b. The output side of the first comparator 10a is connected to an acoustic alarm-signalling device 11. The output side of the second comparator 10b is connected to a timer circuit 12, whose output side in turn is connected to the acoustic alarm-signalling device 11.
The method according to the invention for monitoring the function of the safety unit in the form of the bilge blower 2 connected, via the manually operated enabling switch 4, to the on-board battery 5 and thus to the voltage supply, is explained in detail with the flow chart represented in
If the sensor voltage Vsen is higher than, or equal to, the reference voltage Vref, the output side of the second comparator 10b will supply a control signal (high-level). According to the flow chart of
That means that the alarm function will always be activated if the described monitoring device 1 detects an interruption of the electrical circuit 3. If, in addition, the left-on function is activated, an alarm will be triggered even if the electrical circuit 3 works perfectly and the safety unit (bilge blower) 2 connected to it has been in operation for a longer time than the set delay time, for example, longer than 10 minutes. The acoustic alarm then triggered indicates to the vehicle driver or operator that he should switch off the bilge blower 2.
The fuse element 14 serves, in combination with the indicator lamp 15, for monitoring the electrical circuit 3 in the area between the vehicle battery 5 and the enabling switch 4. If the electrical circuit 3 is interrupted there, for example because the fuse element 14 has responded due to an excess current (overload or short circuit), the indicator lamp 15 will go out.
Furthermore, a power semiconductor in the form of a MOSFET (metal-oxide semiconductor field-effect transistor) is wired in parallel to the shunt 6, the gate of the power semiconductor being connected via a resistor R20 to the battery 5 and to a hand switch 17. This low-high current-sense switch circuit with the hand switch 17 and with the MOSFET 16 in combination with the control resistor R20 enables a change-over between high and low load currents IL.
It is evident from
A voltage divider formed by two resistors R6 and R7, also wired to the voltage tap 18 and, therefore, directly connected via the enabling switch 4 to the battery 5, serves for generating the reference voltage Vref for the two comparators 10a and 10b. The voltage supply V+, V− of the two comparators 10a and 10b is also effected via the enabling switch 4 directly from the battery 5, the connectors V+ of the two comparators 10a and 10b being connected for that purpose to the voltage tap 18 and the connectors V− against ground.
The outputs of the two comparators 10a and 10b are connected to a gate (base) of a transistor Q1 or Q2, respectively. The emitter sides of the two transistors Q1, Q2 are connected to a supply line 19 supplying a supply voltage V2. This supply voltage V2 is also gained via a tap on the electrical circuit 3 behind the enabling switch 4, limited via a Zener diode D1 to 9V and stabilized by a linear controller 20 to V2=9V.
A transistor Q1 is connected via a hand switch 21 to the supply voltage V2. Only when the hand switch 21 is in the ON position, can the supply voltage V2 reach the timer circuit 12 via the emitter collector leg of the transistor Q1. When the hand switch 21 is open, the timer circuit 12 will also be deactivated, irrespective of the signal level (high or low) applied on the output of the second comparator 10b. If, however, the hand switch 21 has been put into the ON position and if the output of the second comparator 10b supplies a control signal switching the transistor Q1 through, the supply voltage V2 will be supplied to the timer circuit 12 and, thus, the time function element 106 will be started. This will be the case if the sensor voltage Vsen supplied to the inverting input (−) of the second comparator 10b is higher than, or equal to, the reference voltage Vref supplied to the non-inverting input (+). Upon expiration of the time function element 106, the timer circuit generates a control signal SG for activating the pulse generator 13, which in turn generates a control signal SA for activating the alarm-signalling device 11, which in the exemplary embodiment is piezoelectric.
The transistor Q2 selected by the first comparator 10a on the base side will switch the supply voltage V2 to the pulse generator 13 for activating the alarm-signalling device 11 only if the sensor voltage Vsen on the inverting input (−) of the first comparator 10a is smaller than the reference voltage Vref supplied to the non-inverting input (+). Otherwise, the transistor Q2 will remain blocked because in that case, the electrical circuit 3 is functioning perfectly, with the enabling switch 4 in the ON position. When the hand switch 21 is open, the alarm-signalling device 11 will not be activated either after some minutes.
Thus, while the first comparator 10a activates the piezoelectric alarm-signalling device 11 without delay when the enabling switch 4 has been put into the ON position and the electrical circuit 3 is interrupted, the second comparator 10b activates the left-on functionality of the monitoring device 1 and signals to the operator that the preset maximum running time of the bilge blower 2 has been exceeded. The piezoelectric alarm-signalling device 11 is activated through a driver circuit 22 connected to the output side of the pulse generator 13.
Wise, Mark, Nally, James M., Lass, Robert
Patent | Priority | Assignee | Title |
9991785, | Dec 15 2014 | HITACHI ASTEMO, LTD | Electric power converting device |
Patent | Priority | Assignee | Title |
4207146, | Jan 12 1977 | Dragerwerk Aktiengesellschaft | Process for testing gases in body fluids for partial pressure and to a testing device therefor |
4897822, | Feb 10 1989 | PLL sonic bilge pump switch | |
5169348, | Jun 21 1989 | Sawafuji Electric Co., Ltd. | Automatic planing control system |
5404048, | Aug 06 1993 | Aim Technologies, Inc. | Electronic bilge pump switch |
6005483, | Dec 24 1998 | Anthony Rhulen | Electronic pump switching system |
6526954, | Oct 12 1997 | AB Volvo and Mecel AB | System, sensor combination and method for regulating, detecting as well as deciding current fuel-air ratios in combustion engines |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 08 2009 | NALLY, JAMES M | Ellenberger & Poensgen GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028286 | /0338 | |
Jul 21 2009 | WISE, MARK | Ellenberger & Poensgen GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028286 | /0338 | |
Aug 04 2009 | LASS, ROBERT | Ellenberger & Poensgen GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028286 | /0338 | |
Sep 21 2009 | Ellenberger & Poensgen GmbH | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Nov 15 2012 | ASPN: Payor Number Assigned. |
May 13 2016 | REM: Maintenance Fee Reminder Mailed. |
Oct 02 2016 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Oct 02 2015 | 4 years fee payment window open |
Apr 02 2016 | 6 months grace period start (w surcharge) |
Oct 02 2016 | patent expiry (for year 4) |
Oct 02 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 02 2019 | 8 years fee payment window open |
Apr 02 2020 | 6 months grace period start (w surcharge) |
Oct 02 2020 | patent expiry (for year 8) |
Oct 02 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 02 2023 | 12 years fee payment window open |
Apr 02 2024 | 6 months grace period start (w surcharge) |
Oct 02 2024 | patent expiry (for year 12) |
Oct 02 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |