An adaptor is shaped for allowing use of a micro sim card in a mini sim card implemented device. An adaptor body is shaped like a micro sim card and may include a cutout region for receiving a micro sim card therein.
|
1. An adaptor for allowing use of a micro sim card in a device using mini sim cards, comprising:
an adaptor body having a cutout region defined by walls in the adaptor, said cutout region shaped to receive a micro sim card therein;
a floor on said cutout region for supporting the micro sim card therein; and
said adaptor body made of plastic and/or nylon, carbon fiber, aluminum, or similar material capable of withstanding heat levels up to at least about 250° Fahrenheit without degradation.
2. The adaptor of
3. The adaptor of
6. The adaptor of
8. The adaptor of
|
This application is related to and claims priority to Provisional Application Ser. No. 61/369,223, filed Jul. 30, 2010, the disclosure of which is incorporated herein in its entirety.
The present invention relates to an apparatus and system for use, for example, with a cellular telephone, for allowing use of micro SIM cards with telephones constructed for use with currently employed mini SIM cards. More specifically, the invention relates to such a device which is hardened and heat resistant to allow repeated use with different telephones not capable of receiving a micro SIM card.
With the recent evolution of the micro SIM card, and in particular, as a result of its adoption by a number of cellular phone manufacturers, it has become apparent that an adaptor device is required to allow use of such micro SIM cards with phones capable of receiving only regular or mini SIM cards.
More specifically, it is pretty easy to trim a mini SIM card down to fit into a current technology iPad or iPhone 4 by just simply trimming away excess plastic from around the chip until it fits inside the iPad or iPhone SIM tray. However, what happens if one wishes to go the other way? There may be circumstances where one wishes to use an iPhone 4's micro SIM in a different mobile device. If one was to need to have an iPhone 4 serviced for any reason, they may wish to retain their micro SIM during time of servicing. Although unknown at this time, such use of the micro SIM could occur if a company (for example, any U.S. or International GSM based wireless carrier or provider) allows a paying customer to use the micro SIM card from the iPad, iPhone 4 or alternate micro SIM GSM enabled device, with full functionability into any device utilizing a mini SIM card.
One solution has been provided by a micro SIM card adaptor such as that described in an article available at http://www.wired.com/gadgetlab/2010/05/fingers-on-with-the-microsim-card-adaptor/. Such a device is a piece of plastic cut to hold the micro SIM card and allow loading it back into a regular mini SIM slot. However, such a device still suffers from a number of disadvantages.
More specifically, many cellular phones generate a lot of internal heat particularly adjacent to their SIM card tray as a result of operation with the battery. More particularly, such mini SIM cards or micro SIM cards are located adjacent or below the battery resulting in very high levels of heat generation. As is well known to those of ordinary skill in the art such levels of heat are damaging to circuits, and often cause the circuits to malfunction, such as may occur with an adaptor such as previously described for a micro SIM card, in which it is left open and exposed to high heat levels.
In accordance with the invention, the problems of the prior art with an adaptor enabling use of a micro SIM card with a phone capable of receiving a mini SIM card are avoided as is discussed further hereafter.
The invention relates to an adaptor for allowing use of a micro SIM card in a conventional mini SIM implemented cellular phone. An adaptor card is shaped to be the size of a conventional mini SIM card and includes a cutout shaped like a micro SIM card to hold a micro SIM card therein. Within the cutout walls electrical contacts are provided to coincide with the contacts of the micro SIM card to ensure continuity of contacts through contact points on the adaptor from the micro SIM card to the cellular phone to allow operation thereof. In one embodiment, at least one cover door, or two cover doors, are provided on the surface above the cutout, which are movable between a closed and open position to allow the micro SIM card to be retained within the cutout in the adaptor.
In an alternative embodiment, the adaptor is configured as a “snap in” adaptor, allowing the micro SIM card to be retained within the cutout in the adaptor, for example, through “ridges” provided in the walls in the adaptor defining the cutout.
The adaptor is made of heat resistant material of sufficient heat resistance to withstand high temperatures within cellular phones generated by, for example, the battery thereof. Examples of such materials, described in a non-limiting manner, include mid-grade plastic and/or nylon, aluminum, carbon fiber, or other like materials.
These and other advantages and features that characterize the invention are set forth in the claims annexed hereto and forming a further part hereof. However, for a better understanding of the invention, and of the advantages and objectives attained through its use, reference should be made to the Drawings, and to the accompanying descriptive matter, in which there are described exemplary embodiments of the invention.
Having briefly described the invention the same will become better understood from the following detailed description made with reference to the appended drawings as follows.
One embodiment shown in
As further illustrated in
In a further aspect in constructing the adaptor, preferably plastic or aluminum or carbon fiber or other materials as described herein may be used. In the embodiment of
As already noted in the alternative embodiment of
With respect to
In more specific aspects in selecting the materials, it is important to appreciate that heat ranges to which cellular devices are subjected are directly related to batteries in use of which in the great majority of today's cellular phones are lithium ion batteries. Typically, when the battery is fully charged, the inside temperature of a cellular phone rises to about 45 degrees Centigrade (113 degrees Fahrenheit). If such batteries and devices are left in a hot black car, temperatures can rise up to about 130 degrees Fahrenheit. Thus, based on this understanding, it is important that the plastic or materials used withstand temperatures of up to about 150 degrees Fahrenheit and certainly no less than about 130 degrees Fahrenheit.
Having generally described the invention, details and advantages thereof will become better understood from the following examples.
The adaptors as described herein were made of a plastic/fiber material, more specifically, a plastic blend such as is commercially available from various plastic manufacturing companies. Such a plastic material is a blend of about 80% to about 90% by weight nylon, with the remainder constituting a mid-grade plastic using standard manufacturing techniques. The adaptors were placed on a pan in an oven which had been pre-heated to 170° F. The pan was an ungreased and dry pan, and the adaptors were held in the oven for five (5) minutes and then removed. When removed, the adaptors were cold to the touch, i.e., about room temperature. No signs of wear, melting, peeling, etc., were observed on the adaptors.
The adaptors of Example I were retained on the pan and the oven pre-heated to 200 degrees Fahrenheit. When 200° F. was reached, the pan and adaptors were placed in the oven for five (5) minutes. The adaptors were then removed. The adaptors showed no signs to wear.
The adaptors from Example II were retained in the oven at 250° F. for an additional thirty (30) minutes. When removed, no melting, smoldering or other damage was observed.
The same adaptors as before were tested at 300° F. for sixty-five (65) minutes. When removed, no damage was observed.
Finally, the same adaptors were tested at 400° F. in the oven. After about 15 minutes, the adaptors were observed and discoloration to a light yellow/brown color was observed. The adaptors were removed and no smoldering or melting observed. The test at 400° F. was at more than triple the ideal heat for the material from which the adaptors were made.
While the present invention has been illustrated by a description of various embodiments and while these embodiments have been described in considerable detail, it is not the intention of the Applicant to restrict, or any way limit the scope of the appended claims to such detail. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus and method, and illustrative example shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of Applicant's general inventive concept.
Patent | Priority | Assignee | Title |
8573986, | Jul 30 2010 | SHARPE INNOVATIONS, INC | SIM card adaptor |
8608511, | May 16 2012 | Hon Hai Precision Industry Co., Ltd. | Card connector alternatively receiving two cards |
8654535, | Mar 08 2012 | PROCONN TECHNOLOGY CO., LTD. | Card holder |
8734165, | May 04 2011 | Schneider Toshiba Inverter Europe SAS | Quick connection device for electrical appliance |
9691015, | Aug 20 2015 | Samsung Electronics Co., Ltd. | Memory card adapter and memory apparatus |
Patent | Priority | Assignee | Title |
5933328, | Jul 28 1998 | SanDisk Technologies LLC | Compact mechanism for removable insertion of multiple integrated circuit cards into portable and other electronic devices |
6068186, | Aug 19 1997 | U S PHILIPS CORPORATION | Chip card reader with adapter for reading cards of different formats, telephone comprising such a reader |
7183636, | May 27 1999 | GEMALTO SA | Adapter for a chip card having a reduced format in comparison with the standard SIM mini-card format |
7347736, | Oct 24 2005 | Super Talent Electronics, Inc. | Reduced-length, low-profile USB device and card-like carrier |
7866996, | Oct 19 2006 | Western Digital Israel Ltd | Internal UFD |
20020076954, | |||
CN200959459, | |||
DE4407173, | |||
DE4419073, | |||
EP556970, | |||
EP1909219, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 01 2010 | SHARPE, WILLIAM ANDREW | SHARPE INNOVATIONS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025470 | /0227 | |
Dec 02 2010 | HOLMES, CAMERON ALAN | SHARPE INNOVATIONS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025470 | /0227 | |
Dec 03 2010 | HOLMES, ODETTE KIM | SHARPE INNOVATIONS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025470 | /0227 | |
Dec 09 2010 | Sharpe Innovations, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 09 2016 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Nov 03 2016 | STOM: Pat Hldr Claims Micro Ent Stat. |
Jun 11 2020 | M3552: Payment of Maintenance Fee, 8th Year, Micro Entity. |
Aug 12 2024 | REM: Maintenance Fee Reminder Mailed. |
Date | Maintenance Schedule |
Dec 25 2015 | 4 years fee payment window open |
Jun 25 2016 | 6 months grace period start (w surcharge) |
Dec 25 2016 | patent expiry (for year 4) |
Dec 25 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 25 2019 | 8 years fee payment window open |
Jun 25 2020 | 6 months grace period start (w surcharge) |
Dec 25 2020 | patent expiry (for year 8) |
Dec 25 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 25 2023 | 12 years fee payment window open |
Jun 25 2024 | 6 months grace period start (w surcharge) |
Dec 25 2024 | patent expiry (for year 12) |
Dec 25 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |