A developer station and method for an electrographic printer is provided that reduces developer agitation. The developer station includes a sump of magnetic developer, and a magnetic brush roller mounted above sump and having a rotatable magnetic core surrounded by a substantially cylindrical toning shell rotatably mounted with respect to the core. The toning shell defines a nip at its closest point to the photoconductor element. A tangent line tangent to the cylindrical toning shell at the nip is oriented substantially vertically, and the magnetic developer is applied to the toning shell at an angular distance of no more than about 120° from the nip. The toning shell may be eccentrically mounted with respect to the magnetic core and is substantially closest to the rotatable magnetic core within about +30° and −30° from the nip. Such a configuration advantageously reduces the residence time of the developer on the toning shell.
|
1. A developer station for an electrographic printer having a photoconductor member, comprising:
a sump for holding a reservoir of magnetic developer, and a magnetic brush roller mounted above said sump and including a rotatable magnetic core surrounded by a substantially cylindrical rotatable toning shell rotatably mounted with respect to the core, said shell being adjacent to the photoconductor member and defining a nip, #6#
wherein a tangent line tangent to the cylindrical toning shell at said nip is oriented within a range of between about +45° and −45° with respect to a vertical line, and said magnetic developer is applied to said toning shell at an angular distance of no more than about 120° from said nip.
20. A method of electrographic printing in a printer having a photoconductor member, and a developer station including a magnetic brush having a rotating magnetic core and a toning shell tangent to the photoconductor member along a line, and a reservoir of developer formed from magnetic carrier particles and toner particles, comprising the steps of:
rotating the magnetic core relative to the toning shell during a printing operation such magnetic carrier particles on the toning shell are subjected to at least about 190 pole flips per second, and #6#
delivering developer to the toning shell at an angular distance no more than about 120° from the tangent line between the toning shell and the photoconductor member to reduce a residence time that the developer stays on the toning shell prior to transfer of toner particles from the toning shell to the photoconductor member.
10. A developer station for an electrographic printer having a photoconductor drum, and a horizontally oriented image transport webbing tangent to said drum at one of a 12 o'clock position and a 6 o'clock position, comprising:
a sump of magnetic developer, and a magnetic brush roller mounted above said sump and including a rotatable magnetic core surrounded by a substantially cylindrical toning shell rotatably mounted with respect to the core, said shell being adjacent to the photoconductor drum and defining a nip, #6#
wherein a tangent line tangent to the cylindrical toning shell at said nip is oriented within a range of between about +45° and −45° with respect to a vertical line, and said magnetic developer is applied to said toning shell at an angular distance of no more than about 120° from said nip, and said toning shell is substantially closest to said rotatable magnetic core within about +30° and −30° from said nip.
2. The developer station of
3. The developer station of
4. The developer station of
5. The developer station of
6. The developer station of
7. The developer station of
8. The developer station of
9. The developer station of
11. The developer station of
12. The developer station of
13. The developer station of
14. The developer station of
15. The developer station of
16. The developer station of
17. The developer station of
18. The developer station of
19. The developer station of
21. The electrographic printing method of
22. The electrographic printing method of
23. The electrographic printing method of
24. The electrographic printing method of
25. The electrographic printing method of
|
This application relates to commonly assigned, copending U.S. application Ser. No. 12/415,439, filed Mar. 31, 2009, entitled: “DEVELOPER STATION WITH AUGER SYSTEM”, U.S. application Ser. No. 12/415,476, filed Mar. 31, 2009, entitled: “DEVELOPER STATION FOR AN ELECTROGRAPHIC PRINTER WITH MAGNETICALLY ENABLED DEVELOPER REMOVAL” and U.S. application Ser. No. 12/415,508, filed Mar. 31, 2009, entitled: “DEVELOPER STATION WITH TAPERED AUGER SYSTEM.”
This invention generally relates to electrographic printers, and is particularly concerned with a developer station and method that reduces the agitation of a magnetic developer conveyed from a sump to a photoconductor member by a rotating magnetic brush.
Electrographic printers that use a rotating magnetic brush to apply a dry, particulate developer to a photoconductor member are known in the art. In such electrographic printers, the rotating magnetic brush includes a rotatable magnetic core surrounded by a rotatable, cylindrical toning shell that is eccentrically mounted with respect to the axis of rotation of the magnetic core. The magnetic brush is mounted adjacent to a developer sump that holds a reservoir of dry, two-component developer including a mixture of ferromagnetic carrier particles and toner particles capable of holding an electrostatic charge. The eccentric mounting of the toning shell defines an area of relatively strong magnetic flux where the shell comes closest to the magnetic core, and an area of relatively weak magnetic flux 180° opposite to the area of strongest magnetic flux where the shell is farthest away from the core. The area of strongest magnetic flux also contains a line of closest approach between the toning shell of the magnetic brush and the photoconductor member. This line of closest approach defines a “nip” between these two components where the particulate toner component of the developer is transferred to the photoconductor member as a result of electrostatic attraction between the toner particles and the electrostatic field from the photoconductor member. The combination of the magnetic brush and the developer sump is referred to as the developer station in this application.
In operation, the photoconductive member is moved past a pre-cleaner and a cleaning station to remove any residual toner that might be on the surface of the member after the previous image transfer. A corona charger then imparts a uniform static charge on to the surface of the member. The photoconductive member is next moved past an image writing station (which may include an LED bar) that writes a latent, electrostatic image on the member by exposing it to a pattern of light. Next, the exposed photoconductor member is moved past the developer station, where the magnetic brush develops the latent electrostatic image on the member by continuously applying a uniform layer of developer at the nip between the toning shell and the photoconductor member. At the nip, toner particles in the developer are transferred to the photoconductor member in a pattern commensurate with the electrostatic image on the member. The developed image on the photoconductor member is then transferred to, for example, an intermediate transfer web for subsequent transfer to a final receiver. The developer that remains on the toning shell downstream of the nip is removed by a skive and deposited back in the developer sump. The used, toner-depleted developer is replenished as needed with additional toner particles in the sump. Replenished developer is continuously applied downstream of the skive far from the toning nip at or near the area of weakest magnetic flux on the toning shell of the magnetic brush, where it is moved back toward the area of strongest magnetic flux and the nip.
In color printing, a series of electrographic printers arranged in tandem are used to create image separations in different primary colors (i.e. cyan, magenta, yellow, and black) which are superimposed over one another to create a final color image. To this end, each printer prints its particular primary color image on an intermediate transfer web which resembles a conveyor belt. The conveyor-belt movement of the intermediate transfer belt is synchronized with the printing by the photoconductor members of the in tandem printers such that the images are superimposed in alignment with one another, creating a final color image.
It is highly desirable for the intermediate transfer web to be horizontally oriented so the height of the resulting color printing assembly is less than a standard room ceiling height. As a consequence, the intermediate transfer web should engage the photoconductor element of each printer at either the 6 o'clock position in a “process-over-image” configuration, or in a 12 o'clock position in an “image-over-process” configuration. As a further consequence, the nip between the toning shell and the photoconductor member should be located at one or the other of the sides of the photoconductor member, preferably near the 9 o'clock or 3 o'clock position.
It is further desirable to use a photoconductor that is as small in diameter as possible to reduce cost and overall printer size. The pre-clean, clean, charge, expose, develop, and transfer stations must all be positioned adjacent to the photoconductor member. If a small photoconductor member is used, all of these systems must also be as small as possible so as not to interfere with each other or the intermediate transfer web, yet still produce adequate images. Hence there are limitations on, in particular, the height of developer station positioned at the 9 o'clock or 3 o'clock position relative to the photoconductor member.
It is also desirable to print images as quickly as possible, requiring faster printer speeds. The combination of small size and high process speed is technologically demanding. From a fundamental point of view, large fluxes of charge, light, or particles are needed due to the high rates required for the short time allowed for each process step. This means in general that, as speed is increased and size is decreased, larger concentrations, intensities, and driving forces are used.
Faster printing can be accomplished by increasing the rotational speed of the magnetic brush. However, the inventors have observed that increasing the rotational speed of the magnetic core can produce undesirable effects, such as embedment of toner and heating of carrier particles that ages the developer. Also, increasing the rotational speed of the magnetic core can cause toner particles to fracture and produce small particles, or fines. To fully appreciate the first-mentioned problem, some explanation of the constitution of the toner particles is in order.
A widely practiced method of improving the transfer of the toner particles is by use of so-called surface treatments. Such surface treated toner particles have adhered to their surfaces sub-micron particles, e.g., of silica, alumina, titania, and the like (so-called surface additives or surface additive particles). Surface treated toners generally have weaker adhesion to a smooth surface than untreated toners, and therefore surface treated toners can be electrostatically transferred more efficiently from a photoconductor member to another member. Such surface treated toners also advantageously maintain the same amount of electrostatic attractive force with respect to the photoconductor member despite variations in the ambient humidity.
In particular, the inventors have observed that, when the rotational speed of the rotating magnetic core is increased beyond a certain limit, the carrier particles become excessively heated as a result of hysteresis of the magnetization of the carrier particles caused by the rapidly changing magnetic field of the rotating core. The resulting heat is transferred from the carrier particles to the toner particles, which in turn softens them. The rapidly changing magnetic field of the rotating core also creates excessive mechanical agitation in the toner. The resulting heating, softening, and mechanical impact between the carrier particles and the toner particles causes the sub-micron surface-treatment particles of silica, alumina, titania, and the like to embed into the toner particles, thereby diminishing the ability of the toner particles to hold the static charges necessary for reliable and consistent transfer to the photoconductor member.
The invention is a developer station and method for an electrographic printer that reduces developer agitation during the printing process. The developer station comprises a sump for holding a reservoir of magnetic developer, and a magnetic brush roller mounted above said sump that includes a rotatable magnetic core surrounded by a substantially cylindrical toning shell rotatably mounted with respect to the core. The toning shell is adjacent to the photoconductor element (which may be drum shaped) such that a nip is defined between the shell and the element. A tangent line tangent to the cylindrical toning shell at the nip is preferably oriented within a range of between about +45° and −45° with respect to a vertical line, and more preferably oriented within a range of between about +10° and −10°. Additionally, the magnetic developer is applied to the toning shell at an angular distance of no more than about 120° from the nip, and preferably no more than about 90° from the nip.
Such a configuration allows the developer station to be positioned adjacent to the photoconductor element at either a 9 o'clock or 3 o'clock position, and hence may be used in a printer module of a color printer in which color images are superimposed on a horizontally oriented intermediate transfer web to create a final color image. Such a configuration further substantially reduces the residence time the developer spends on the magnetic brush, thereby allowing increased printing speeds without the aforementioned toner embedment or fine generation problems. Finally, such a configuration may be implemented in a manner that provides a relatively short vertical height to the resulting developer station, which in turn allows the use of a small-diameter photoconductor member.
The developer station may include a single conveyor roller to move developer from the sump to the toning roller. The developer station may also include a pair of horizontally-spaced conveyor rollers to achieve a low vertical profile. Finally, the developer station may include no conveyor rollers. In such an embodiment, the toning shell may directly contact the reservoir of developer in the sump. All of these arrangements provide a developer station capable of applying developer to a relatively small-diameter photoconductor member at either the 9 o'clock or 3 o'clock position without mechanical interference with a horizontally oriented intermediate transfer web.
In the method of the invention, when a relatively high speed printing operation is carried out such that magnetic carrier particles on the toning shell are subjected to at least about 190 pole flips per second as a result of relative rotation between the magnetic core and the toning shell, developer is delivered to the toning shell at an angular distance no more than about 120° from the tangent line between the toning shell and the photoconductor member to reduce the residence time that the developer stays on the developer shell prior to transfer of toner particles from the toning shell to the photoconductor element.
In the detailed description of the preferred embodiment of the invention presented below, reference is made to the accompanying drawings, in which:
With reference to
In
With reference now to
With reference now to
With reference to
The sump 23 of the developer station 10 functions to continuously provide a supply of developer 30 to the toning shell 26 of the magnetic brush 22 having a correct proportion of toner particles relative to magnetic carrier particles. As is well known in the art, when developer 30 is used to develop a latent electrostatic image on the photoconductor drum 7, the toner particles in the developer are electrostatically transported from the toning shell 26 to the drum 7, while the magnetic carrier particles remain on the toning shell 26. These remaining magnetic carrier particles and unused developer are removed from the toning shell by a skive 31 and are re-deposited back into the right-hand side of the reservoir 29 of developer 30. In order to maintain a correct proportion of carrier and toner particles in the developer conveyed to the toning shell 26, a toner replenisher tube 32 conveys toner particles to the right-hand side of the developer reservoir 29 as needed. Sump 23 further includes a pair of return augers 33a, 33b having left-handed screw blades 34a, 34b for simultaneously conveying the developer particles stripped away from the developing shell 26 by the skive 31 and the toner particles added by the replenisher tube 32 (along with other developer in the sump 23) to a front mixing chamber (not shown) 35 where flippers on the return augers 33a, 33b mix the carrier particles and toner particles to form a replenished developer which is conveyed from the front mixing chamber to feed augers 38a, 38b. The feed augers 38a, 38b have left-handed screw blades 40a, 40b which convey the replenished toner down the length of the sump 23. Flippers at the rear ends of feed augers 38a and 38b (not shown) convey the developer to return augers 33a and 33b. In this example of the invention, the return augers 33a, 33b turn counterclockwise while the feed augers 38a, 38b turn clockwise, thereby causing the developer to circulate around the sump 23 in a clockwise direction when viewed from above.
With reference again to
The second conveyor roller 63 likewise includes a fixed magnetic core 64 having a plurality of magnets 65 that is surrounded by a rotatable cylindrical conveyor shell 66. Like the shell 55, the shell 66 also rotates clockwise. The magnets 65 of the second conveyor roller produce a magnetic field at the nip 67 between rollers 50 and 63 such that developer is transferred from roller 50 to roller 63 at the nip 67 between the rollers. The clockwise rotation of both of the rollers 50, 63 causes the developer to make a U-shaped turn at the nip 67 as it is transferred to the second roller 63. As a result of its continued clockwise rotation after receiving developer from the first conveyor roller 50, the second conveyor roller 63 delivers developer to the toning shell 26 at the nip 70. Here, the developer makes another U-shaped turn and travels over the upper portion of the toning shell 26 through a metering skive 72 and into the nip 27 between the shell 26 and the photoconductor drum 7.
The operation of the developer station 10 will now be described with reference to
In a typical printer module printing 70 pages per minute (PPM), the toning shell 26 may rotate clockwise at 82 rpm while the magnetic core rotates counterclockwise at 800 rpm. While such operational speeds allow a high rate of toner image developing on the photoconductor drum 7, they also create substantial developer agitation and hysteresis-induced heating due to the rapid rate of magnetic flux changes the hard magnetic carrier particles are subjected to as a result of the rotating magnets 25 in the core 24. As described in detail with respect to
In the
Finally,
As mentioned previously, it is desirable to print at high process speeds. The usefulness of the invention as described and also as shown in
The rate of kinetic energy generated per second contributing to embedment, dusting, and generation of fines is proportional to the square of the number of pole flips per second. For example, a printer that is producing images at 220 PPM will have 4 times the power contributing to embedment and the other problems mentioned than a 110 PPM printer. At a given process speed, the total amount of kinetic energy generated in the developer between transfer of the developer to the toning shell and the toning nip is proportional to the angle θ. For example, at a given process speed, a developer that is transferred to the toning shell within 90 degrees of the development nip will be exposed to only half the kinetic energy resulting from pole flips by the time it reaches the development nip as a developer that is transferred to the toning shell 180 degrees from the nip.
Heat generation in units of power or energy per unit time in the developer due to magnetic hysteresis in the carrier particles during magnetic pole flips is proportional to the number of pole flips per second of the development system. The total amount of heat generated is proportional to the distance traveled on the toning shell. For example, a printer that is producing images at 220 PPM will generate heat due to magnetic hysteresis at approximately 2 times the rate of a 110 PPM printer. The total amount of energy resulting from hysteresis is proportional to the distance traveled on the toning shell by the developer. For example, at a given process speed, a developer that is transferred to the toning shell within 90 degrees of the development nip will be exposed to only half the energy resulting from hysteresis by the time it reaches the development nip as a developer that is transferred to the toning roller 180 degrees from the nip.
In this application, the term “electrographic printer” is intended to encompass electrophotographic printers and copiers that employ dry toner developed on any type of electrophotographic receiver element (which may be a photoconductive drum or belt), as well as ionographic printers and copiers that do not rely upon an electrophotographic receiver.
The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
Stelter, Eric C., Shifley, James D., Guth, Joseph E.
Patent | Priority | Assignee | Title |
8805249, | Mar 22 2012 | FUJIFILM Business Innovation Corp | Image forming apparatus |
Patent | Priority | Assignee | Title |
4570570, | Jun 08 1983 | Xerox Corporation | Mixing device for particulate material |
4714046, | Nov 20 1985 | Eastman Kodak Company | Electrographic magnetic brush development apparatus and system |
5768661, | Dec 20 1996 | Lexmark International, Inc. | Toner cartridge with external planar installation guides |
6035168, | Jan 09 1998 | Sharp Kabushiki Kaisha | Developing device having a reduced width in the horizontal direction |
6764798, | Sep 27 2001 | Kao Corporation | Two-component developer |
6861190, | Feb 28 2002 | Kao Corporation | Toner |
6875550, | Jul 11 2001 | Seiko Epson Corporation | Non-magnetic single-component toner, method of preparing the same, and image forming apparatus using the same |
6916586, | Mar 24 2003 | FUJIFILM Business Innovation Corp | Toner for electrostatic charged image development and process for preparing the same, as well as image forming method, image forming apparatus and toner cartridge |
6994942, | Jul 11 2001 | Seiko Epson Corporation | Non-magnetic single-component toner, method of preparing the same, and image forming apparatus using the same |
7011920, | Nov 14 2002 | Sharp Kabushiki Kaisha | Non-magnetic mono-component toner and developing method with the same |
7022447, | Aug 30 2002 | Seiko Epson Corporation | Toner and image forming apparatus using the same |
7142791, | Jun 09 2004 | Kabushiki Kaisha Toshiba; Toshiba Tec Kabushiki Kaisha | Image forming apparatus and image forming method |
7190928, | Jan 24 2003 | Seiko Epson Corporation | Image-forming apparatus employing work function relationships |
7235337, | Jul 02 2003 | Kao Corporation | Toner for electrostatic image development |
7343120, | Dec 21 2005 | Eastman Kodak Company | Addition of liquid charge control agents to toner in toner development stations of electrographic reproduction apparatus |
7343121, | Dec 21 2005 | Eastman Kodak Company | Addition of liquid charge control agents to toner in toner development stations of electrographic reproduction apparatus |
7348120, | Apr 15 2004 | Kao Corporation | Toner for electrostatic image development |
7426361, | Sep 01 2005 | Eastman Kodak Company | Developer mixing apparatus having four ribbon blenders |
7481884, | Mar 09 2004 | Eastman Kodak Company | Powder coating apparatus and method of powder coating using an electromagnetic brush |
20040114969, | |||
20090154961, | |||
JP2004205648, | |||
JP2005274924, | |||
JP4034580, | |||
JP57190974, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 27 2009 | GUTH, JOSEPH E | Eastman Kodak Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022478 | /0774 | |
Mar 27 2009 | SHIFLEY, JAMES D | Eastman Kodak Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022478 | /0774 | |
Mar 27 2009 | STELTER, ERIC C | Eastman Kodak Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022478 | /0774 | |
Mar 31 2009 | Eastman Kodak Company | (assignment on the face of the patent) | / | |||
Feb 15 2012 | PAKON, INC | CITICORP NORTH AMERICA, INC , AS AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 028201 | /0420 | |
Feb 15 2012 | Eastman Kodak Company | CITICORP NORTH AMERICA, INC , AS AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 028201 | /0420 | |
Mar 22 2013 | PAKON, INC | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS AGENT | PATENT SECURITY AGREEMENT | 030122 | /0235 | |
Mar 22 2013 | Eastman Kodak Company | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS AGENT | PATENT SECURITY AGREEMENT | 030122 | /0235 | |
Sep 03 2013 | PAKON, INC | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | QUALEX INC | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | KODAK PHILIPPINES, LTD | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | NPEC INC | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | CREO MANUFACTURING AMERICA LLC | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | LASER-PACIFIC MEDIA CORPORATION | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | KODAK REALTY, INC | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | KODAK PORTUGUESA LIMITED | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | KODAK IMAGING NETWORK, INC | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | KODAK AMERICAS, LTD | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | KODAK NEAR EAST , INC | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | FPC INC | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | FAR EAST DEVELOPMENT LTD | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | Eastman Kodak Company | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | KODAK AVIATION LEASING LLC | BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT SECOND LIEN | 031159 | /0001 | |
Sep 03 2013 | Eastman Kodak Company | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | NPEC INC | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | KODAK PHILIPPINES, LTD | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | QUALEX INC | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | PAKON, INC | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | LASER-PACIFIC MEDIA CORPORATION | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | KODAK REALTY, INC | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | KODAK IMAGING NETWORK, INC | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | KODAK AMERICAS, LTD | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | KODAK NEAR EAST , INC | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | FPC INC | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | KODAK AVIATION LEASING LLC | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | KODAK PORTUGUESA LIMITED | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | FAR EAST DEVELOPMENT LTD | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | CREO MANUFACTURING AMERICA LLC | BANK OF AMERICA N A , AS AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT ABL | 031162 | /0117 | |
Sep 03 2013 | KODAK AMERICAS, LTD | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Sep 03 2013 | KODAK AVIATION LEASING LLC | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Sep 03 2013 | CREO MANUFACTURING AMERICA LLC | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Sep 03 2013 | CITICORP NORTH AMERICA, INC , AS SENIOR DIP AGENT | Eastman Kodak Company | RELEASE OF SECURITY INTEREST IN PATENTS | 031157 | /0451 | |
Sep 03 2013 | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS JUNIOR DIP AGENT | Eastman Kodak Company | RELEASE OF SECURITY INTEREST IN PATENTS | 031157 | /0451 | |
Sep 03 2013 | CITICORP NORTH AMERICA, INC , AS SENIOR DIP AGENT | PAKON, INC | RELEASE OF SECURITY INTEREST IN PATENTS | 031157 | /0451 | |
Sep 03 2013 | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS JUNIOR DIP AGENT | PAKON, INC | RELEASE OF SECURITY INTEREST IN PATENTS | 031157 | /0451 | |
Sep 03 2013 | Eastman Kodak Company | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Sep 03 2013 | FAR EAST DEVELOPMENT LTD | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Sep 03 2013 | FPC INC | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Sep 03 2013 | KODAK NEAR EAST , INC | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Sep 03 2013 | KODAK IMAGING NETWORK, INC | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Sep 03 2013 | NPEC INC | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Sep 03 2013 | KODAK PHILIPPINES, LTD | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Sep 03 2013 | QUALEX INC | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Sep 03 2013 | PAKON, INC | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Sep 03 2013 | LASER-PACIFIC MEDIA CORPORATION | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Sep 03 2013 | KODAK REALTY, INC | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Sep 03 2013 | KODAK PORTUGUESA LIMITED | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE | INTELLECTUAL PROPERTY SECURITY AGREEMENT FIRST LIEN | 031158 | /0001 | |
Feb 02 2017 | BARCLAYS BANK PLC | Eastman Kodak Company | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052773 | /0001 | |
Feb 02 2017 | BARCLAYS BANK PLC | FAR EAST DEVELOPMENT LTD | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052773 | /0001 | |
Feb 02 2017 | BARCLAYS BANK PLC | FPC INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052773 | /0001 | |
Feb 02 2017 | BARCLAYS BANK PLC | KODAK NEAR EAST INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052773 | /0001 | |
Feb 02 2017 | BARCLAYS BANK PLC | KODAK REALTY INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052773 | /0001 | |
Feb 02 2017 | BARCLAYS BANK PLC | LASER PACIFIC MEDIA CORPORATION | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052773 | /0001 | |
Feb 02 2017 | BARCLAYS BANK PLC | QUALEX INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052773 | /0001 | |
Feb 02 2017 | BARCLAYS BANK PLC | KODAK PHILIPPINES LTD | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052773 | /0001 | |
Feb 02 2017 | BARCLAYS BANK PLC | NPEC INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052773 | /0001 | |
Feb 02 2017 | BARCLAYS BANK PLC | KODAK AMERICAS LTD | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052773 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | KODAK PORTUGUESA LIMITED | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049901 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | PAKON, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049901 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | FPC, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 050239 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | KODAK AVIATION LEASING LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049901 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | CREO MANUFACTURING AMERICA LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049901 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | NPEC, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049901 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | KODAK PHILIPPINES, LTD | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049901 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | QUALEX, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049901 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | LASER PACIFIC MEDIA CORPORATION | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049901 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | KODAK REALTY, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049901 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | FAR EAST DEVELOPMENT LTD | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049901 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | PFC, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049901 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | KODAK NEAR EAST , INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049901 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | KODAK AMERICAS, LTD | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049901 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | KODAK IMAGING NETWORK, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049901 | /0001 | |
Jun 17 2019 | JP MORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | Eastman Kodak Company | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049901 | /0001 |
Date | Maintenance Fee Events |
Oct 12 2012 | RMPN: Payer Number De-assigned. |
Oct 15 2012 | ASPN: Payor Number Assigned. |
Mar 25 2016 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jun 08 2020 | REM: Maintenance Fee Reminder Mailed. |
Nov 23 2020 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Oct 16 2015 | 4 years fee payment window open |
Apr 16 2016 | 6 months grace period start (w surcharge) |
Oct 16 2016 | patent expiry (for year 4) |
Oct 16 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 16 2019 | 8 years fee payment window open |
Apr 16 2020 | 6 months grace period start (w surcharge) |
Oct 16 2020 | patent expiry (for year 8) |
Oct 16 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 16 2023 | 12 years fee payment window open |
Apr 16 2024 | 6 months grace period start (w surcharge) |
Oct 16 2024 | patent expiry (for year 12) |
Oct 16 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |