The present invention provides a method for decoding a low density generator matrix code (ldgc), applied for decoding transmitted original information bits encoded in ldgc code. The method comprises the following steps: A: deleting a part erased by a channel in a received code word sequence r filled by a known bit sequence to obtain an erased code word sequence Re, and deleting the rows corresponding to the erased part from a transposed matrix gIdgct of a generator matrix of the ldgc to obtain the erased generator matrix ge; B: permuting columns of ge such that an M-order square matrix with an element in the 0th row and 0th column being a vertex is a triangular matrix to obtain the permuted generator matrix gf; and C: calculating the original information bits using gf and re.

Patent
   8301961
Priority
Dec 14 2007
Filed
Apr 30 2008
Issued
Oct 30 2012
Expiry
May 31 2029
Extension
396 days
Assg.orig
Entity
Large
1
9
all paid
1. A method for decoding a low density generator matrix code (ldgc), applied for decoding transmitted original information bits encoded in ldgc, the method comprising the following steps of:
A: deleting a part erased by a channel in a received code word sequence r filled by a known bit sequence to obtain an erased code word sequence re, and deleting the rows corresponding to the erased part from a transposed matrix gIdgct of a generator matrix of the ldgc to obtain an erased generator matrix ge;
B: permuting columns of ge such that an M-order square matrix with an element in the 0th row and 0th column being a vertex is a triangular matrix to obtain a permuted generator matrix gf; and
C: calculating the original information bits using gf and re.
2. The method according to claim 1, wherein gIdgct, ge and gf are matrices with L columns and M=L−NE, with NE being the number of bits erased by the channel in r.
3. The method according to claim 2, further comprising the following step between the step B and C: determining whether gf is a full rank matrix, and performing the step C if gf is a full rank, otherwise decoding fails and the method ends.
4. The method according to claim 3, wherein whether or not gf is a full rank matrix is determined by determining whether the rank of a matrix gpart composed by the Hth row to the last row and the Hth column to the last column in gf equals to L−H, where H is the first erased part in r.
5. The method according to claim 4, wherein in the step B, the M-order square matrix is a lower triangular matrix or an upper triangular matrix.
6. The method according to claim 5, wherein the generator matrix gIdgct of the ldgc is a sparse matrix with N rows and L columns; a square matrix corresponding to the first L rows of gIdgct is a lower triangular matrix or the square matrix may be transformed to a lower triangular matrix; N>L; or a square matrix corresponding to the first L rows of gIdgct is an upper triangular matrix or the square matrix may be transformed to a upper triangular matrix.
7. The method according to claim 3, wherein in the step B, the M-order square matrix is a lower triangular matrix or an upper triangular matrix.
8. The method according to claim 7, wherein the generator matrix gIdgct of the ldgc is a sparse matrix with N rows and L columns; a square matrix corresponding to the first L rows of gIdgct is a lower triangular matrix or the square matrix may be transformed to a lower triangular matrix; N>L; or a square matrix corresponding to the first L rows of gIdgct is an upper triangular matrix or the square matrix may be transformed to a upper triangular matrix.
9. The method according to claim 2, wherein the step C comprises following sub-steps:
C1: obtaining an intermediate permutation variable Il based on a relation formula gf×Il=Re;
C2: obtaining an intermediate variable It by rearranging Il based on permutation relation between columns of ge and gf; and
C3: obtaining a bit sequence s based on a relation formula It×CIdgct(0: L−1, 0: L−1)=s and deleting the filled known bits to obtain the original information bits.
10. The method according to claim 9, wherein in the step C1, Il is obtained using a Gaussian elimination method.
11. The method according to claim 10, wherein in the step B, the M-order square matrix is a lower triangular matrix or an upper triangular matrix.
12. The method according to claim 11, wherein the generator matrix gIdgct of the ldgc is a sparse matrix with N rows and L columns; a square matrix corresponding to the first L rows of gIdgct is a lower triangular matrix or the square matrix may be transformed to a lower triangular matrix; N>L; or a square matrix corresponding to the first L rows of gIdgct is an upper triangular matrix or the square matrix may be transformed to a upper triangular matrix.
13. The method according to claim 9, wherein,
in the step B, corresponding elements in an array Itmp with a length being L and an initial value being [0, 1, 2, . . . , L−1] is permuted while permuting the columns of ge; and in the step C2, the intermediate variable It is obtained by rearranging Il based on Itmp.
14. The method according to claim 13, wherein in the step B, the M-order square matrix is a lower triangular matrix or an upper triangular matrix.
15. The method according to claim 14, wherein the generator matrix gIdgct of the ldgc is a sparse matrix with N rows and L columns; a square matrix corresponding to the first L rows of gIdgct is a lower triangular matrix or the square matrix may be transformed to a lower triangular matrix; N>L; or a square matrix corresponding to the first L rows of gIdgct is an upper triangular matrix or the square matrix may be transformed to a upper triangular matrix.
16. The method according to claim 9, wherein in the step B, the M-order square matrix is a lower triangular matrix or an upper triangular matrix.
17. The method according to claim 16, wherein the generator matrix gIdgct of the ldgc is a sparse matrix with N rows and L columns; a square matrix corresponding to the first L rows of gIdgct is a lower triangular matrix or the square matrix may be transformed to a lower triangular matrix; N>L; or a square matrix corresponding to the first L rows of gIdgct is an upper triangular matrix or the square matrix may be transformed to a upper triangular matrix.
18. The method according to claim 2, further comprising: in the step B, based on the deleted row serial numbers, shifting columns with column serial numbers being the same as the row serial numbers in ge to the last NE columns of the matrix, the original positions of the columns are filled by corresponding subsequent columns successively.
19. The method according to claim 2, wherein in the step B, the M-order square matrix is a lower triangular matrix or an upper triangular matrix.
20. The method according to claim 19, wherein the generator matrix gIdgct of the ldgc is a sparse matrix with N rows and L columns; a square matrix corresponding to the first L rows of gIdgct is a lower triangular matrix or the square matrix may be transformed to a lower triangular matrix; N>L; or a square matrix corresponding to the first L rows of gIdgct is an upper triangular matrix or the square matrix may be transformed to a upper triangular matrix.
21. The method according to claim 1, wherein in the step B, the M-order square matrix is a lower triangular matrix or an upper triangular matrix.
22. The method according to claim 21, wherein the generator matrix gIdgct of the ldgc is a sparse matrix with N rows and L columns; a square matrix corresponding to the first L rows of gIdgct is a lower triangular matrix or the square matrix may be transformed to a lower triangular matrix; N>L; or a square matrix corresponding to the first L rows of gIdgct is an upper triangular matrix or the square matrix may be transformed to a upper triangular matrix.

The present invention relates to the field of data encoding and decoding, and more particularly, to a method for decoding a low density generator matrix code.

Erasure channel is an important channel model. During data transmission, if an error occurs in check of a data packet received by a receiver, then erroneous data segments will be discarded, i.e., erased. Transmitting files over the Internet is a mode of communication by data packet. Generally, each data packet is either received by the receiver correctly or not received by the receiver at all. In the transmission control protocol (TCP), error detection and retransmission mechanism is adopted against packet loss in network, that is, feedback channel from an input terminal to an output terminal is used to control data packets that are required to be retransmitted. When the receiver detects packet loss, it generates a retransmission control signal until a complete data packet is received; and when the receiver receives the data packet, it also generates a receiving acknowledgement signal. A sender, on the other hand, tracks each data packet until the fed back acknowledgement signal is received, otherwise the acknowledgement signal will be retransmitted.

A data broadcast service based on streaming mode and file downloading mode is a point-to-multipoint service, in which feedback is not allowed and traditional error detection and retransmission mechanism cannot be used, and forward error correction (FEC) is required to be used to ensure reliable transmission of data. The FEC in a classical application layer includes Reed-Solomon (RS) codes and digital fountain codes. The RS codes with higher encoding and decoding complexity typically apply to only cases where code length is smaller. Luby transform (LT) codes and Raptor codes are two types of practically applicable digital fountain codes. The LT codes have linear encoding and decoding time, which is an essential improvement as compared to the RS codes, and the Raptor codes use pre-encoding technology and thus have higher decoding efficiency. The multimedia broadcast/multicast service (MBMS) and digital video broadcasting (DVB) of the 3rd Generation Partnership Project (3GPP) uses the Raptor codes from Digital Fountain Company as their FEC encoding scheme.

If the first k bits of the encoded code word are the same as information bits, then the code is called a system code. The encoding process is a process where the K information bits generate a code length with N bits, and N-K check bits are added in order to achieve error detection and correction. The LT codes do not support the encoding mode of the system code, thus it is difficult for the LT codes to satisfy certain actual FEC coding requirements. The Raptor codes support the system code; however, the Raptor codes need an individual pre-encoding process, i.e., a pre-encoding matrix, thus the encoding is more complex.

In order to eliminate the disadvantages of the encoding method described above, a low density generator matrix code (LDGC) is introduced. The LDGC is a linear block code and non-zero elements in its generator matrix (encoding matrix) are generally sparse. In addition, the LDGC is also a system code.

FIG. 1 illustrates a schematic diagram of a generator matrix of the LDGC. As shown in FIG. 1, a square matrix corresponding to the first L rows in the generator matrix GIgdc of the LDGC is typically an upper triangular matrix or a lower triangular matrix, and its matrix inversion may be implemented by an iterative method. x and y in FIG. 1 may be 0.

The encoding of the LDGC is to get an intermediate variable at first using a corresponding relationship between the information bits (data to be transmitted) and the intermediate variable in a system code and then to obtain an encoded code word by multiplying a generator matrix by the intermediate variable. Specifically, the encoding process is to fill d=L−K known bits in a K-bit information sequence m to generate a L-bit sequence s, then generate an L-bit intermediate variable sequence I according to an equation: I×GIdgc(0:L−1, 0:L−1)=s, and then generate a N-bit code word sequence CIdgc from the L-bit intermediate variable sequence I. After CIdgc passes through a channel, a code word sequence R is received by a receiver. For the detailed encoding process, we may refer to a patent entitled “An encoding method and apparatus and a decoding method and apparatus of low density generator matrix codes”, where I is a vector of l*L and GIdgc(0:L−1, 0:N+d−1) is a matrix with L*(N+d).

The decoding process of the LCGC is to get the intermediate variable using the generator matrix and then get the information bit based on a transformation relation between the information bits and the intermediate variable. When solving the intermediate variable, the most critical step is to carry out Gaussian elimination, and the speed of the Gaussian elimination affects directly the decoding speed of the LDGC. According to decoding requirements, GIdgct is defined as the transpose of GIdgc, It is defined as the transpose of I and the received sequence R is defined as a column vector.

In the process of acquiring the intermediate variable It based on a relation formula GIdgct×It=R in decoding, the following three elementary transformations should be performed for GIdgct:

The decoding of the LDGC uses a standard Gaussian elimination method in prior art such that the efficiency of the decoding is lower.

A technical problem to be solved by the present invention is to provide a method for decoding the LDGC with high efficiency to overcome the deficiency of prior art.

In order to solve the technical problems described above, the present invention provides a method for decoding a low density generator matrix code (LDGC) so as to decode transmitted original information bits encoded in LDGC code. The method comprises the following steps:

Further, the method may also be characterized in that GIdgct, Ge and Gf are matrices with L columns and M=L−NE, with NE being the number of bits erased by the channel in R.

Further, the method may also be characterized in that it comprises the following step between the step B and C: determining whether Gf is a full rank matrix, and performing the step C if Gf is a full rank, otherwise decoding fails and the method ends.

Further, the method may also be characterized in that whether or not Gf is a full rank matrix is determined by determining whether the rank of a matrix Gpart composed by the Hth row to the last row and the Hth column to the last column in Gf equals to L−H, where H is the first erased part in R.

Further, the method may also be characterized in that the step C comprises following sub-steps:

C1: obtaining an intermediate permutation variable Il based on a relation formula Gf×Il=Rc;

C2: obtaining an intermediate variable It by rearranging Il based on permutation relation between columns of Ge and Gf; and

C3: obtaining a bit sequence s based on a relation formula It×CIdgct(0:L−1, 0:L−1)=s and deleting the filled known bits to obtain the original information bits.

Further, the method may also be characterized in that in the step C1, Il is obtained using a Gaussian elimination method.

Further, the method may also be characterized in that:

Further, the method may also be characterized in that the M-order square matrix is a lower triangular matrix or an upper triangular matrix.

Further, the method may also be characterized in that the generator matrix GIdgct of the LDGC is a sparse matrix with N rows and L columns; a square matrix corresponding to the first L rows of GIdgct is a lower triangular matrix or the square matrix may be transformed to a lower triangular matrix; N>L; or a square matrix corresponding to the first L rows of GIdgct is an upper triangular matrix or the square matrix may be transformed to a upper triangular matrix.

Further, the method may also be characterized in that: in the step B, based on the deleted row serial numbers, shifting columns with column serial numbers being the same as the row serial numbers in Ge to the last NE columns of the matrix, the original positions of the columns are filled by corresponding subsequent columns successively.

Using the method for decoding the LDGC in accordance with the present invention, diagonalization feature of a structured coding matrix of the LDGC may be fully utilized as compared to the decoding method using the Gaussian elimination directly so as to decrease greatly the complexity of the decoding and accelerate the speed of the decoding such that the LDGC may be applied to an high-speed communication system.

FIG. 1 is a schematic diagram of a generator matrix of the LDGC;

FIG. 2 is a flow chart of a decoding method of the low density generator matrix code in accordance with the present invention;

FIG. 3 is a schematic diagram of erasing the generator matrix according to conditions of erasing the received code word sequence;

FIG. 4 is a schematic diagram of permuting columns of the erased generator matrix Ge; and

FIG. 5 and FIG. 6 are schematic diagrams of determining whether the generator matrix with the columns being permuted is a full rank matrix and performing Gaussian elimination for the same.

The basic idea of the present invention is to use diagonalization feature of a structured generator matrix of the LDGC to permute columns of the erased generator matrix such that an M-order square matrix with (0, 0), i.e., an element in the 0th row and 0th column being a vertex is a lower triangular matrix.

The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.

FIG. 2 is a flow chart of a decoding method of the low density generator matrix code in accordance with the present invention. As shown in FIG. 2, the method comprises the following steps:

101: a known sequence with a length of d=L−K, such as 1, 1, . . . , 1, is added after a received bit signal stream transmitted via an erasure channel to form an input bit sequence R of a decoder, where K is the length of original information bits and L is the coding length of the filled original information bits.

102: the corresponding row of the generator matrix GIdgct of the LDGC is erased (deleted) according to conditions of erasing the received code word sequence to obtain the erased generator matrix Ge and an erased code word sequence Re.

FIG. 3 is a schematic diagram of erasing the generator matrix according to conditions of erasing the received code word sequence. As shown in FIG. 3, the first L rows of the erased generator matrix Ge is no longer a lower triangular square matrix.

Assuming that the symbols {ri, ri+1, . . . , ri+x1} and {rj, rj+1, . . . , rj+x2} in R (r0, r1, . . . , rN−1) are erased by a channel, the {i, i+1, . . . , i+x1}-th rows and {j, j+1, . . . , j+x2}-th rows in GIdgct are needed to be erased to obtain Ge. At this point because a number of rows in upper part of Ge are erased, Ge is no longer strictly diagonalized, as shown in FIG. 3(c).

In the same time, the erased symbols {ri, ri+1, . . . , ri+x1} and {rj, rj+1, . . . , rj+x2} in R are needed to be deleted and their corresponding positions are filled by subsequence symbols in R successively to obtain the erased code word sequence Re.

103: columns of the erased generator matrix Ge is permuted such that an M-order square matrix with (0, 0) being a vertex in Ge is a lower triangular matrix, where M=L−NE, with NE being the total number of the erased rows.

FIG. 4 is a schematic diagram of permuting the columns of the erased generator matrix Ge.

As shown in FIG. 4, assuming again that the erased symbols in R are {ri, ri+1, . . . , ri+x1} and {rj, rj+1, . . . , rj+x2} and X1+X2=NE.

A set of the erased row indices is Xset={i, i+1, . . . , i+x1, j, j+1, . . . , j+x2}.

In order to get a lower triangular matrix, the columns of Ge are permuted, the columns with column serial numbers belonging to Xset in Ge are shifted to the rightmost of Ge, and the vacated positions of the corresponding columns are filled by the subsequent columns with column serial numbers not belonging to Xset to obtain the permuted generator matrix Gf.

In order to record the permutation of It for recovery, an array Itmp with a length of L is needed to be configured. Itmp may be initialized to be [0, 1, 2, . . . , L−1] or other values, which are not be limited herein. As the permutation is performed, elements of the array Itmp are permutated accordingly, that is, the {i, i+1, . . . , i+x1, j, j+1, . . . , j+x2}-th elements in Itmp are shifted to the end of Itmp.

As shown in FIG. 4, the M-order square matrix with (0, 0) being a vertex in the Ge with columns being permuted is a lower triangular matrix, where M=L−NE and NE=X1+X2 This feature may allow computation to be reduced in subsequent decoding using the Gaussian elimination method, thereby improving greatly operation speed.

104: the rank of Gf is calculated to determine whether it is a full rank matrix.

Since the upper left part of Gf is a lower triangular, the first erased row in GIdgct is noted as the Hth row, and the 0th to (H−1)th rows in Gf must be linearly independent. Thus, we only need to determine whether the rank of a matrix Gpart composed by the Hth row to the last row and the Hth column to the last column in Gf equals to L−H. If the rank of Gpart equals to L−H, then this shows that Gf is a full rank matrix.

FIG. 5 is a schematic diagram of determining whether the generator matrix with the columns being permuted is a full rank matrix and performing Gaussian elimination for the same.

Gpart may be represented as Gf (H: N−H, H: L), i.e., a matrix corresponding to an area enclosed by thick dashed line in FIG. 5. The rank of Gpart may be determined by performing Gaussian elimination for Gpart. After the Gaussian elimination is completed, Gpart is converted into a matrix Gpart2 with an upper triangular shape if the rank of Gpart equals to L−H. The step described above make the matrix Gf to be converted into the matrix Gg.

105: if Gf is a full rank matrix (i.e., the rank of Gpart is L−H), an intermediate permutation variable Ii is obtained using the Gaussian elimination method based on a relation formula Gf×Il=Re and an intermediate variable It is obtained based on Il and Itmp.

In the step 104, because Gpart is transformed to an upper triangular shape such that the matrix Gf is converted into the matrix Gg, the Gaussian elimination is required to performed on only the 0th to the (H−1)th columns.

As shown in FIG. 6, the Gaussian elimination is performed on only the 0th to the (H−1)th columns in Gg to obtain Gh with an upper triangular shape. The intermediate permutation variable Il may be solved out based on the upper triangular shape of Gh. Further, Il may be inversely permuted to obtain It based on the array Itmp recorded in the step 103.

106: a bit sequence s is obtained based on a relation formula I×GIdgct(0:L−1, 0:L−1)=s used in encoding and the d=L−K filled bits are deleted from the bit sequence s to obtain an original information sequence m.

It can be seen from the above that using the decoding method in accordance with the present invention for the generator matrix of the LDGC may improving processing speed of the Gaussian elimination and the Gaussian elimination is not required to be performed on the entire permuted generator matrix Gf in determining whether it is a full rank matrix, thereby improving the speed of full rank determination. Thus, the case where the matrix is not a full rank and can not be decoded correctly may be discovered in time and processed accordingly.

According to basic principles of the present invention, the above embodiment may also have various transform modes.

All of the above are only embodiments of the present invention and are not intended to limit the present invention. A variety of modifications and variations may be made to the present invention by those skilled in the art. Any modification, equivalent replacement and improvement made within the sprit and principle of the present invention should be included in the scope defined by claims of the present invention.

In view of the above, using the decoding method in accordance with the present invention for the generator matrix of the LDGC may improving processing speed of the Gaussian elimination and the Gaussian elimination is not required to be performed on the entire permuted generator matrix Gf in determining whether it is a full rank matrix, thereby improving the speed of full rank determination. Thus, the case where the matrix is not a full rank and can not be decoded correctly may be discovered in time and processed accordingly.

Xu, Jin, Xu, Jun, Yuan, Zhifeng

Patent Priority Assignee Title
9264181, Dec 30 2013 Industrial Technology Research Institute Communication system, method and receiver applicable thereto
Patent Priority Assignee Title
20040054959,
20050154958,
20050216820,
20070011569,
20070245211,
20090158117,
CN1756090,
CN1855730,
WO2007075043,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Apr 30 2008ZTE Corporation(assignment on the face of the patent)
May 15 2010YUAN, ZHIFENGZTE CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0245280476 pdf
May 15 2010XU, JUNZTE CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0245280476 pdf
May 15 2010XU, JINZTE CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0245280476 pdf
Date Maintenance Fee Events
Apr 13 2016M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Apr 16 2020M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Apr 17 2024M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Oct 30 20154 years fee payment window open
Apr 30 20166 months grace period start (w surcharge)
Oct 30 2016patent expiry (for year 4)
Oct 30 20182 years to revive unintentionally abandoned end. (for year 4)
Oct 30 20198 years fee payment window open
Apr 30 20206 months grace period start (w surcharge)
Oct 30 2020patent expiry (for year 8)
Oct 30 20222 years to revive unintentionally abandoned end. (for year 8)
Oct 30 202312 years fee payment window open
Apr 30 20246 months grace period start (w surcharge)
Oct 30 2024patent expiry (for year 12)
Oct 30 20262 years to revive unintentionally abandoned end. (for year 12)