These are site marking devices for marking a selected site within tissue of a patient. More particularly, the devices include an elongated body of gel and a metallic band disposed at least partially surrounding the body of gel. The body of gel is recognizably artificial when the marker is subject to ultrasound or x-ray imaging. Therefore, it is readily distinguishable from biological features within the tissue site.
|
3. A remotely imageable marker for marking a selected intracorporeal site within a patient, comprising:
(a) an ultrasound detectable body; and
(b) a radiopaque marker element carried by the ultrasound detectable body on an exterior portion of the ultrasound detectable body, the radiopaque marker element being remotely detectable within the patient;
wherein the ultrasound detectable body expands relative to the radiopaque marker element.
2. A method of marking a selected intracorporeal tissue site for subsequent location, comprising:
(A) providing at least one marker having an ultrasound detectable body and a radiopaque marker element carried by the ultrasound detectable body on an exterior portion thereof wherein the ultrasound detectable body expands relative to the radiopaque marker element; and
(B) inserting the at least one marker through a biopsy needle device which has been previously inserted through the skin and into the tissue site in the course of a biopsy procedure;
wherein the step of inserting includes directing the at least one marker from a point outside the body such that the marker passes through the needle to the intracorporeal tissue site.
1. A method of marking a selected intracorporeal tissue site for subsequent location, comprising:
(A) providing at least one marker having an ultrasound detectable body and a radiopaque marker element carried by the ultrasound detectable body on an exterior portion thereof; and
(B) implanting the at least one marker at a preselected target site, so that the ultrasound detectable body is detectable when subject to ultrasound imaging, wherein implanting the at least one marker includes inserting the at least one marker through a biopsy needle device which has been previously inserted into the tissue site in the course of a biopsy procedure and wherein inserting the at least one marker through a biopsy needle device includes:
(a) using a vacuum-assisted large core biopsy device as the biopsy needle device; and
(b) the insertion of the marker includes:
(i) loading the marker into a marker applicator device having an elongated marker insertion tube for holding the marker, the tube having a distal tip and a piston housed within the tube for expelling the marker from the tip;
(ii) inserting the marker insertion tube through the large core biopsy device until the tip is adjacent the tissue site; and
(iii) depressing the piston to expel the at least one marker from the tube to implant adjacent the tissue site.
4. The remotely imageable marker of
5. The remotely imageable marker of
6. The remotely imageable marker of
7. The remotely imageable marker of
8. The remotely imageable marker of
|
This is a continuation of U.S. application Ser. No. 10/961,979, filed Oct. 8, 2004, which is a continuation of U.S. application Ser. No. 10/114,712, filed Apr. 1, 2002, which is a continuation of U.S. application Ser. No. 09/805,652, filed Mar. 13, 2001, which is a continuation of U.S. application Ser. No. 09/285,329, filed Apr. 2, 1999, now U.S. Pat. No. 6,356,782, which is a continuation-in-part of U.S. application Ser. No. 09/220,618, filed Dec. 24, 1998, now abandoned. All of the above patents and applications are incorporated herein by reference in their entirety.
This invention is directed to subcutaneous cavity marking devices and methods. More particularly, a cavity marking device and method is disclosed that enable one to determine the location, orientation, and periphery of the cavity by radiographic, mammographic, echographic, or other non-invasive techniques. The invention typically is made up of one or more resilient bodies and a radiopaque or echogenic marker.
Over 1.1 million breast biopsies are performed each year in the United States alone. Of these, about 80% of the lesions excised during biopsy are found to be benign while about 20% of these lesions are malignant.
In the field of breast cancer, stereotactically guided and percutaneous biopsy procedures have increased in frequency as well as in accuracy as modern imaging techniques allow the physician to locate lesions with ever-increasing precision. However, for any given biopsy procedure, a subsequent examination of the biopsy site is very often desirable. There is an important need to determine the location, most notably the center, as well as the orientation and periphery (margins) of the subcutaneous cavity from which the lesion is removed.
In those cases where the lesion is found to be benign, for example, a follow-up examination of the biopsy site is often performed to ensure the absence of any suspect tissue and the proper healing of the cavity from which the tissue was removed. This is also the case where the lesion is found to be malignant and the physician is confident that all suspect tissue was removed and the tissue in the region of the perimeter or margins of the cavity is “clean.”
In some cases, however, the physician may be concerned that the initial biopsy failed to remove a sufficient amount of the lesion. Such a lesion is colloquially referred to as a “dirty lesion” or “dirty margin” and requires follow-up observation of any suspect tissue growth in the surrounding marginal area of the initial biopsy site. Thus, a re-excision of the original biopsy site must often be performed. In such a case, the perimeter of the cavity must be identified since the cavity may contain cancerous cells. Identification of the cavity perimeter necessary to avoid the risk of opening the cavity, which could release and spread cancerous cells. Moreover, the site of the re-excised procedure itself requires follow-up examination, providing further impetus for accurate identification of the location of the re-excised site. Therefore, a new marker will be placed after re-excision.
Prior methods of marking biopsy cavities utilize one or more tissue marking clips as the biopsy site marking device. Most commonly, these marker clips have a “horseshoe” configuration. The marker clips attach to the walls of the cavity when the free ends or limbs of the “horseshoe” are pinched together, trapping the tissue. This device has significant drawbacks.
For instance, prior to placing the marker clip at the cavity site, the site must be thoroughly cleaned, typically by vacuum, to remove any residual tissue debris. This minimizes the possibility that the marker clip attaches to any loose tissue as opposed to the cavity wall. Once the cavity is prepared, the clip must be examined to ensure that the limbs of the clip are substantially straight. If the limbs have been prematurely bent together, the clip will be discarded since it will most likely not attach properly to the cavity wall. Actual placement of the clip often requires additional vacuum of the cavity wall to draw the wall into the aperture between the limbs of the marking clip so that a better grip is obtained between the limbs of the clip. Additionally, there is always the possibility that the clip may detach from the cavity wall during or after withdrawal of the tools used to place the clip into the cavity.
Aside from the problems inherent in the placement of the marking clip, there are also limitations associated with how well the marking clip can identify a biopsy cavity. As the marking clip must trap tissue for proper attachment, in cases of endoscopic placement, the clip can only be placed on a wall of the cavity substantially opposite to the opening of the cavity.
Moreover, patient concern limits the number of clips that may be placed in a cavity. As a result, the medical practitioner is forced to identify the outline of a three dimensional cavity by a single point as defined by the marking clip. Obviously, determination of the periphery of a biopsy cavity from one point of the periphery is not possible.
These limitations are compounded as the biopsy cavity fills within a few hours with bodily fluids, which eventually renders the cavity invisible to non-invasive techniques. Another difficulty in viewing the clip stems from the fact that the clip is attached to the side, not the center, of the cavity. This makes determining the spatial orientation and position of the cavity difficult if not impossible during follow-up examination. Additionally, during a stereotactic breast biopsy procedure, the breast is under compression when the marking clip is placed. Upon release of the compressive force, determining the location of the clip can be unpredictable, and the orientation as well as the location of the periphery of the cavity are lost.
The marker clip does not aid in the healing process of the biopsy wound. Complications may arise if the marker strays from its original placement site. As described above, if a re-excision of the site is required, the marker clip may also interfere when excision of a target lesion is sought.
Other devices pertaining to biopsy aids are directed to assisting in the healing and closure of the biopsy wound; thus they do not aid the clinical need or desirability of accurately preserving the location and orientation of the biopsy cavity. See, e.g., U.S. Pat. Nos. 4,347,234, 5,388,588, 5,326,350, 5,394,886, 5,467,780, 5,571,181, and 5,676,146.
This invention relates to devices and procedures for percutaneously marking a biopsy cavity. In particular, the inventive device is a biopsy cavity-marking body made of a resilient, preferably bioabsorbable material having at least one preferably radiopaque or echogenic marker. The device may take on a variety of shapes and sizes tailored for the specific biopsy cavity to be filled. For example, the device in its simplest form is a spherical or cylindrical collagen sponge having a single radiopaque or echogenic marker located in its geometric center. Alternatively, the body may have multiple components linked together with multiple radiopaque or echogenic markers.
A further aspect of the invention allows the marker or the body, singly or in combination, to be constructed to have a varying rate of degradation or bioabsorption. For instance, the body may be constructed to have a layer of bioabsorbable material as an outer “shell.” Accordingly, prior to degradation of the shell, the body is palpable. Upon degradation of the shell, the remainder of the body would degrade at an accelerated rate in comparison to the outer shell.
The device may additionally contain a variety of drugs, such as hemostatic agents, pain-killing substances, or even healing or therapeutic agents that may be delivered directly to the biopsy cavity. Importantly, the device is capable of accurately marking a specific location, such as the center, of the biopsy cavity, and providing other information about the patient or the particular biopsy or device deployed.
The device is preferably, although not necessarily, delivered immediately after removal of the tissue specimen using the same device used to remove the tissue specimen itself. Such devices are described in U.S. Pat. Nos. 6,136,014 and 6,036,698, the entirety of each are hereby incorporated by reference. The device is compressed and loaded into the access device and percutaneously advanced to the biopsy site where, upon exiting from the access device, it expands to substantially fill the cavity of the biopsy. Follow-up noninvasive detection techniques, such as x-ray mammography or ultrasound may then be used by the physician to identify, locate and monitor the biopsy cavity site over a preferred period of time.
The device is usually inserted into the body either surgically via an opening in the body cavity, or through a minimally invasive procedure using such devices as a catheter, introducer or similar type device. When inserted via the minimally invasive procedure, the resiliency of the body allows the device to be compressed upon placement in a delivery device. Upon insertion of the cavity marking device into the cavity, the resiliency of the body causes the cavity marking device to self-expand, substantially filling the cavity. The resiliency of the body can be further pre-determined so that the body is palpable, thus allowing tactile location by a surgeon in subsequent follow-up examinations. Typically, the filler body is required to be palpable for approximately 3 months. However, this period may be increased or decreased as needed.
The expansion of the resilient body can be aided by the addition of a bio-compatible fluid which is absorbed into the body. For instance, the fluid can be a saline solution, a painkilling substance, a healing agent, a therapeutic fluid, or any combination of such fluids. The fluid or combination of fluids may be added to and absorbed by the body of the device before or after deployment of the device into a cavity. For example, the body of the device may be pre-soaked with the fluid and then delivered into the cavity. In this instance, the fluid aids the expansion of the body of the device upon deployment. Another example is provided as the device is delivered into the cavity without being pre-soaked. In such a case, fluid is delivered into the cavity after the body of the device is deployed into the cavity. Upon delivery of the fluid, the body of the device soaks the fluid, thereby aiding the expansion of the cavity marking device as it expands to fit the cavity. The fluid may be, but is not limited to being, delivered by the access device.
By “bio-compatible fluid” what is meant is a liquid, solution, or suspension that may contain inorganic or organic material. For instance, the bio-compatible fluid is preferably saline solution, but may be water or contain adjuvants such as medications to prevent infection, reduce pain, or the like. Obviously, the liquid is intended to be a type that does no harm to the body.
After placement of the cavity marking device into the cavity, the bioabsorbable body degrades at a predetermined rate. As the body of the cavity marking device is absorbed, tissue is substituted for the bioabsorbable material. Moreover, while the body degrades, the marker, which is usually suspended substantially in the volumetric center of the body of the device, is left in the center of the cavity. Thus, during a subsequent examination, a medical practitioner having knowledge of the dimensions of the body of the cavity marking device can determine the location as well as the periphery of the biopsy cavity. The orientation of the cavity is self-evident as the marker is left in substantially the center of the cavity. For the case where multiple markers are used, the markers are usually placed in a manner showing directionality.
Both the body and the marker can be made, via radiopaque or echogenic coatings or in situ, to degrade and absorb into the patient's body over a predetermined period of time. It is generally preferred that if the marker's radiopacity or echogenicity is chosen to degrade over time, such degradation does not take place within at least one year after implantation of the inventive device. In this way, if a new lump or calcification (in the case of a breast biopsy) is discovered after the biopsy, such a marker will allow the physician to know the relation of such new growth in relation to the region of excised tissue. On the other hand, and as discussed below, a bioabsorption period of three months is preferred for any such coatings on the perimeter of the body itself.
This invention further includes the act of filling the biopsy cavity with a bioabsorbable liquid, aerosol or gelatinous material, preferably gelatinous collagen, allowing the material to partially solidify or gel and then placing a marker, which may have a configuration as described above, into the center of the bioabsorbable material. The gel may also be made radiopaque or echogenic by the addition of radiopaque materials, such as barium- or bismuth-containing compounds and the like, as well as particulate radio-opaque fillers, e.g., powdered tantalum or tungsten, barium carbonate, bismuth oxide, barium sulfate, to the gel.
This method may be combined with any aspect of the previously described devices as needed. For instance, one could insert a hemostatic or pain-killing substance as described above into the biopsy cavity along with the bioabsorbable material. Alternatively, a bioabsorbable marker could be inserted into a predetermined location, such as the center, of the body of bioabsorbable material.
It is within the scope of this invention that either or both of the marker or markers and the bioabsorbable body may be radioactive, if a regimen of treatment using radioactivity is contemplated.
This procedure may be used in any internal, preferably soft, tissue, but is most useful in breast tissue, lung tissue, prostate tissue, lymph gland tissue, etc. Obviously, though, treatment and diagnosis of breast tissue problems forms the central theme of the invention.
In contrast to the marker clips as described above, the cavity marking device has the obvious advantage of marking the geometric center of a biopsy cavity. Also, unlike the marking clip which has the potential of attaching to loose tissue and moving after initial placement, the marking device self-expands upon insertion into the cavity, thus providing resistance against the walls of the cavity thereby anchoring itself within the cavity. The marking device may be configured to be substantially smaller, larger, or equal to the size of the cavity; however, in some cases the device will be configured to be larger than the cavity. This aspect of the biopsy marking device provides a cosmetic benefit to the patient, especially when the biopsy is taken from the breast. For example, the resistance provided by the cavity marking device against the walls of the cavity may minimize any “dimpling” effect observed in the skin when large pieces of tissue are removed, as, for example, during excisional biopsies.
Although the subcutaneous cavity marking device and method described above are suited for percutaneous placement of the marker within a biopsy cavity it is not intended that the invention is limited to such placement. The device and method are also appropriate for intra-operative or surgical placement of the marker within a biopsy cavity.
In the bodies of
In the case of the ring-shaped markers (154) of
Obviously, marker (150), (154) may reside in locations other than those demonstrated in
Tissue regrowth in a particular orientation can also be promoted by a body design shown in
A trio of markers is also shown in
Shell (142) may be designed to have a varying bioabsorption rate depending upon the thickness and type of material making up the shell (142). In general, the shell can be designed to degrade over a period ranging from as long as a year or more to as little as several months, weeks, or even days. It is preferred that such a bioabsorbable shell be designed to degrade between two and six months; especially preferred is three months. In the design of
As will be described in additional detail with respect to
Each of the bodies depicted in
Examples of synthetic bioabsorbable polymers that may be used for the body of the device are polyglycolide, or polyglycolic acid (PGA), polylactide, or polylactic acid (PLA), poly ε-caprolactone, polydioxanone, polylactide-co-glycolide, e.g., block or random copolymers of PGA and PLA, and other commercial bioabsorbable medical polymers. Preferred is spongy collagen or cellulose. As mentioned above, materials such as hemostatic and pain-killing substances may be incorporated into the body and marker of the cavity marking device. The use of hemostasis-promoting agents provides an obvious benefit as the device not only marks the site of the biopsy cavity but it aids in healing the cavity as well. Furthermore, such agents help to avoid hematomas. These hemostatic agents may include AVITENE Microfibrillar Collagen Hemostat, ACTIFOAM collagen sponge, sold by C. R. Bard Inc., GELFOAM, manufactured by Upjohn Company, SURGICEL Fibrillar from Ethicon Endosurgeries, Inc., and TISSEEL VH, a surgical fibrin sealant sold by Baxter Healthcare Corp. The device may also be made to emit therapeutic radiation to preferentially treat any suspect tissue remaining in or around the margin of the biopsy cavity. It is envisioned that the marker would be the best vehicle for dispensing such local radiation treatment or similar therapy. Also, the body itself may be adapted to have radiopaque, echogenic, or other characteristics that allow the body to be located by non-invasive technique without the use of a marker. Such characteristics permit the possibility of locating and substantially identifying the cavity periphery after deployment but prior to absorption of the device. Furthermore, an echogenic coating may be placed over the radiopaque marker to increase the accuracy of locating the marker during ultrasound imaging.
The hollow sphere (152) marker design of
An important aspect of the invention is that the marker may be radiopaque, echogenic, mammographic, etc., so that it can be located by non-invasive techniques. Such a feature can be an inherent property of the material used for the marker. Alternatively, a coating or the like can be added to the marker to render the marker detectable or to enhance its detectability. For radiopacity, the marker may be made of a non-bioabsorbable radiopaque material such as platinum, platinum-iridium, platinum-nickel, platinum-tungsten, gold, silver, rhodium, tungsten, tantalum, titanium, nickel, nickel-titanium, their alloys, and stainless steel or any combination of these metals. By mammographic we mean that the component described is visible under radiography or any other traditional or advanced mammography technique in which breast tissue is imaged.
As previously discussed, the marker can alternatively be made of or coated with a bioabsorbable material. In this case, the marker can, for instance, be made from an additive-loaded polymer. The additive is a radiopaque, echogenic, or other type of substance that allows for the non-invasive detection of the marker. In the case of radiopaque additives, elements such as barium- and bismuth-containing compounds, as well as particulate radio-opaque fillers, e.g., powdered tantalum or tungsten, barium carbonate, bismuth oxide, barium sulfate, etc., are preferred. To aid in detection by ultrasound or similar imaging techniques, any component of the device may be combined with an echogenic coating. One such coating is ECHO-COAT from STS Biopolymers. Such coatings contain echogenic features which provide the coated item with an acoustically reflective interface and a large acoustical impedance differential. As stated above, an echogenic coating may be placed over a radiopaque marker to increase the accuracy of locating the marker during ultrasound imaging.
Note that the radiopacity and echogenicity described herein for the marker and the body are not mutually exclusive. It is within the scope of the present invention for the marker or the body to be radiopaque but not necessarily echogenic, and for the marker or the body to be echogenic but not necessarily radiopaque. It is also within the scope of the invention that the marker and the body are both capable of being simultaneously radiopaque and echogenic. For example, if a platinum ring marker were coated with an echogenic coating, such a marker would be readily visible under x-ray and ultrasonic energy. A similar configuration can be envisioned for the body or for a body coating.
The marker is preferably large enough to be readily visible to the physician under x-ray or ultrasonic viewing, for example, yet be small enough to be able to be percutaneously deployed into the biopsy cavity and to not cause any difficulties with the patient. More specifically, the marker will not be large enough to be palpable or felt by the patient.
Another useful version of the invention is shown in
Here one or more markers may traverse two or more body member segments through the interior of the body members (302) as shown in
Of course, when used in conjunction with other connecting markers, marker (318) need not necessarily connect each body member; it may be used solely to indicate the orientation or location of each individual sponge or the entire device, depending on the material, geometry, size, orientation, etc., of marker (318). When not used in this connecting function, therefore, marker (318) need not traverse two body members (302) as shown in
A variety of patterns can be envisioned in which all or part of the perimeter of the sponge body is marked. For example, a marker (322) can wrap around the body (302) in a helical pattern (
Another possible configuration is obtained by combining the suture or wire markers (158) in a body with any other type marker (150, 152, 154, or 156) or vice versa. For example, in FIG. 3B, a spherical marker (150) may be placed in the center of the cylindrical body (302.) Therefore, the cylindrical body (302) would contain the suture or wire marker (322) wrapped helically adjacent to the outer perimeter, and a marker (150) would be placed in the center of the cylindrical body (302). Such a combination may be obtained with any of the body and marker configurations as defined above.
Also, turning back to the marking device (100) in
Any of the previously-described additional features of the inventive device, such as presence of pain-killing or hemostatic drugs, the capacity for the marker to emit therapeutic radiation for the treatment of various cancers, the various materials that may make up the marker and body, as well as their size, shape, orientation, geometry, etc., may be incorporated into the device described above in conjunction with
Turning now to
In
Finally, in
In
Turning now to
Each of the markers shown in
From the foregoing, it is understood that the invention provides an improved subcutaneous cavity marking device and method. While the above descriptions have described the invention for use in the marking of biopsy cavities, the invention is not limited to such. One such application is evident as the invention may further be used as a lumpectomy site marker. In this use, the cavity marking device yield an improved benefit by marking the perimeter of the lumpectomy cavity.
The invention herein has been described by examples and a particularly desired way of practicing the invention has been described. However, the invention as claimed herein is not limited to that specific description in any manner. Equivalence to the description as hereinafter claimed is considered to be within the scope of protection of this patent.
Sutton, Douglas S., Sirimanne, D. Laksen, Fawzi, Natalie V., Lebovic, Gail
Patent | Priority | Assignee | Title |
10016236, | Mar 15 2013 | Covidien LP | Microwave energy-delivery device and system |
10045756, | Mar 29 2003 | The Cooper Companies Global Holdings LP | Medical devices |
10045832, | May 23 2003 | SenoRx, Inc. | Marker or filler forming fluid |
10058416, | Oct 10 1997 | SenoRx, Inc. | Tissue marking implant |
10105181, | Mar 15 2013 | Covidien LP | Microwave energy-delivery device and system |
10172674, | Feb 02 1999 | SenoRx, Inc. | Intracorporeal marker and marker delivery device |
10182868, | Nov 17 2005 | Varian Medical Systems, Inc. | Apparatus and methods for using an electromagnetic transponder in orthopedic procedures |
10258428, | Dec 30 2008 | C. R. Bard, Inc. | Marker delivery device for tissue marker placement |
10299881, | May 23 2003 | Senorx, Inc | Marker or filler forming fluid |
10327884, | Jan 24 2012 | LifeCell Corporation | Elongated tissue matrices |
10335124, | Feb 29 2016 | Devicor Medical Products, Inc.; DEVICOR MEDICAL PRODUCTS, INC | Marker delivery device with adaptor for biopsy site marking and method of use thereof |
10342635, | Apr 20 2005 | Bard Peripheral Vascular, Inc.; Bard Shannon Limited | Marking device with retractable cannula |
10357328, | Apr 20 2005 | Bard Peripheral Vascular, Inc; Bard Shannon Limited | Marking device with retractable cannula |
10363098, | Mar 15 2013 | Covidien LP | Microwave energy-delivery device and system |
10463446, | Jun 17 1999 | Bard Peripheral Vascular, Inc; Bard Shannon Limited | Apparatus for the percutaneous marking of a lesion |
10478150, | Aug 24 2001 | The Cooper Companies Global Holdings LP | Medico—surgical devices |
10499988, | Mar 15 2013 | Covidien LP | Microwave energy-delivery device and system |
10595957, | Jun 04 2015 | ENDOMAGNETICS LTD | Marker materials and forms for magnetic marker localization (MML) |
10624697, | Aug 26 2014 | Covidien LP | Microwave ablation system |
10639002, | Mar 29 2003 | The Cooper Companies Global Holdings LP | Medical devices |
10643371, | Aug 11 2014 | Covidien LP | Treatment procedure planning system and method |
10675092, | Mar 15 2013 | Covidien LP | Microwave energy-delivery device and system |
10682200, | Dec 12 2006 | C. R. Bard, Inc. | Multiple imaging mode tissue marker |
10683119, | May 23 2014 | Merit Medical Systems, Inc | Marker element, device for making a marker element, and method for making a marker element |
10786604, | Sep 23 2008 | SenoRx, Inc. | Porous bioabsorbable implant |
10813692, | Feb 29 2016 | Covidien LP | 90-degree interlocking geometry for introducer for facilitating deployment of microwave radiating catheter |
10813716, | Nov 18 2002 | Bard Peripheral Vascular, Inc.; Bard Shannon Limited | Self-contained, self-piercing, side-expelling marking apparatus |
10925628, | Sep 18 2017 | NOVUSON SURGICAL, INC | Tissue engagement apparatus for theapeutic ultrasound apparatus and method |
10925629, | Sep 18 2017 | NOVUSON SURGICAL, INC | Transducer for therapeutic ultrasound apparatus and method |
11191611, | Jun 03 2016 | SOMATEX MEDICAL TECHNOLOGIES GMBH | Marking device and implantation system |
11227427, | Aug 11 2014 | Covidien LP | Treatment procedure planning system and method |
11238642, | Aug 11 2014 | Covidien LP | Treatment procedure planning system and method |
11259831, | Sep 18 2017 | NOVUSON SURGICAL, INC | Therapeutic ultrasound apparatus and method |
11278370, | Apr 20 2005 | Bard Peripheral Vascular, Inc. | Marking device with retractable cannula |
11337757, | Mar 15 2013 | Covidien LP | Microwave energy-delivery device and system |
11471244, | Dec 12 2006 | C.R. Bard, Inc. | Multiple imaging mode tissue marker |
11504207, | Jun 04 2015 | ENDOMAGNETICS LTD | Marker materials and forms for magnetic marker localization (MML) |
11769292, | Aug 11 2014 | Covidien LP | Treatment procedure planning system and method |
11779431, | Dec 30 2008 | C. R. Bard, Inc. | Marker delivery device for tissue marker placement |
11779432, | Jun 03 2016 | SOMATEX MEDICAL TECHNOLOGIES GMBH | Marking device and implantation system |
11833275, | Sep 23 2008 | SenoRx, Inc. | Porous bioabsorbable implant |
11877898, | Nov 23 2016 | Hologic, Inc. | Biopsy site marker |
11974805, | Aug 26 2014 | Covidien LP | Microwave ablation system |
12150704, | Mar 15 2013 | Covidien LP | Microwave energy-delivery device and system |
12150822, | Aug 26 2016 | SOMATEX MEDICAL TECHNOLOGIES GMBH | Marking device and implantation system |
12161513, | Jun 04 2015 | ENDOMAGNETICS LTD | Marker materials and forms for magnetic marker localization (MML) |
8718745, | Nov 20 2000 | Senorx, Inc | Tissue site markers for in vivo imaging |
8784433, | Jun 17 2002 | SenoRx, Inc. | Plugged tip delivery tube for marker placement |
8880154, | May 23 2003 | SenoRx, Inc. | Fibrous marker and intracorporeal delivery thereof |
8965486, | Feb 02 1999 | SenoRx, Inc. | Cavity filling biopsy site markers |
9039763, | Oct 10 1997 | SenoRx, Inc. | Tissue marking implant |
9042965, | Dec 18 2006 | C. R. Bard, Inc. | Biopsy marker with in situ-generated imaging properties |
9044162, | Feb 02 1999 | SenoRx, Inc. | Marker delivery device with releasable plug |
9119650, | Mar 15 2013 | Covidien LP | Microwave energy-delivery device and system |
9149341, | Feb 02 1999 | Senorx, Inc | Deployment of polysaccharide markers for treating a site within a patient |
9161814, | Mar 15 2013 | Covidien LP | Microwave energy-delivery device and system |
9237937, | Feb 02 1999 | SenoRx, Inc. | Cavity-filling biopsy site markers |
9271821, | Jan 24 2012 | LifeCell Corporation | Elongated tissue matrices |
9301723, | Mar 15 2013 | Covidien LP | Microwave energy-delivery device and system |
9480554, | Oct 10 1997 | SenoRx, Inc. | Tissue marking implant |
9498286, | Mar 15 2013 | Covidien LP | Microwave energy-delivery device and system |
9579159, | Jun 17 1999 | Bard Peripheral Vascular, Inc.; Bard Shannon Limited | Apparatus for the percutaneous marking of a lesion |
9636082, | Jul 17 2002 | The Cooper Companies Global Holdings LP | Medical-surgical devices |
9642591, | Aug 24 2001 | The Cooper Companies Global Holdings LP | Medical-surgical devices |
9649093, | Feb 02 1999 | SenoRx, Inc. | Cavity-filling biopsy site markers |
9743904, | Aug 24 2001 | The Cooper Companies Global Holdings LP | Medico-surgical devices |
9801688, | May 23 2003 | SenoRx, Inc. | Fibrous marker and intracorporeal delivery thereof |
9820824, | Feb 02 1999 | SenoRx, Inc. | Deployment of polysaccharide markers for treating a site within a patent |
9848956, | Nov 18 2002 | Bard Peripheral Vascular, Inc.; Bard Shannon Limited | Self-contained, self-piercing, side-expelling marking apparatus |
9861294, | Feb 02 1999 | SenoRx, Inc. | Marker delivery device with releasable plug |
9901415, | Dec 12 2006 | C. R. Bard, Inc. | Multiple imaging mode tissue marker |
9913687, | Mar 15 2013 | Covidien LP | Microwave energy-delivery device and system |
9943704, | Jan 21 2009 | Varian Medical Systems, Inc | Method and system for fiducials contained in removable device for radiation therapy |
D715442, | Sep 24 2013 | C. R. Bard, Inc.; C R BARD, INC | Tissue marker for intracorporeal site identification |
D715942, | Sep 24 2013 | C. R. Bard, Inc.; C R BARD, INC | Tissue marker for intracorporeal site identification |
D716450, | Sep 24 2013 | C. R. Bard, Inc.; C R BARD, INC | Tissue marker for intracorporeal site identification |
D716451, | Sep 24 2013 | C. R. Bard, Inc.; C R BARD, INC | Tissue marker for intracorporeal site identification |
Patent | Priority | Assignee | Title |
2609347, | |||
2653917, | |||
2659935, | |||
2664366, | |||
2664367, | |||
2740405, | |||
2846407, | |||
2972350, | |||
3001522, | |||
3194239, | |||
3592185, | |||
3823212, | |||
3844272, | |||
4087791, | Sep 09 1974 | Minnesota Mining and Manufacturing Company | Electromagnetically responsive device and system for detecting the same |
4114601, | Aug 09 1976 | ABELS, MICHAEL A | Medical and surgical implement detection system |
4197846, | Oct 09 1974 | Method for structure for situating in a living body agents for treating the body | |
4202349, | Apr 24 1978 | Radiopaque vessel markers | |
4230123, | Oct 31 1978 | Needle sheath complex and process for decompression and biopsy | |
4291013, | Oct 09 1978 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Medicinally useful, shaped mass of collagen resorbable in the body |
4298998, | Dec 08 1980 | Breast prosthesis with biologically absorbable outer container | |
4320321, | Mar 25 1980 | Hollow-cathode gas-discharge tube | |
4347234, | Jan 09 1978 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Medicinally useful, shaped mass of collagen resorbable in the body |
4356572, | Jul 12 1979 | LE GUERNOL | Biodegradable implant useable as a bone prosthesis |
4541438, | Jun 02 1983 | JOHNS HOPKINS UNIVERSITY, THE, BALTIMORE, MD , A CORP OF MD | Localization of cancerous tissue by monitoring infrared fluorescence emitted by intravenously injected porphyrin tumor-specific markers excited by long wavelength light |
4626251, | Feb 22 1985 | Surgical sponge | |
4628944, | Feb 08 1982 | Pacesetter, Inc | Cardiac pacing lead with biodegradable fixation structure |
4636208, | Oct 05 1984 | Surgical sponge | |
4639253, | Apr 30 1984 | JOHNSON & JOHNSON MEDICAL INC | Nonwoven surgical sponge with X-ray detectable element |
4645499, | Aug 22 1983 | The Kendall Company | Surgical sponge |
4682606, | Feb 03 1986 | Localizing biopsy apparatus | |
4693237, | Jan 21 1986 | Radiopaque coded ring markers for use in identifying surgical grafts | |
4704109, | Aug 22 1983 | The Kendall Company | Surgical sponge |
4718897, | Sep 18 1985 | CHASE MANHATTAN BANK, THE, THE | Nonwoven surgical sponge with x-ray detectable element |
4735210, | Jul 05 1985 | IMMUNOMEDICS, INC , A DE CORP | Lymphographic and organ imaging method and kit |
4735796, | Feb 08 1983 | GORDON, DAVID, SKOKIE, ILLINOIS | Ferromagnetic, diamagnetic or paramagnetic particles useful in the diagnosis and treatment of disease |
4744364, | Feb 17 1987 | Kensey Nash Corporation | Device for sealing percutaneous puncture in a vessel |
4787391, | Jun 17 1985 | Anastomotic marking device and related method | |
4789401, | Jun 25 1985 | MERZ + CO GMBH & CO | Soluble collagen sponge |
4795463, | Oct 03 1984 | Baylor College of Medicine | Labeled breast prosthesis and methods for detecting and predicting rupture of the prosthesis |
4803075, | Jun 25 1986 | Allergan, Inc | Injectable implant composition having improved intrudability |
4812120, | Nov 02 1987 | Implantable percutaneous device | |
4832686, | Jun 24 1986 | Method for administering interleukin-2 | |
4852568, | Feb 17 1987 | Kensey Nash Corporation | Method and apparatus for sealing an opening in tissue of a living being |
4863470, | Mar 19 1985 | Medical Engineering Corporation | Identification marker for a breast prosthesis |
4909250, | Nov 14 1988 | Implant system for animal identification | |
4917694, | May 19 1982 | Tyco Healthcare Group LP | Surgical sponge |
4944308, | Nov 19 1987 | C R BARD, INC | Tissue sampling device |
4966583, | Feb 03 1989 | Apparatus for locating a breast mass | |
4970298, | Mar 26 1984 | UNIVERSITY OF MEDICINE AND DENTISTRY OF NEW JERSEY, A CORP OF NJ | Biodegradable matrix and methods for producing same |
5002548, | Oct 06 1986 | BIO MEDIC DATA SYSTEMS, INC | Animal marker implanting system |
5018530, | Jun 15 1989 | RESEARCH CORPORATION TECHNOLOGIES, INC | Helical-tipped lesion localization needle device and method of using the same |
5041103, | Aug 22 1983 | KENDALL COMPANY, THE, A CORP OF DE | Surgical sponge and method of making |
5041826, | Feb 15 1984 | Destron Fearing Corporation | Identification system |
5045080, | Dec 22 1986 | JOHNSON & JOHNSON MEDICAL INC | Surgical fabric with printed X-ray marker |
5057095, | Nov 16 1989 | Surgical implement detector utilizing a resonant marker | |
5059197, | Apr 15 1989 | Lesion location device | |
5085629, | Oct 06 1988 | Cabot Technology Corporation | Biodegradable stent |
5100429, | Apr 28 1989 | Medtronic Ave, Inc | Endovascular stent and delivery system |
5101827, | Jul 05 1985 | Immunomedics, Inc. | Lymphographic and organ imaging method and kit |
5108421, | Oct 01 1990 | ST JUDE MEDICAL PUERTO RICO B V | Insertion assembly and method of inserting a vessel plug into the body of a patient |
5111828, | Sep 18 1990 | SITESELECT MEDICAL TECHNOLOGIES, LTD | Device for percutaneous excisional breast biopsy |
5112325, | Feb 17 1989 | DEROYAL, INC , A TN CORP | Surgical sponge with plurality of radiopaque monofilaments |
5114703, | May 30 1989 | NANOSCAN IMAGING, LLC | Percutaneous lymphography using particulate fluorocarbon emulsions |
5120802, | Dec 17 1987 | UNITED STATES SURGICAL CORP | Polycarbonate-based block copolymers and devices |
5127916, | Jan 22 1991 | MEDICAL DEVICE TECHNOLOGIES, INC | Localization needle assembly |
5148813, | Nov 20 1990 | Biopsy instrument with tissue specimen retaining and retrieval device | |
5183463, | Feb 03 1989 | Apparatus for locating a breast mass | |
5192300, | Oct 01 1990 | ST JUDE MEDICAL PUERTO RICO B V | Insertion assembly and method of inserting a vessel plug into the body of a patient |
5195540, | Aug 12 1991 | Lesion marking process | |
5195988, | May 26 1988 | Medical needle with removable sheath | |
5197484, | Sep 18 1990 | SITESELECT MEDICAL TECHNOLOGIES, LTD | Method and device for precutaneous excisional breast biopsy |
5201314, | Mar 09 1989 | Vance Products Incorporated | Echogenic devices, material and method |
5204382, | Feb 28 1992 | ANGIOTECH PHARMACEUTICALS US , INC | Injectable ceramic compositions and methods for their preparation and use |
5207705, | Dec 08 1988 | TRUDELL, LEONARD A ; WHITTEMORE, ANTHONY D | Prosthesis of foam polyurethane and collagen and uses thereof |
5221269, | Oct 15 1990 | COOK INCORPORATED, 925 SOUTH CURRY PIKE, BLOOMINGTON, IN 47402 A CORP OF IN | Guide for localizing a nonpalpable breast lesion |
5275616, | Jan 01 1990 | ST JUDE MEDICAL PUERTO RICO LLC | Insertion assembly and method of inserting a vessel plug into the body of a patient |
5300120, | Aug 24 1992 | COLLAGEN AESTHETICS | Implant with electrical transponder marker |
5301682, | Feb 03 1989 | Method for locating a breast mass | |
5326350, | May 11 1992 | Ivy Sports Medicine, LLC | Soft tissue closure systems |
5329944, | Nov 16 1989 | Surgical implement detector utilizing an acoustic marker | |
5334216, | Dec 10 1992 | SciMed Life Systems, INC; Boston Scientific Scimed, Inc | Hemostatic plug |
5353804, | Sep 18 1990 | SITESELECT MEDICAL TECHNOLOGIES, LTD | Method and device for percutaneous exisional breast biopsy |
5374246, | Nov 07 1989 | TRW Inc | Method and device for delivering a hemostatic agent to an operating status |
5376376, | Jan 13 1992 | Resorbable vascular wound dressings | |
5380646, | Oct 19 1992 | Temple University of the Commonwealth System of Higher Education | Thrombus detection using radiolabelled disintegrins |
5382251, | Jan 31 1989 | Biomet Manufacturing Corp | Plug pulling method |
5388588, | May 04 1993 | Biopsy wound closure device and method | |
5394886, | Sep 20 1993 | Skin biopsy plug and method | |
5403306, | Jun 22 1993 | Vanderbilt University | Laser surgery method |
5405402, | Apr 14 1993 | ZIMMER, INC | Implantable prosthesis with radiographic marker |
5409004, | Jun 11 1993 | Cook Medical Technologies LLC | Localization device with radiopaque markings |
5433751, | Apr 03 1992 | BIO HOLDINGS INTERNATIONAL LIMITEDC O MORGAN & MORGAN TRUST CORP LTD | Bone prosthesis material containing calcium carbonate particles dispersed in a bioresorbable polymer matrix |
5437279, | Jul 02 1992 | Board of Regents, The University of Texas System | Method of predicting carcinomic metastases |
5444113, | Aug 08 1988 | NatureWorks LLC | End use applications of biodegradable polymers |
5451406, | Jul 14 1994 | CARBON MEDICAL TECHNOLOGIES, INC | Tissue injectable composition and method of use |
5456693, | Sep 21 1992 | Vitaphore Corporation | Embolization plugs for blood vessels |
5456718, | Nov 17 1992 | Apparatus for detecting surgical objects within the human body | |
5460182, | Sep 14 1992 | Sextant Medical Corporation | Tissue penetrating apparatus and methods |
5467780, | May 04 1993 | Biopsy wound closure device and method | |
5478352, | Oct 01 1990 | ST JUDE MEDICAL PUERTO RICO B V | Insertion assembly and method of inserting a vessel plug into the body of a patient |
5482040, | Apr 14 1994 | The Ohio State University Research Foundation | Biostaging of adenocarcinomas utilizing radiolabeled tumor-associated glycoprotein antibodies |
5487392, | Nov 15 1993 | Biopxy system with hemostatic insert | |
5496536, | May 30 1989 | NANOSCAN IMAGING, LLC | Percutaneous lymphography |
5507813, | Dec 09 1993 | Warsaw Orthopedic, Inc | Shaped materials derived from elongate bone particles |
5511566, | Jun 02 1994 | Hauni Maschinenbau Aktiengesellschaft | Distributor for particles of tobacco and the like |
5514379, | Aug 07 1992 | The General Hospital Corporation; General Hospital Corporation, The | Hydrogel compositions and methods of use |
5531716, | Sep 29 1993 | Boston Scientific Scimed, Inc | Medical devices subject to triggered disintegration |
5546957, | Sep 09 1993 | BIP ACQUISITION COMPANY INC | Biopsy needle |
5555885, | Dec 21 1988 | NON-INVASIVE TECHNOLOGY, INC | Examination of breast tissue using time-resolved spectroscopy |
5560373, | Apr 11 1994 | DEVICOR MEDICAL PRODUCTS, INC | Needle core biopsy instrument with durable or disposable cannula assembly |
5571181, | May 11 1992 | Ivy Sports Medicine, LLC | Soft tissue closure systems |
5571182, | Dec 12 1988 | Textured micro implants | |
5575781, | Oct 05 1995 | DeRoyal Industries, Inc.; DEROYAL INDUSTRIES, INC | Absorbent article useful in medical applications |
5579766, | Jul 02 1992 | Board of Regents, The University of Texas System | Method of predicting carcinomic metastases |
5582172, | Jul 21 1992 | The General Hospital Corporation | System of drug delivery to the lymphatic tissues |
5595177, | Jun 03 1994 | Harbor-UCLA Research and Education Institute | Scintigraphy guided stereotaxic localizations apparatus for breast carcinomas |
5626603, | Oct 05 1994 | Medtronic, Inc | Hydraulic stent inserter |
5626611, | Feb 10 1994 | United States Surgical Corporation | Composite bioabsorbable materials and surgical articles made therefrom |
5628744, | Dec 21 1993 | Boston Scientific Scimed, Inc | Treatment beam handpiece |
5645566, | Sep 15 1995 | Boston Scientific Scimed, Inc | Apparatus and method for percutaneous sealing of blood vessel punctures |
5662712, | Apr 28 1993 | Focal, Inc | Apparatus for intraluminal photothermoforming |
5664582, | Nov 17 1992 | Method for detecting, distinguishing and counting objects | |
5665063, | Jun 24 1994 | Focal, Inc | Methods for application of intraluminal photopolymerized gels |
5670161, | May 28 1996 | GENERAL VASCULAR DEVICES, LTD | Biodegradable stent |
5674288, | Aug 24 1992 | COLLAGEN AESTHETICS | Implant with transponder marker |
5676146, | Sep 13 1996 | Warsaw Orthopedic, Inc | Surgical implant containing a resorbable radiopaque marker and method of locating such within a body |
5693085, | Dec 06 1994 | LifeShield Sciences LLC | Stent with collagen |
5697902, | Jul 05 1985 | Immunomedics, Inc. | Method for imaging and treating organs and tissues |
5707393, | Nov 08 1991 | Kensey Nash Corporation | Hemostatic puncture closure system and method of use |
5709676, | Feb 14 1990 | Boston Scientific Scimed, Inc | Synergistic treatment of stenosed blood vessels using shock waves and dissolving medication |
5714551, | Oct 02 1995 | Ethicon, Inc. | High strength, melt processable, lactide-rich, poly (lactide-co-p-dioxanone) copolymers |
5716404, | Dec 16 1994 | Massachusetts Institute of Technology | Breast tissue engineering |
5716407, | Aug 24 1992 | COLLAGEN AESTHETICS | Method of rendering identifiable a living tissue implant using an electrical transponder marker |
5718237, | Nov 15 1993 | Biopsy needle | |
5720772, | Oct 20 1992 | LUMENIS, LTD | Method and apparatus for therapeutic electromagnetic treatment |
5725517, | May 01 1996 | DeRoyal Industries, Inc. | Absorbent woven article including radiopaque element woven therein and anchored at the ends thereof |
5725578, | Apr 01 1994 | Allergan, Inc | Temporary implant with transponder and methods for locating and indentifying |
5732704, | Oct 13 1995 | DEVICOR MEDICAL PRODUCTS, INC | Radiation based method locating and differentiating sentinel nodes |
5752974, | Dec 18 1995 | ANGIOTECH PHARMACEUTICALS, INC | Injectable or implantable biomaterials for filling or blocking lumens and voids of the body |
5776093, | Jul 05 1985 | IMMUNOMEDICS, INC | Method for imaging and treating organs and tissues |
5776094, | Jul 05 1985 | Immunomedics, Inc. | Method and kit for imaging and treating organs and tissues |
5795308, | Mar 09 1995 | Apparatus for coaxial breast biopsy | |
5803913, | Jun 03 1994 | HARBOR-UCLA RESERACH AND EDUCATION INSTITUTE | Nuclear medicine stereotaxic localization apparatus for breast carcinomas and method |
5807276, | Mar 09 1995 | Biopsy device and method | |
5807581, | Feb 09 1994 | ANGIOTECH PHARMACEUTICALS, INC | Collagen-based injectable drug delivery system and its use |
5810806, | Aug 29 1996 | DEVICOR MEDICAL PRODUCTS, INC | Methods and devices for collection of soft tissue |
5817033, | Apr 11 1994 | DEVICOR MEDICAL PRODUCTS, INC | Needle core biopsy device |
5823198, | Jul 31 1996 | MICRO THERAPEUTICS, INC | Method and apparatus for intravasculer embolization |
5827531, | Dec 02 1994 | The United States of America as represented by the Administrator of the; UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE ADMINISTRATOR OF NATIONAL AERONAUTICS AND SPACE ADMINISTRATION | Microcapsules and methods for making |
5853366, | Jul 08 1996 | NOVIAN HEALTH, INC | Marker element for interstitial treatment and localizing device and method using same |
5855609, | Aug 24 1992 | Allergan, Inc | Medical information transponder implant and tracking system |
5856367, | Feb 18 1994 | Neomend, Inc | Biocompatible porous matrix of bioabsorbable material |
5857463, | Oct 13 1995 | DEVICOR MEDICAL PRODUCTS, INC | Remotely controlled apparatus and system for tracking and locating a source of photoemissions |
5868778, | Oct 27 1995 | Vascular Solutions, Inc. | Vascular sealing apparatus and method |
5869080, | May 28 1996 | SYSTAGENIX WOUND MANAGEMENT US , INC ; SYSTAGENIX WOUND MANAGEMENT IP CO B V | Absorbable implant materials having controlled porosity |
5871501, | Jun 07 1995 | ST JUDE MEDICAL, INC | Guide wire with releasable barb anchor |
5871535, | Feb 28 1990 | Medtronic, Inc. | Intralumenal drug eluting prosthesis |
5873904, | May 16 1996 | Cook Medical Technologies LLC | Silver implantable medical device |
5879357, | Oct 20 1995 | United States Surgical Corporation | Apparatus for marking tissue location |
5895395, | Jul 17 1997 | Partial to full thickness suture device & method for endoscopic surgeries | |
5895640, | Jun 03 1994 | Harbor-UCLA Research and Education Institute | Nuclear medicine techniques for detecting carcinoma in the dense breast |
5899865, | Dec 21 1988 | Non-Invasive Technology, Inc. | Localization of abnormal breast tissue using time-resolved spectroscopy |
5913857, | Aug 29 1996 | DEVICOR MEDICAL PRODUCTS, INC | Methods and devices for collection of soft tissue |
5922024, | Sep 07 1993 | Datascope Investment Corp. | Soft tissue implant |
5941890, | Jun 26 1998 | DEVICOR MEDICAL PRODUCTS, INC | Implantable surgical marker |
5941910, | Jul 12 1993 | The Regents of the University of California | Soft tissue augmentation apparatus |
5970986, | Sep 20 1996 | Biotronik Mess- und Therapiegerate GmbH & Co. Ingenieurburo Berlin | Apparatus for rejection diagnostics after organ transplants |
5977431, | Aug 24 1992 | Allergan, Inc | Living tissue implant with electrical transponder marker |
5989265, | Mar 08 1995 | Device for pinpointing suspect lesions of the breast and apparatus for positioning it | |
5997468, | Feb 28 1990 | Medtronic, Inc. | Intraluminal drug eluting prosthesis method |
6006750, | Apr 30 1996 | Medtronic, Inc. | Position sensing system and method for using the same |
6007495, | Jan 22 1998 | United States Surgical Corporation | Biopsy apparatus and method |
6030333, | Oct 24 1997 | RADIO MED CORPORATION | Implantable radiotherapy device |
6056700, | Oct 13 1998 | ENGINEERED MEDICAL SYSTEMS, INC | Biopsy marker assembly and method of use |
6057122, | Apr 03 1997 | AbbVie Inc | Antiangiogenic peptides polynucleotides encoding same and methods for inhibiting angiogenesis |
6066325, | Jun 18 1997 | Baxter International Inc; BAXTER HEALTHCARE S A | Fragmented polymeric compositions and methods for their use |
6068857, | Sep 09 1993 | ACUSPHERE, INC | Microparticles containing active ingredients, agents containing these microparticles, their use for ultrasound-controlled release of active ingredients, as well as a process for their production |
6071301, | May 01 1998 | Boston Scientific Scimed, Inc | Device and method for facilitating hemostasis of a biopsy tract |
6080099, | Aug 12 1998 | Syntheon, LLC | Radioactive therapeutic seeds |
6083522, | Jan 09 1997 | SURGICAL SPECIALTIES CORPORATION LIMITED | Devices for tissue repair and methods for preparation and use thereof |
6092009, | Jul 30 1996 | AlliedSignal Inc | Aircraft terrain information system |
6126675, | Jan 11 1999 | Ethicon, Inc. | Bioabsorbable device and method for sealing vascular punctures |
6159165, | Dec 05 1997 | Depuy Synthes Products, LLC | Three dimensional spherical micro-coils manufactured from radiopaque nickel-titanium microstrand |
6161034, | Feb 02 1999 | SenoRx, Inc.; Senorx, Inc | Methods and chemical preparations for time-limited marking of biopsy sites |
6162192, | May 01 1998 | Boston Scientific Scimed, Inc | System and method for facilitating hemostasis of blood vessel punctures with absorbable sponge |
6168570, | Dec 05 1997 | Micrus Corporation | Micro-strand cable with enhanced radiopacity |
6174330, | Aug 01 1997 | SciMed Life Systems, INC; Boston Scientific Scimed, Inc | Bioabsorbable marker having radiopaque constituents |
6179860, | Aug 19 1998 | Artemis Medical, Inc | Target tissue localization device and method |
6181960, | Jan 15 1999 | University of Virginia Patent Foundation | Biopsy marker device |
6183497, | May 01 1998 | Boston Scientific Scimed, Inc | Absorbable sponge with contrasting agent |
6200328, | Feb 10 1999 | Boston Scientific Scimed, Inc | Device and method for facilitating hemostasis of a biopsy tract |
6214045, | Oct 10 1997 | Senorx, Inc | Bioabsorbable breast implant |
6228055, | Sep 16 1994 | DEVICOR MEDICAL PRODUCTS, INC | Devices for marking and defining particular locations in body tissue |
6231834, | Jun 07 1995 | WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ASSIGNEE | Methods for ultrasound imaging involving the use of a contrast agent and multiple images and processing of same |
6234177, | Aug 12 1999 | Thomas, Barsch | Apparatus and method for deploying an expandable biopsy marker |
6241691, | Dec 05 1997 | Micrus Corporation | Coated superelastic stent |
6261243, | Oct 13 1998 | ENGINEERED MEDICAL SYSTEMS, INC | Biopsy marker assembly and method of use |
6270464, | Jun 22 1998 | DEVICOR MEDICAL PRODUCTS, INC | Biopsy localization method and device |
6340367, | Aug 01 1997 | SciMed Life Systems, INC; Boston Scientific Scimed, Inc | Radiopaque markers and methods of using the same |
6347241, | Feb 02 1999 | SenoRx, Inc. | Ultrasonic and x-ray detectable biopsy site marker and apparatus for applying it |
6356782, | Dec 24 1998 | DEVICOR MEDICAL PRODUCTS, INC | Subcutaneous cavity marking device and method |
6371904, | Dec 24 1998 | DEVICOR MEDICAL PRODUCTS, INC | Subcutaneous cavity marking device and method |
6379379, | May 05 1998 | SciMed Life Systems, Inc. | Stent with smooth ends |
6475169, | Dec 05 1997 | Micrus Corporation | Micro-strand cable with enhanced radiopacity |
6497671, | Dec 05 1997 | Micrus Corporation | Coated superelastic stent |
6616617, | Dec 05 1997 | Micrus Corporation | Vasoocclusive device for treatment of aneurysms |
6749554, | Feb 25 1999 | GE Healthcare Limited | Medical tools and devices with improved ultrasound visibility |
6766186, | Jun 16 1999 | C. R. Bard, Inc. | Post biospy tissue marker and method of use |
7044957, | Sep 16 1994 | DEVICOR MEDICAL PRODUCTS, INC | Devices for defining and marking tissue |
7229417, | Sep 16 1994 | DEVICOR MEDICAL PRODUCTS, INC | Methods for marking a biopsy site |
7625397, | Sep 16 1994 | DEVICOR MEDICAL PRODUCTS, INC | Methods for defining and marking tissue |
7668582, | Dec 24 1998 | DEVICOR MEDICAL PRODUCTS, INC | Biopsy site marker |
20010034528, | |||
20020107437, | |||
20020193815, | |||
20040024304, | |||
20040193044, | |||
20050049489, | |||
20050165305, | |||
20060074443, | |||
20100113920, | |||
CA2071840, | |||
DE935625, | |||
DE4330958, | |||
DE4403789, | |||
DE935625, | |||
EP146699, | |||
EP255123, | |||
EP293605, | |||
EP350043, | |||
EP481685, | |||
EP534696, | |||
EP769281, | |||
FR2714284, | |||
GB2132091, | |||
WO24320, | |||
WO32253, | |||
WO38579, | |||
WO45854, | |||
WO45858, | |||
WO100101, | |||
WO9015576, | |||
WO9319803, | |||
WO9608208, | |||
WO9627328, | |||
WO9809247, | |||
WO9843090, | |||
WO9847430, | |||
WO9852616, | |||
WO9852617, | |||
WO9911196, | |||
WO9925248, | |||
WO9946284, | |||
WO9966834, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 03 2003 | VIVANT MEDICAL, INC | Ethicon Endo-Surgery, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019661 | /0869 | |
Oct 06 2003 | VIVANT MEDICAL, INC | Ethicon Endo-Surgery, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019661 | /0884 | |
Sep 30 2005 | Devicor Medical Products, Inc. | (assignment on the face of the patent) | / | |||
Jul 09 2010 | Ethicon Endo-Surgery, Inc | DEVICOR MEDICAL PRODUCTS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024656 | /0606 | |
Jul 09 2010 | DEVICOR MEDICAL PRODUCTS, INC | GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT | SECURITY AGREEMENT | 024672 | /0088 |
Date | Maintenance Fee Events |
Oct 11 2012 | ASPN: Payor Number Assigned. |
Nov 21 2012 | M1461: Payment of Filing Fees under 1.28(c). |
Nov 28 2012 | STOL: Pat Hldr no Longer Claims Small Ent Stat |
May 18 2015 | ASPN: Payor Number Assigned. |
May 18 2015 | RMPN: Payer Number De-assigned. |
Apr 27 2016 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 30 2020 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jun 24 2024 | REM: Maintenance Fee Reminder Mailed. |
Dec 09 2024 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Nov 06 2015 | 4 years fee payment window open |
May 06 2016 | 6 months grace period start (w surcharge) |
Nov 06 2016 | patent expiry (for year 4) |
Nov 06 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 06 2019 | 8 years fee payment window open |
May 06 2020 | 6 months grace period start (w surcharge) |
Nov 06 2020 | patent expiry (for year 8) |
Nov 06 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 06 2023 | 12 years fee payment window open |
May 06 2024 | 6 months grace period start (w surcharge) |
Nov 06 2024 | patent expiry (for year 12) |
Nov 06 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |