A transmitter for transmitting and calibrating a phase signal and an amplitude signal. The transmitter comprises a phase modulation path, an amplitude modulation path, and a control unit. The phase modulation path transmits the phase signal. The amplitude modulation path transmits the amplitude signal. The control unit delays the signal on at least one of the phase modulation path and the amplitude modulation.
|
15. A control method for transmitting and calibrating a phase signal and an amplitude signal, comprising:
providing a phase modulation path for transmitting the phase signal;
providing an amplitude modulation path for transmitting the amplitude signal; and
delaying the signal on at least one of the phase modulation path and the amplitude modulation path, wherein in a calibration mode, a first calibration signal serves as the amplitude signal and in a normal mode, the phase signal and the amplitude signal are provided by a digital modulator to the phase modulation path and the amplitude modulation path.
21. A transmitter for transmitting and calibrating a phase signal and an amplitude signal, comprising:
a first filter generating the phase signal according to a first signal;
a second filter generating the amplitude signal according to a second signal;
a control unit delaying at least one of the first and the second signals;
a calibration unit providing a calibration signal to serve as the second signal in a calibration mode; and
a digital modulator generating a first modulated data and a second modulated data, wherein the first modulated data is served as the first signal and the second modulated data is served as the second signal in a normal mode.
1. A transmitter for transmitting and calibrating a phase signal and an amplitude signal, comprising:
a phase modulation path for transmitting the phase signal;
an amplitude modulation path for transmitting the amplitude signal;
a control unit delaying the signal on at least one of the phase modulation path and the amplitude modulation path;
a calibration unit, wherein when the transmitter is in a calibration mode, the calibration unit is arranged to provide a calibration signal to the amplitude modulation path to serve as the amplitude signal; and
a digital modulator, wherein when the transmitter is in a normal mode, the digital modulator is arranged to provide the phase signal and the amplitude signal to the phase modulation path and the amplitude modulation path, respectively.
2. The transmitter as claimed in
3. The transmitter as claimed in
4. The transmitter as claimed in
a detection module generating an adjustment signal according to a difference between the phase signal and the amplitude signal transmitted in the calibration mode; and
a delay module delaying the signal on at least one of the phase modulation path and the amplitude modulation path according to the adjustment signal.
5. The transmitter as claimed in
6. The transmitter as claimed in
a first differential generator transforming the output of first filter to generate a first differential pair;
a second differential generator transforming the output of second filter to generate a second differential pair;
a first comparator comparing the first differential pair;
a second comparator comparing the second differential pair; and
a flip-flop generating the adjustment signal according to the compared results.
7. The transmitter as claimed in
a first voltage generator receiving the output of first filter to generate a first divided signal;
a second voltage generator receiving the output of second filter to generate a second divided signal;
a first comparator comparing the output of first filter and the first divided signal;
a second comparator comparing the output of second filter and the second divided signal; and
a flip-flop generating the adjustment signal according to the compared results.
8. The transmitter as claimed in
9. The transmitter as claimed in
10. The transmitter as claimed in
a process unit processing the signal on the phase modulation path and outputting a processed result; and
a fractional-N PLL transforming the processed result.
11. The transmitter as claimed in
a differentiator differentiating the phase signal in the normal mode; and
a compensation filter increasing a high frequency component of the first calibration signal in the calibration mode, and increasing a high frequency component of the differentiated phase signal in the normal mode.
12. The transmitter as claimed in
13. The transmitter as claimed in
a sigma-delta modulator (SDM) modulating the processed result to generate a modulated signal; and
a phase-locked loop (PLL) executing a phase locked procedure according to the modulated signal.
14. The transmitter as claimed in
16. The control method as claimed in
17. The control method as claimed in
detecting the difference between the phase signal and the amplitude signal transmitted in the calibration mode; and
delaying the signal on at least one of the phase modulation path and the amplitude modulation path according to the detection result.
18. The control method as claimed in
19. The control method as claimed in
filtering the signals on the phase modulation path and the amplitude modulation path for generating a first filtered signal and a second filtered signal;
detecting the difference between the first and the second filtered signals for generating an adjustment signal; and
delaying the signal on at least one of the phase modulation path and the amplitude modulation path according to the adjustment signal.
20. The control method as claimed in
transforming the first and the second filtered signals into a first differential pair and a second differential pair; and
delaying the signal on at least one of the phase modulation path and the amplitude modulation path according to the first and the second differential pairs.
|
This application is a Continuation of application Ser. No. 12/258,647, filed Oct. 27, 2008, now U.S. Pat. No. 8,064,848, the entirety of which is incorporated by reference herein.
1. Field of the Invention
The invention relates to a transmitter and a control method, and more particularly to a transmitter and a control method for transmitting and calibrating a phase signal and an amplitude signal.
2. Description of the Related Art
Transmitters are provided. An exemplary embodiment of a transmitter, which transmits and calibrates a phase signal and an amplitude signal, comprises a phase modulation path, an amplitude modulation path, a control unit, a calibration unit and a digital modulator. The phase modulation path transmits the phase signal. The amplitude modulation path transmits the amplitude signal. The control unit delays the signal on at least one of the phase modulation path and the amplitude modulation path. When the transmitter is in a calibration mode, the calibration unit is arranged to provide a calibration signal to the amplitude modulation path to serve as the amplitude signal. When the transmitter is in a normal mode, the digital modulator is arranged to provide the phase signal and the amplitude signal to the phase modulation path and the amplitude modulation path, respectively.
Another exemplary embodiment of a transmitter comprises a first filter, a second filter, and a control unit. The first filter generates a phase signal according to a first signal. The second filter generates an amplitude signal according to a second signal. The control unit delays at least one of the first and the second signals.
A control method for a transmitter is provided. An exemplary embodiment of a control method for transmitting and calibrating a phase signal and an amplitude signal is described in the following. A phase modulation path is provided for transmitting the phase signal. An amplitude modulation path is provided for transmitting the amplitude signal. The signal on at least one of the phase modulation path and the amplitude modulation path is delayed. In a calibration mode, a first calibration signal serves as the amplitude signal. In a normal mode, the phase signal and the amplitude signal are provided by a digital modulator to the phase modulation path and the amplitude modulation path.
A detailed description is given in the following embodiments with reference to the accompanying drawings.
The invention can be more fully understood by referring to the following detailed description and examples with references made to the accompanying drawings, wherein:
The following description is of the best-contemplated mode of carrying out the invention. This description is made for the purpose of illustrating the general principles of the invention and should not be taken in a limiting sense. The scope of the invention is best determined by reference to the appended claims.
The transmitter 200 further comprises a calibration unit 240 and a digital modulator 250. In a calibration mode, the calibration unit 240 provides a calibration signal SD1 to the phase modulation path 210 and provides a calibration signal SD2 to the amplitude modulation path 220. In this embodiment, the calibration signal SD1 is the same as the calibration signal SD2.
Different delays may be introduced on the phase modulation path 210 and the amplitude modulation path 220, resulting in delay mismatch between the output signals. In the calibration mode, the control unit 230 is utilized to detect the difference of delay between the calibration signals SD1 and SD2 that have passed through the two paths 210 and 220. In one embodiment, the control unit 230 adjusts a delay factor according to the difference between the calibration signals SD1 and SD2 such that the signal on at least one of the phase modulation path 210 and the amplitude modulation path 220 is delayed. Since delay on at least one of the phase modulation path 210 and the amplitude modulation path 220 is compensated, the signals on the phase modulation path 210 and the amplitude modulation path 220 are synchronous. When the calibration signals SD1 and SD2 are synchronous, the control unit 230 stops detecting the difference between the calibration signals SD1 and SD2 and maintains the delay factor.
In a normal mode, the digital modulator 250 converts I digital baseband data 251 and Q digital baseband data 252 into the phase signal Φ(t) and the amplitude signal A(t). The phase modulation path 210 transmits the phase signal Φ(t). The amplitude modulation path 220 transmits the amplitude signal A(t). Since the delay factor of the control unit 230 is adjusted, the phase signal Φ(t) and the amplitude signal A(t) can simultaneously arrive to a combiner 260 in the normal mode. The combiner 260 combines the phase signal Φ(t) and the amplitude signal A(t) to generate a radio frequency (RF) signal SRF.
The control unit 230 comprises a delay module 231 and a detection module 232. In the calibration mode, the detection module 232 detects the difference of delays between the signals on the phase modulation path 210 and the amplitude modulation path 220 and generates an adjustment signal SADJ according to the detection result. When the signals on the phase modulation path 210 and the amplitude modulation path 220 are synchronous, the detection module 232 stops detecting the difference and maintains the adjustment signal SADJ. The delay module 231 delays the signal on at least one of the phase modulation path 210 and the amplitude modulation path 220 according to the adjustment signal SADJ. In this embodiment, the delay module 231 delays the signal on the amplitude modulation path 220 according to the adjustment signal SADJ.
Generally, delay is easily introduced by a filter. In this embodiment, the detection module 232 detects the output signal Vt of a filter (not shown) disposed on the phase modulation path 210 and the output signal VL of a filter (such as 222) disposed on the amplitude modulation path 220.
In this embodiment, the flip-flop 331 is a D-type flip-flop. The output signal of the comparator 321 is transmitted to the input terminal D of flip-flop 331. The output signal of the comparator 322 is transmitted to the clock terminal CLK of flip-flop 331. When the output signal of the comparator 322 is changed from a low level to a high level, the adjustment signal SADJ follows the output signal of the comparator 321.
The comparator 321′ compares the output signal Vt and a divided signal
The divided signal
is served as a threshold voltage such that comparator 321′ converts the output signal Vt from a sine wave to a rectangular wave. The voltage generator 314 receives the output signal VL and generates the divided signal
The comparator 322′ compares the output signal VL and the divided signal
The divided signal
is served as a threshold voltage such that comparator 322′ converts the output signal VL from a sine wave to a rectangular wave. The flip-flop 331 generates the adjustment signal SADJ according to the compared results of the comparators 321′ and 322′.
In this embodiment, the voltage generator 313 comprises a switch SW6, a capacitor C1, and resistors R1 and R2, but is not limited. The switch SW6 is controlled by a control signal SC1 such that the capacitor C1 receives the output signal Vt or the capacitor C1 is connected to the resistors R1 and R2 in parallel. First, the output signal Vt is transmitted to the capacitor C1. Then, the capacitor C1 is connected to the resistors R1 and R2. Since the resistors R1 and R2 are connected to act as a voltage divider, the divided signal
is generated.
Similarly, the voltage generator 314 comprises a switch SW7, a capacitor C2, and resistors R3 and R4, but is not limited. The switch SW7 is controlled by a control signal SC2 such that the capacitor C2 receives the output signal VL or the capacitor C2 is connected to the resistors R3 and R4 in parallel. First, the output signal VL is transmitted to the capacitor C2. Then, the capacitor C2 is connected to the resistors R3 and R4. Since the resistors R3 and R4 are connected to act as a voltage divider, the divided signal
is generated.
Referring to
In this embodiment, the fractional-N PLL 212 comprises a sigma-delta modulator (SDM) 2121 and a phase-locked loop (PLL) 2122. The SDM 2121 modulates the output signal of the process unit 211 to generate a modulated signal SMOD. The PLL 2122 operates according to the modulated signal SMOD.
Referring to
Referring to
In the normal mode, the switches SW1 and SW2 switch to the digital modulator 250 such that the phase modulation path 210 and the amplitude modulation path 220 respectively receive the phase signal Φ(t) and the amplitude signal A(t). At this time, the switch SW3 switches to the combiner 260. The SW4 is turned on and the SW5 is turned off. Thus, the combiner 260 receives and combines the signals on the phase modulation path 210 and the amplitude modulation path 220 to generate the RF signal SRF.
The signal on at least one of the phase modulation path and the amplitude modulation path is delayed (step S830). The signals on the phase modulation path and the amplitude modulation path may be delayed by the elements of the phase modulation path and the amplitude modulation path. When the phase modulation path and the amplitude modulation path respectively receive a first calibration signal and a second calibration signal, the first calibration signal maybe slower or faster than the second calibration signal. For example, if the second calibration signal is faster than the first calibration signal, the second calibration signal is delayed. Thus, the first and the second calibration signals are synchronous.
Since the signal on the amplitude modulation path is delayed, if a phase signal is provided to the phase modulation path and an amplitude signal is provided to the amplitude modulation path, the phase signal and the amplitude signal are synchronous. In one embodiment, I/Q data is modulated by a phase-amplitude modulator to separate out the phase and the amplitude signals.
Referring to
When the first and the second calibration signals are synchronous, the detection module 232 stops detecting the difference and maintains the adjustment signal SADJ. Since the delay level of the detection module 232 is maintained, the signals on the phase modulation path 210 and the amplitude modulation path 220 are synchronous.
Generally, when the phase modulation path or the amplitude modulation path comprises a filter. Delay is easily introduced into the filter. Thus, in the calibration mode, the detection module 232 detects the filtered signals. In one embodiment, the detection module 232 transforms the filtered signals into differential pairs and then generates an adjustment signal SADJ according to the differential pairs.
Since the signals on the phase modulation path and the amplitude modulation path may be delayed by the elements of the phase modulation path and the amplitude modulation path, calibration signals are first provided to the phase modulation path and the amplitude modulation path. Then, the signals on the phase modulation path and the amplitude modulation path are detected to determine which calibration signal is faster. Then, the faster calibration signal is delayed by a delay module such that the calibration signals on the phase modulation path and the amplitude modulation path are synchronous.
While the invention has been described by way of example and in terms of the preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
Chen, Hsin-Hung, Chang, Hsiang-Hui, Wu, Chun-Pang
Patent | Priority | Assignee | Title |
9172570, | Jun 13 2014 | Intel Corporation | Compensation of oscillator frequency pulling |
Patent | Priority | Assignee | Title |
5767750, | Mar 30 1992 | Kabushiki Kaisha Toshiba | Modulator |
7346122, | Aug 21 2002 | Direct modulation of a power amplifier with adaptive digital predistortion | |
20060067427, | |||
20060246856, | |||
20070183532, | |||
20090291648, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 07 2008 | CHEN, HSIN-HUNG | MEDIATEK INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027073 | /0174 | |
Oct 07 2008 | CHANG, HSIANG-HUI | MEDIATEK INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027073 | /0174 | |
Oct 07 2008 | WU, CHUN-PANG | MEDIATEK INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027073 | /0174 | |
Oct 17 2011 | MEDIATEK INC. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
May 20 2016 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 20 2020 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
May 20 2024 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Nov 20 2015 | 4 years fee payment window open |
May 20 2016 | 6 months grace period start (w surcharge) |
Nov 20 2016 | patent expiry (for year 4) |
Nov 20 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 20 2019 | 8 years fee payment window open |
May 20 2020 | 6 months grace period start (w surcharge) |
Nov 20 2020 | patent expiry (for year 8) |
Nov 20 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 20 2023 | 12 years fee payment window open |
May 20 2024 | 6 months grace period start (w surcharge) |
Nov 20 2024 | patent expiry (for year 12) |
Nov 20 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |