A method for processing a control channel at a user agent (UA) to identify at least one of an uplink and a downlink resource allocated by a resource grant within a multi-carrier communication system wherein resource grants are specified by control channel element (CCE) subset candidates, the method comprising the steps of identifying the number of carriers used to communicate with the access device, based on the number of carriers used to communicate with the access device, identifying a number of CCE subset candidates to decode and decoding up to the identified number of CCE subset candidates in an attempt to identify the resource grant.
|
8. An apparatus for processing a control channel at a user agent (UA) to identify at least one of an uplink and a downlink resource allocated by a resource grant within a multi-carrier communication system wherein resource grants are specified by control channel element (CCE) subset candidates, the apparatus comprising:
a processor programmed to perform the steps of:
identifying, by the UA, a number of carriers used to communicate with an access device; and
based on the number of carriers used to communicate with the access device, identifying, by the UA, a number of control channel candidates to decode, wherein the UA is configured to use different control channel candidates for different numbers of carriers;
wherein there are first, second, third and fourth aggregation levels of control channel candidates, when only one carrier is used to communicate with the UA, the numbers of control channel candidates for the first, second, third and fourth aggregation levels are A1, A2, A3 and A4, respectively, and wherein, A1, A2, A3 and A4 are integers greater than or equal to zero, and when two or more carriers are used to communicate with the UA, the numbers of control channel candidates for the first, second, third and fourth aggregation levels are a function of the number of carriers used to communicate with the UA; and
wherein, when two or more carriers are used to communicate with the UA, the numbers C1, C2, C3 and C4 of control channel candidates for the first, second, third and fourth aggregation levels, respectively, are determined by solving the following equations:
C1=A1+B1×(N−1) C2=A2+B2×(N−1) C3=A3+B3×(N−1) C4=A4+B4×(N−1) where B1, B2, B3 and B4 are scaling parameters and N is the number of carriers.
1. A method for processing a control channel at a user agent (UA) to identify at least one of an uplink and a downlink resource allocated by a resource grant within a multi-carrier communication system wherein resource grants are specified by control channel element (CCE) subsets, wherein each CCE subset is a control channel candidate, the method comprising the steps of:
identifying, by the UA, a number of carriers used to communicate with an access device; and
based on the number of carriers used to communicate with the access device, identifying, by the UA, a number of control channel candidates to decode, wherein the UA is configured to use different control channel candidates for different numbers of carriers;
wherein there are first, second, third and fourth aggregation levels of control channel candidates, when only one carrier is used to communicate with the UA, the numbers of control channel candidates for the first, second, third and fourth aggregation levels are A1, A2, A3 and A4, respectively, and wherein, A1, A2, A3 and A4 are integers greater than or equal to zero, and when two or more carriers are used to communicate with the UA, the numbers of control channel candidates for the first, second, third and fourth aggregation levels are a function of the number of carriers used to communicate with the UA; and
wherein, when two or more carriers are used to communicate with the UA, the numbers C1, C2, C3 and C4 of control channel candidates for the first, second, third and fourth aggregation levels, respectively, are determined by solving the following equations:
C1=A1+B1×(N−1) C2=A2+B2×(N−1) C3=A3+B3×(N−1) C4=A4+B4×(N−1) where B1, B2, B3 and B4 are scaling parameters and N is the number of carriers.
2. The method of
3. The method of
4. The method of
5. The method of
6. The method of
7. The method of
9. The apparatus of
10. The apparatus of
11. The apparatus of
12. The apparatus of
13. The apparatus of
14. The apparatus of
|
This application claims priority to U.S. provisional patent application Nos. 61/187,070 which is titled “System and Method for Sharing a Control Channel for Carrier Aggregation” which was filed on Jun. 15, 2009, 61/258,525 which is “System and Method for Sharing a Control Channel for Carrier Aggregation” which was filed on Nov. 5, 2009 and 61/330,157 which is titled “System and Method for Sharing a Control Channel for Carrier Aggregation” and which was filed on Apr. 30, 2010.
The present invention relates generally to data transmission in mobile communication systems and more specifically to methods for sharing a control channel for carrier aggregation.
As used herein, the terms “user agent” and “UA” can refer to wireless devices such as mobile telephones, personal digital assistants, handheld or laptop computers, and similar devices or other User Equipment (“UE”) that have telecommunications capabilities. In some embodiments, a UA may refer to a mobile, wireless device. The term “UA” may also refer to devices that have similar capabilities but that are not generally transportable, such as desktop computers, set-top boxes, or network nodes.
In traditional wireless telecommunications systems, transmission equipment in a base station transmits signals throughout a geographical region known as a cell. As technology has evolved, more advanced equipment has been introduced that can provide services that were not possible previously. This advanced equipment might include, for example, an evolved universal terrestrial radio access network (E-UTRAN) node B (eNB) rather than a base station or other systems and devices that are more highly evolved than the equivalent equipment in a traditional wireless telecommunications system. Such advanced or next generation equipment may be referred to herein as long-term evolution (LTE) equipment, and a packet-based network that uses such equipment can be referred to as an evolved packet system (EPS). Additional improvements to LTE systems/equipment will eventually result in an LTE advanced (LTE-A) system. As used herein, the term “access device” will refer to any component, such as a traditional base station or an LTE or LTE-A access device (including eNBs), that can provide a UA with access to other components in a telecommunications system.
In mobile communication systems such as E-UTRAN, an access device provides radio access to one or more UAs. The access device comprises a packet scheduler for dynamically scheduling downlink traffic data packet transmissions and allocating uplink traffic data packet transmission resources among all the UAs communicating with the access device. The functions of the scheduler include, among others, dividing the available air interface capacity between UAs, deciding the transport channel to be used for each UA's packet data transmissions, and monitoring packet allocation and system load. The scheduler dynamically allocates resources for Physical Downlink Shared CHannel (PDSCH) and Physical Uplink Shared CHannel (PUSCH) data transmissions, and sends scheduling information to the UAs through a scheduling channel.
Several different data control information (DCI) message formats are used to communicate resource assignments to UAs including, among others, a DCI format 0 for specifying uplink resources, DCI formats 1, 1A, 1B, 1C, 1D, 2 and 2A for specifying downlink resources, and DCI formats 3 and 3A for specifying power control information. Uplink specifying DCI format 0 includes several DCI fields, each of which includes information for specifying a different aspect of allocated uplink resources. Exemplary DCI format 0 DCI fields include a transmit power control (TPC) field, a cyclic shift for demodulation reference signal (DM-RS) field, a modulation and coding scheme (MCS) and redundancy version field, a New Data Indicator (NDI) field, a resource block assignment field and a hopping flag field. The downlink specifying DCI formats 1, 1A, 2 and 2A each include several DCI fields that include information for specifying different aspects of allocated downlink resources. Exemplary DCI format 1, 1A, 2 and 2A DCI fields include a HARQ process number field, an MCS field, a New Data Indicator (NDI) field, a resource block assignment field and a redundancy version field. Each of the DCI formats 0, 1, 2, 1A and 2A includes additional fields for specifying allocated resources. Other downlink formats 1B, 1C and 1D include similar information. The access device selects one of the downlink DCI formats for allocating resources to a UA as a function of several factors including UA and access device capabilities, the amount of data a UA has to transmit, the communication (channel) condition, the transmission mode to be used, the amount of communication traffic within a cell, etc.
DCI messages are synchronized with sub-frames so that they can be associated therewith implicitly as opposed to explicitly, which reduces control overhead requirements. For example, in LTE frequency division duplex (FDD) systems, a DCI message for uplink resource is associated with an uplink sub-frame four milliseconds later so that, for example, when a DCI message is received at a first time, the UA is programmed to use the resource grant indicated therein to transmit a data packet in the sub-frame four milliseconds after the first time. Similarly, a DCI message for downlink resource is associated with a simultaneously transmitted downlink sub-frame. For example, when a DCI message is received at a first time, the UA is programmed to use the resource grant indicated therein to decode a data packet in a simultaneously received traffic data sub-frame.
During operation, LTE networks use a shared Physical Downlink Control CHannel (PDCCH) to distribute DCI messages amongst UAs. The DCI messages for each UA as well as other shared control information are separately encoded. In LTE, PDCCHs are transmitted in the first few OFDM symbols over the whole system bandwidth, which can be called a PDCCH region. The PDCCH region includes a plurality of control channel elements (CCEs) that are used to transmit DCI messages from an access device to UAs. An access device selects one or an aggregation of CCEs to be used to transmit a DCI message to a UA, the CCE subset selected to transmit a message depends at least in part on perceived communication conditions between the access device and the UA. For example, where a high quality communication link is known to exist between an access device and a UA, the access device may transmit data to the UA via a single one of the CCEs and, where the link is low quality, the access device may transmit data to the UA via a subset of two, four or even eight CCEs, where the additional CCEs facilitate a more robust transmission of an associated DCI message. The access device may select CCE subsets for DCI message transmission based on many other criteria.
Because a UA does not know exactly which CCE subset or subsets are used by an access device to transmit DCI messages to the UA, in existing LTE networks, the UA is programmed to attempt to decode many different CCE subset candidates when searching for a DCI message. For instance, a UA may be programmed to search a plurality of single CCEs for DCI messages and a plurality of two CCE subsets, four CCE subsets and eight CCE subsets to locate a DCI message. To reduce the possible CCE subsets that need to be searched, access devices and UAs have been programmed so that each access device only uses specific CCE subsets to transmit DCI messages to a specific UA corresponding to a specific data traffic sub-frame and so that the UA knows which CCE subsets to search. For instance, in current LTE networks, for each data traffic sub-frame, a UA searches six single CCEs, six 2-CCE subsets, two 4-CCE subsets and two 8-CCE subsets for DCI messages for a total of sixteen CCE subsets. The sixteen CCE subsets are a function of a specific Radio Network Temporary Identifier (RNTI) assigned to a UA 10 and vary from one sub-frame to the next. This search space that is specific to a given UA is referred to hereinafter as “UA specific search space”.
In many cases it is desirable for an access device to transmit a large amount of data to a UA or for a UA to transmit large amounts of data to an access device in a short amount of time. For instance, a series of pictures may have to be transmitted to an access device over a short amount of time. As another instance, a UA may run several applications that all have to receive data packets from an access device essentially simultaneously so that the combined data transfer is extremely large. One way to increase the rate of data transmission is to use multiple carriers (i.e., multiple frequencies) to communicate between an access device and UAs, as is the case for LTE-A. For example, a system may support five different carriers (i.e. frequencies) and eight HARQ processes so that five separate eight uplink HARQ and five separate eight downlink HARQ transmission streams can be generated in parallel. Communication via multiple carriers is referred to as carrier aggregation.
In the case of carrier aggregation, a control-channel structure is allocated to each carrier for distributing DCI control messages. As a simple way, each carrier can include a separate PDCCH region allowing control channel information to be communicated between the access device and UAs for each carrier independently. This approach, while allowing for control channel information to be distributed for each carrier, requires the allocation of a substantial amount of resources on each carrier. Furthermore, because the level of interference varies amongst carriers, it may be difficult to implement PDCCH regions on all carriers equally. In some cases, for example, the interference levels on a particular carrier may be so substantial as to make it difficult or impossible to implement a PDCCH region on that carrier. Alternatively, the DCI message format for control messages on a first carrier may be modified to provide an additional field for indicating a specific carrier associated with each DCI message. This solution, however, is undesirable as it is currently undesirable to modify DCI formats.
For a more complete understanding of this disclosure, reference is now made to the following brief description, taken in connection with the accompanying drawings and detailed description, wherein like reference numerals represent like parts.
It has been recognized that a control channel may be shared amongst two or more carriers in multi-carrier communication network systems.
At least some embodiments include a method for processing a control channel at a user agent (UA) to identify at least one of an uplink and a downlink resource allocated by a resource grant within a multi-carrier communication system wherein resource grants are specified by control channel element (CCE) subsets, wherein each CCE subset is a control channel candidate, the method comprising the steps of identifying a number of carriers used to communicate with the access device and based on the number of carriers used to communicate with the access device, identifying a number of control channel candidates to decode.
In some cases the method further includes the step of decoding up to the identified number of control channel candidates in an attempt to identify the resource grant. In some cases there are at least first and second aggregation levels of control channel candidates where the candidates include first and second different numbers of CCEs, respectively, and, wherein, the numbers of control channel candidates are different for the first and second aggregation levels. In some cases, when only one carrier is used to communicate with the UA, a first number of control channel candidates are identified and, when two or more carriers are used to communicate with the UA, at least a second number of control channel candidates are identified where the second number is greater than the first number.
In some cases the identified number of control channel candidates for multi-carrier operation is at least equal to the number of candidates for single carrier operation. In some cases there are several aggregation levels of control channel candidates and the identified number of control channel candidates for multi-carrier operation is the greater of the number of carriers times the number of aggregation levels and the number of control channel candidates for single carrier operation.
In some cases there are first, second, third and fourth aggregation levels of control channel candidates, when only one carrier is used to communicate with the UA, the numbers of control channel candidates for the first, second, third and fourth aggregation levels are A1, A2, A3 and A4, respectively, and wherein, when two or more carriers are used to communicate with the UA, the numbers of control channel candidates for the first, second, third and fourth aggregation levels are a function of the number of carriers used to communicate with the UA. In some cases, when two or more carriers are used to communicate with the UA, the numbers C1, C2, C3 and C4 of control channel candidates for the first, second, third and fourth aggregation levels, respectively, are determined by solving the following equations C1=A1+B1×(N−1), C2=A2+B2×(N−1), C3=A3+B3×(N−1), C4=A4+B4×(N−1), where B1, B2, B3 and B4 are scaling parameters.
In some cases A1, A2, A3 and A4 are 6, 6, 2 and 2, respectively.
Some embodiments include an apparatus for processing a control channel at a user agent (UA) to identify at least one of an uplink and a downlink resource allocated by a resource grant within a multi-carrier communication system wherein resource grants are specified by control channel element (CCE) subset candidates, the apparatus comprising a processor programmed to perform the steps of identifying the number of carriers used to communicate with the access device, and based on the number of carriers used to communicate with the access device, identifying a number of control channel candidates to decode.
In some cases the processor is further programmed to perform the step of decoding up to the identified number of control channel candidates in an attempt to identify the resource grant. In some cases there are at least first and second aggregation levels of control channel candidates where the candidates include first and second different numbers of CCEs, respectively, and, wherein, the numbers of control channel candidates are different for the first and second aggregation levels. In some cases, when only one carrier is used to communicate with the UA, a first number of control channel candidates are identified and, when two or more carriers are used to communicate with the UA, at least a second number of control channel candidates are identified where the second number is greater than the first number.
In some cases the identified number of control channel candidates for multi-carrier operation is at least equal to the number of candidates for single carrier operation. In some cases there are several aggregation levels of control channel candidates and the identified number of control channel candidates for multi-carrier operation is the greater of the number of carriers times the number of aggregation levels and the number of control channel candidates for single carrier operation.
In some cases there are first, second, third and fourth aggregation levels of control channel candidates, when only one carrier is used to communicate with the UA, the numbers of control channel candidates for the first, second, third and fourth aggregation levels are A1, A2, A3 and A4, respectively, and wherein, when two or more carriers are used to communicate with the UA, the numbers of control channel candidates for the first, second, third and fourth aggregation levels are a function of the number of carriers used to communicate with the UA. In some cases, when two or more carriers are used to communicate with the UA, the numbers C1, C2, C3 and C4 of control channel candidates for the first, second, third and fourth aggregation levels, respectively, are determined by solving the following equations C1=A1+B1×(N−1), C2=A2+B2×(N−1), C3=A3+B3×(N−1), C4=A4+B4×(N−1), where B1, B2, B3 and B4 are scaling parameters. In some cases A1, A2, A3 and A4 are 6, 6, 2 and 2, respectively.
To the accomplishment of the foregoing and related ends, the invention, then, comprises the features hereinafter fully described. The following description and the annexed drawings set forth in detail certain illustrative aspects of the invention. However, these aspects are indicative of but a few of the various ways in which the principles of the invention can be employed. Other aspects, advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the drawings.
The various aspects of the subject invention are now described with reference to the annexed drawings, wherein like numerals refer to like or corresponding elements throughout. It should be understood, however, that the drawings and detailed description relating thereto are not intended to limit the claimed subject matter to the particular form disclosed. Rather, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the claimed subject matter.
As used herein, the terms “component,” “system” and the like are intended to refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution. For example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a computer and the computer can be a component. One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers.
The word “exemplary” is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs.
Furthermore, the disclosed subject matter may be implemented as a system, method, apparatus, or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof to control a computer or processor based device to implement aspects detailed herein. The term “article of manufacture” (or alternatively, “computer program product”) as used herein is intended to encompass a computer program accessible from any computer-readable device, carrier, or media. For example, computer readable media can include but are not limited to magnetic storage devices (e.g., hard disk, floppy disk, magnetic strips . . . ), optical disks (e.g., compact disk (CD), digital versatile disk (DVD) . . . ), smart cards, and flash memory devices (e.g., card, stick). Additionally it should be appreciated that a carrier wave can be employed to carry computer-readable electronic data such as those used in transmitting and receiving electronic mail or in accessing a network such as the Internet or a local area network (LAN). Of course, those skilled in the art will recognize many modifications may be made to this configuration without departing from the scope or spirit of the claimed subject matter.
In general, the inventive system and methods have been developed to share a single control channel resource such as a Physical Downlink Control CHannel (PDCCH) region amongst two or more carriers. As such, the system provides a multi-carrier control structure allowing downlink control information (DCI) control messages distributed via one PDCCH region to determine resource allocations on one or more carriers. In general, the present system may be implemented using existing DCI control message formats described above. As such, the lengths of the existing DCI formats, even after implementation of the present system, may remain unchanged.
Referring now to the drawings wherein like reference numerals correspond to similar elements throughout the several views,
To facilitate communications, a plurality of different communication channels are established between access device 12 and UA 10. For the purposes of the present disclosure, referring to
Exemplary DCI formats include DCI format 0 for specifying uplink resources and DCI formats 1, 1A, 1B, 1C, 1D, 2 and 2A for specifying downlink resources. Other DCI formats are contemplated. Exemplary DCI packets are indicated by communication 71 on PDCCH 70 in
Referring still to
Carrier aggregation can be used to support wider transmission bandwidths and increase the potential peak data rate for communications between UA 10, access device 12 and/or other network components. In carrier aggregation, multiple component carriers are aggregated and may be allocated in a sub-frame to a UA 10 as shown in
Referring to
Hereinafter, unless indicated otherwise, CCE subsets that include one CCE will be referred to as “Aggregation level 1” or AL1 subsets. Similarly, subsets that include two CCEs will be referred to as “Aggregation level 2” or AL2 subsets, subsets that include four CCEs will be referred to as “Aggregation level 4” or AL4 subsets, and subsets that include eight CCEs will be referred to as “Aggregation level 8” or AL8 subsets. A higher aggregation level indicates that the number of CCEs used to transmit a particular DCI is larger (e.g., aggregation level 8 is higher than aggregation level 4) and is therefore more robust assuming a given set of channel conditions. Accordingly, UA's 10 with poor channel conditions may be assigned higher aggregation levels to ensure the UAs 10 can successfully decode DCI messages received on PDCCHs.
Referring now to
Generally, by using different ones of the aggregation levels shown in
where Yk (Yk may be calculated as described in Section 9.1.1 of TS 36.213) is the random number to define a UE specific search space, L is the aggregation level, and i=0, . . . , L−1 and m=0, . . . , M(L)−1. M(L) is the number of PDCCH candidates to monitor in a given search space.
In the case of carrier aggregation, a control-channel structure is allocated to each carrier for distributing DCI control messages.
The present system facilitates the sharing of a single control channel such as a Physical Downlink Control CHannel (PDCCH) region amongst two or more carriers that allows DCI control messages distributed via one PDCCH region on a first carrier to determine resource allocations on each of the two or more carriers. Depending upon the network configuration, the present system may be implemented using a conventional DCI control message format. As such, the lengths of the existing DCI formats, even after implementation of the present system, may remain unchanged. While each solution is described separately below, it should be appreciated that various aspects of the different solutions may be combined in at least some embodiments to result in other useful solutions.
Solution 1
In one implementation of the present system, the CCEs on a single carrier PDCCH region are assigned to different groups, wherein each group is pre-assigned to different carriers of a multi-carrier system. For example, with reference to
Referring still to
For example, where a high quality communication link is known to exist between an access device and a UA on carrier f1, the access device may transmit control messages to the UA via a single one of the CCEs (see 146) within the group of CCEs 142 allocated to carrier f1. Where the carrier f1 link is low quality, the access device may transmit data to the UA via a subset of two (see 148), four (see 150) or even eight CCEs (see 152) within the group of CCEs 142 allocated to carrier f1, where the additional CCEs facilitate a more robust transmission of an associated DCI message to the UA.
Similarly, where a high quality communication link is known to exist between an access device and a UA on carrier f1, the access device may transmit data to the UA via a single one of the CCEs (see 154) within the group of CCEs 144 allocated to carrier f2. Since the PDCCH region for carrier f2 is transmitted on carrier f1, the channel quality on carrier f1 should be considered in determining the aggregation level. Where the carrier f1 link is low quality, the access device may transmit data to the UA via a subset of two (see 156), four (see 158) or even eight CCEs (see 160) within the group of CCEs 144 allocated to carrier f2, where the additional CCEs facilitate a more robust transmission of an associated DCI message. The access device may select CCE subsets for DCI message transmission based on many other criteria.
If a UA finds a valid DCI control message format in CCE space 142 designated for carrier f1, the UA may conclude that the corresponding grant is valid for carrier f1. Conversely, if a UE finds a valid DCI format in CCE space 144 designated for carrier f2, the UE may conclude that the corresponding grant is valid for carrier f2.
In many cases, the total number of CCEs made available on PDCCH region 140 may be more or less than 36 depending upon system requirements. For example, a high number of CCEs within the PDCCH region may minimize occurrences of blocking on the PDCCH, where the access device wishes to transmit to a particular UA during a given subframe, but the access device cannot find a suitable subset of CCEs within the PDCCH region in which to place the desired DCI control message. Furthermore, it is not necessary that the CCEs be evenly distributed between carriers. For example, a carrier that is known to have a particular strong or high-quality connection between an access device and scheduled UAs may be allocated less total CCEs within the PDCCH region as it is unlikely that higher levels of aggregation will be necessary for the carrier. Conversely, carriers with very low-quality connections may be allocated a higher total number of CCEs within the PDCCH region as they will more often require high levels of aggregation.
In one implementation, CCE set 142 allocated to carrier f1 is signaled using Rel-8 signaling Physical Control Format Indicator Channel (PCFICH) and CCE set 144 allocated to carrier f2 is signaled using an alternative signaling method. In that case, Rel-8 UAs may not be served by CCE set 144.
In another implementation, the entire CCE space (including CCE sets 142 and 144) is signaled using Rel-8 signaling to Rel-8 UAs using the PCFICH, and CCE sets 142 and 144 are signaled as two entities to Rel-10 UAs using Rel-10 signaling. For example, RRC signaling can be used to indicate CCE sets 142 and 144. In that case, Rel-8 UAs may span the entire PDCCH space for a single grant, while a single grant for Rel-10 UAs is located in either CCE set 142 or CCE set 144. In both cases, the solution may be transparent to Rel-8 UAs, because the UAs use the same PDCCH search procedure as currently defined, and the access device may ensure that a particular grant is located in the proper place for each UA.
In some cases, it may be difficult to define a sufficiently large PDCCH space using Rel-8 techniques to accommodate multiple carrier operation. For example, if more than 3 Orthogonal Frequency Division Multiplex (OFDM) symbols are needed for the PDCCH, it may be difficult to offset the traffic channel (PDSCH) from the control channel (PDCCH). As such, the system or a portion of the system may be implemented in the logical domain, where CCE set 142 is defined as in Rel-8 and CCE set 144 uses a particular set of radio resources, for example a set of physical resource blocks. This, however, may require that the UA buffer the entire subframe and may therefore eliminate the micro-sleep advantage of the existing PDCCH structure.
The first solution described above may not allow trunking between PDCCH region 140 CCE subsets 142 and 144 for carrier f1 and carrier f2, and therefore may result in a higher blocking rate compared to a completely common PDCCH space. Therefore, it may be desirable to use a common set of CCEs to make allocations on both carriers f1 and f2 without changing the Rel-8 DCI formats. In addition, it may be difficult to reserve the search space for each carrier, especially at larger aggregation levels.
Signaling may be implemented to instruct each UA how to map a set of CCEs to a particular carrier. In some cases, broadcast signaling may be used to divide the PDCCH region into CCE groups. For example, referring again to
After the CCE sets are configured, the access device may indicate which carriers correspond to which CCE set. Additionally, the access device may indicate a carrier index within each CCE set. For example, where CCE set 142 is referred to as CCE set “0” and is used for three carriers (not as in
TABLE 1
Carrier
Carrier Index
Index
CCE Set
Within CCE Set
0
0
0
1
0
1
2
0
2
3
1
0
In this case, the DCI messages may be modified to indicate the carrier index within the CCE set, or one of the solutions described below can be used to indicate the carrier.
If there is only one defined CCE set, as in
Solution 2
In other implementations, CCEs can be shared among multiple component carriers provided that a first PDCCH DCI control message candidate for a first carrier at a particular aggregation level does not overlap with a second PDCCH DCI control message candidate for a second carrier at the same aggregation level. Referring to
In
For example, in
Similarly, referring still to
A similar process may be repeated to specify and issue PDCCH candidates allocated amongst the carriers at each aggregation level. The algorithm may also be applied as additional carriers are added to the system. PDCCH candidates for a third carrier, for example, would be shifted to the right by the number of PDCCH candidates allocated to both carriers f1 and f2. Similarly, PDCCH candidates for a fourth carrier would be shifted to the right by the number of PDCCH candidates allocated to carriers f1, f2, and f3.
If UA 10 finds a valid DCI control message format at a particular aggregation level, the UA 10 can determine to which carrier the grant is allocated based upon the CCEs used to transmit the DCI message. If the CCEs used to transmit the DCI message are within those allocated to a first carrier, the grant is for resources on the first carrier. If, however, the CCEs are included within the set allocated to a second carrier, the grant is for resources on the second carrier, and so on.
In
In another implementation, the UA retrieves all DCI control messages distributed at a first aggregation level and determines the carrier associated with each control message based upon the total number of DCI control messages at that aggregation level assuming the control messages are evenly distributed amongst the carriers. For example, if there are 6 total DCI control messages distributed at aggregation level 1, and UA 10 knows there are two carriers being served by the PDCCH, the UA may determine that the first three control messages allocate resources on carrier f1 and the second three control messages allocate resources on carrier f2. In other words, the system may be configured to evenly distribute the PDCCH candidates amongst the carriers and also to issue the candidates in the same ordering as that of the carriers. In the case of three carriers, for example, the first third of the control messages would allocate resources on carrier f1, the second third on carrier f2 and the final third on carrier f3. This process may be repeated at all aggregation levels for any number of carriers.
In some cases, it may be difficult to define a sufficiently large PDCCH space using Rel-8 techniques to accommodate multiple carrier operation. Because a common search space may be shared between Rel-8 and Rel-10 UEs, the search space may be signaled using Rel-8 signaling such as the PCFICH. As a result, the search space may be limited to a total of 3 OFDM symbols (or 4 OFDM symbols for a carrier bandwidth of 1.4 MHz, although such a narrow bandwidth is unlikely to be applied for carrier aggregation).
In
Solution 3
In another implementation, for a particular aggregation level, the starting CCE for PDCCH candidates allocated for each carrier at each aggregation level is shifted based upon the number of CCEs in the next smaller aggregation level.
Referring still to
By shifting PDCCH candidates for different frequencies at any given aggregation level by the number of CCEs in each PDCCH candidate at a lower aggregation level, the PDCCHs at the different frequencies at each aggregation level will not precisely overlap and therefore the CCE subset candidates are unique.
Here it should be appreciated that this third solution may be generalized such that any offset which is less than the number Q of CCEs that make up a PDCCH candidate at the same aggregation level may be used. More broadly, the primary restriction on the offset is that it is not an integer multiple of Q. For instance, at aggregation level AL4 in
More broadly, the primary restriction on the offset shift may be that it is not an integer multiple of the number of CCEs that make up a PDCCH candidate at the same aggregation level in at least some embodiments.
Solution 4
Referring to
Carrier Index=(Icce/L)MOD N+1 Eq (2)
where Icce is the index of the first CCE in a specific PDCCH candidate and L is the currently considered aggregation level. In
To guarantee that a UA achieves an unique carrier index with equation (2), it is necessary to increase the number of PDCCH candidates as a function of the number of configured carriers as shown in
In other embodiments, in the case of carrier aggregation, where an access device communicates with several UAs, blocking may occur where all of the PDCCH candidates associated with one of the UAs (at one or more of the aggregation levels) are currently being used and a delay occurs in transmitting a grant to one or more of the UAs. For this reason, it has been recognized that in the case of carrier aggregation, in at least some cases it will be useful to be able to increase the size of the CCE search space and the number of PDCCH candidates in cases where a UA is capable of blind decoding an increased number of candidates. For instance, in some cases, it may be useful to increase the CCE search space size and number of PDCCH candidates as a function of the number of configured carriers. One exemplary way to increase the search space size and number of PDCCH candidates as a function of the number of configured carriers is illustrated in
In order to receive the downlink DCI and the uplink DCI simultaneously, the number of PDCCH candidates can be increased by two times the number of configured carriers as shown in
In another embodiment, a larger number of PDCCH candidates can be used instead of the number of PDCCH candidates used in the LTE Rel-8 system when carrier aggregation is configured regardless of number of actual configured carriers.
The number of carriers for PDSCH transmission, and the number of carriers for PUSCH transmission can be different depending on the eNB configuration. In this case, N can be the larger number of carriers.
In another embodiment, referring to
This scheme may be further generalized so that a single set of PDCCH candidates may be dedicated to a particular set of carriers in a non-uniform manner. For example, for two carriers, one carrier may be allocated 6 PDCCH candidates and the other carrier may be allocated 3 PDCCH candidates. Alternatively, equations may be employed so that the locations of the PDCCH candidates for a particular aggregation level are random for each carrier. This may be implemented, for example, by adding a carrier index field to the equations found in 3GPP TS 36.213, v8.6.0, March 2009.
In some cases, depending on the size of the PDCCH, it may be possible for PDCCH candidates for more than one carrier to collide. In that case, the PDCCH candidate may be allocated to a particular carrier, for example the carrier with the lowest carrier index (e.g. the anchor carrier).
In some cases, the search space size and number of PDCCH candidates increase with the number of carriers up to a certain number of carriers and then maintain a constant value as more carriers are added. For example, for 1, 2, 3, 4, 5 carriers respectively, considering N=1, the number of PDCCH candidates could be 6, 10, 14, 18, 18. In this case, no additional PDCCH candidates are used in the transition between 4 and 5 carriers.
The above embodiments of the present system may be implemented separately or in combination.
Solution 5
In some implementations of the present system, the anchor carrier's C-RNTI or the RNTI of each UA may be used to determine the allocation of PDCCH candidates amongst carriers in the UE-specific search space. In the following examples, the search space may be the same size or expanded relative to Rel-8.
Multiple RNTIs may be assigned to a UA with one RNTI being assigned for each carrier. For example, for a system using two carriers, a UA may be assigned a first RNTI associated with a first carrier and a second RNTI associated with a second carrier. If the access device wishes to allocate resources on the second carrier to the first UA, the access device uses the second RNTI of the UA when encoding the DCI control message. Similarly, if the access device wishes to allocate resources on the first carrier to the UA, the access device uses the first RNTI of the UA when encoding the DCI control message. As such, the UA can determine which carrier the control message allocates services on by attempting to decode the message using both RNTIs. The number of the RNTI that successfully decodes the control message tells the UA the carrier on which the control message allocates resources.
For example, after receiving a PDCCH candidate, each UA may attempt blind decoding of the candidate. After blind decoding, the CRC scrambling of the PDCCH candidate is compared against all of the UA's assigned RNTI values. If one of the RNTI can be used to successfully descramble the PDCCH candidate, the RNTI used to perform the descrambling identifies the particular carrier associated with the DCI control message of the PDCCH candidate. Alternatively, different CRC masks may be used for each carrier to achieve a similar functionality.
In another implementation, the modulation symbols or Resource Element Groups (REGs) within a PDCCH candidate are rotated (or otherwise have their order varied) as an indication of which carrier the PDCCH candidate allocates resources. For example, after generating the Log Likelihood Ratios (LLRs) for a particular PDCCH candidate, a UA attempts to blind decode the PDCCH candidate using the standard approach (and standard configuration of the REGs).
If the decoding is successful, the PDCCH candidate is allocated to carrier f1. If the decoding fails, the UA is configured to shuffle the LLRs (corresponding to the modulation symbols) of the REGs into an alternate order accordingly to a pre-determined algorithm and attempt blind decoding again. If the blind decoding using the first alternate ordering works, the PDCCH candidate is allocated to carrier f2. The shuffling algorithm may be implemented a second, third or fourth time, for example, to identify third, fourth and fifth carriers. In this example, the standard order and any pre-defined alternate orderings for the LLR correspond to different carriers. In some cases, two or more different ordering configurations may be defined for the REGs, allowing the REG ordering to indicate allocation of a PDCCH candidate to one of two or more carriers.
As an example,
In
Alternatively, for aggregation levels higher than aggregation level 1, the ordering of the CCEs that make up a potential PDCCH candidate could be varied with their ordering indicating the carrier to which the PDCCH candidate is allocated. An example of such an approach is shown in
For each potential PDCCH candidate, blind decoding on the aggregated CCEs in the currently specified ordering (e.g., according to the LTE specification) is first attempted. If the blind decoding is successful, it may indicate that the PDCCH candidate is allocated to carrier f1. If blind decoding fails, then the CCEs are reordered (
Thus, in
Finally, a reserved bit may be used in an existing DCI format or the definition of one or more existing DCI format fields may be changed to allow the DCI control message to explicitly indicate to which carrier the grant corresponds.
The present system provides a multi-carrier control structure, wherein the PDCCH on one carrier may include PDCCH candidates that allocate resources amongst two or more carriers. In one implementation, the present system does not require modifications to existing Rel-8 DCI control message formats, and does not change the lengths of the existing Rel-8 DCI formats.
Moving forward, in LTE-A for example, in addition to the existing DCI formats, new DCI formats may be proposed to support new features (e.g., 8×8 MIMO and CoMP). As such, explicit bits may be added into any new DCI formats to signal the carriers. Even so, it may still be beneficial to implement the implicit PDCCH allocation of carriers as described in the present system. First, Rel-8 modes such as transmit diversity and open-loop SM may still be considered as fallback mode or transmission mode for a high mobility UA in an LTE-A system. Accordingly, a corresponding Rel-8 DCI format such as format 1A may still be used in such a system. Secondly, if explicit bits for identifying a carrier are defined in new DCI formats, say 3 bits, then any such bits may need to always be transmitted, and may often be wasted when only two carriers are aggregated, or there is no carrier aggregation. In that case, if the explicit bits vary, say from 0-3 bits, then such an implementation may increase blind decoding. In contrast, if the number of any such explicit bits is specified semi-statically for different carrier aggregation deployment, then the numbers of variations of DCI formats may increase substantially.
The UA 10 includes a display 702. The UA 10 also includes a touch-sensitive surface, a keyboard or other input keys generally referred as 704 for input by a user. The keyboard may be a full or reduced alphanumeric keyboard such as QWERTY, Dvorak, AZERTY, and sequential types, or a traditional numeric keypad with alphabet letters associated with a telephone keypad. The input keys may include a trackwheel, an exit or escape key, a trackball, and other navigational or functional keys, which may be inwardly depressed to provide further input function. The UA 10 may present options for the user to select, controls for the user to actuate, and/or cursors or other indicators for the user to direct.
The UA 10 may further accept data entry from the user, including numbers to dial or various parameter values for configuring the operation of the UA 10. The UA 10 may further execute one or more software or firmware applications in response to user commands. These applications may configure the UA 10 to perform various customized functions in response to user interaction. Additionally, the UA 10 may be programmed and/or configured over-the-air, for example from a wireless base station, a wireless access point, or a peer UA 10.
Among the various applications executable by the UA 10 are a web browser, which enables the display 702 to show a web page. The web page may be obtained via wireless communications with a wireless network access node, a cell tower, a peer UA 10, or any other wireless communication network or system 700. The network 700 is coupled to a wired network 708, such as the Internet. Via the wireless link and the wired network, the UA 10 has access to information on various servers, such as a server 710. The server 710 may provide content that may be shown on the display 702. Alternately, the UA 10 may access the network 700 through a peer UA 10 acting as an intermediary, in a relay type or hop type of connection.
The DSP 802 or some other form of controller or central processing unit operates to control the various components of the UA 10 in accordance with embedded software or firmware stored in memory 804 or stored in memory contained within the DSP 802 itself. In addition to the embedded software or firmware, the DSP 802 may execute other applications stored in the memory 804 or made available via information carrier media such as portable data storage media like the removable memory card 820 or via wired or wireless network communications. The application software may comprise a compiled set of machine-readable instructions that configure the DSP 802 to provide the desired functionality, or the application software may be high-level software instructions to be processed by an interpreter or compiler to indirectly configure the DSP 802.
The antenna and front end unit 806 may be provided to convert between wireless signals and electrical signals, enabling the UA 10 to send and receive information from a cellular network or some other available wireless communications network or from a peer UA 10. In an embodiment, the antenna and front end unit 806 may include multiple antennas to support beam forming and/or multiple input multiple output (MIMO) operations. As is known to those skilled in the art, MIMO operations may provide spatial diversity which can be used to overcome difficult channel conditions and/or increase channel throughput. The antenna and front end unit 806 may include antenna tuning and/or impedance matching components, RF power amplifiers, and/or low noise amplifiers.
The RF transceiver 808 provides frequency shifting, converting received RF signals to baseband and converting baseband transmit signals to RF. In some descriptions a radio transceiver or RF transceiver may be understood to include other signal processing functionality such as modulation/demodulation, coding/decoding, interleaving/deinterleaving, spreading/despreading, inverse fast Fourier transforming (IFFT)/fast Fourier transforming (FFT), cyclic prefix appending/removal, and other signal processing functions. For the purposes of clarity, the description here separates the description of this signal processing from the RF and/or radio stage and conceptually allocates that signal processing to the analog baseband processing unit 810 and/or the DSP 802 or other central processing unit. In some embodiments, the RF Transceiver 808, portions of the Antenna and Front End 806, and the analog baseband processing unit 810 may be combined in one or more processing units and/or application specific integrated circuits (ASICs).
The analog baseband processing unit 810 may provide various analog processing of inputs and outputs, for example analog processing of inputs from the microphone 812 and the headset 816 and outputs to the earpiece 814 and the headset 816. To that end, the analog baseband processing unit 810 may have ports for connecting to the built-in microphone 812 and the earpiece speaker 814 that enable the UA 10 to be used as a cell phone. The analog baseband processing unit 810 may further include a port for connecting to a headset or other hands-free microphone and speaker configuration. The analog baseband processing unit 810 may provide digital-to-analog conversion in one signal direction and analog-to-digital conversion in the opposing signal direction. In some embodiments, at least some of the functionality of the analog baseband processing unit 810 may be provided by digital processing components, for example by the DSP 802 or by other central processing units.
The DSP 802 may perform modulation/demodulation, coding/decoding, interleaving/deinterleaving, spreading/despreading, inverse fast Fourier transforming (IFFT)/fast Fourier transforming (FFT), cyclic prefix appending/removal, and other signal processing functions associated with wireless communications. In an embodiment, for example in a code division multiple access (CDMA) technology application, for a transmitter function the DSP 802 may perform modulation, coding, interleaving, and spreading, and for a receiver function the DSP 802 may perform despreading, deinterleaving, decoding, and demodulation. In another embodiment, for example in an orthogonal frequency division multiplex access (OFDMA) technology application, for the transmitter function the DSP 802 may perform modulation, coding, interleaving, inverse fast Fourier transforming, and cyclic prefix appending, and for a receiver function the DSP 802 may perform cyclic prefix removal, fast Fourier transforming, deinterleaving, decoding, and demodulation. In other wireless technology applications, yet other signal processing functions and combinations of signal processing functions may be performed by the DSP 802.
The DSP 802 may communicate with a wireless network via the analog baseband processing unit 810. In some embodiments, the communication may provide Internet connectivity, enabling a user to gain access to content on the Internet and to send and receive e-mail or text messages. The input/output interface 818 interconnects the DSP 802 and various memories and interfaces. The memory 804 and the removable memory card 820 may provide software and data to configure the operation of the DSP 802. Among the interfaces may be the USB interface 822 and the short range wireless communication sub-system 824. The USB interface 822 may be used to charge the UA 10 and may also enable the UA 10 to function as a peripheral device to exchange information with a personal computer or other computer system. The short range wireless communication sub-system 824 may include an infrared port, a Bluetooth interface, an IEEE 802.11 compliant wireless interface, or any other short range wireless communication sub-system, which may enable the UA 10 to communicate wirelessly with other nearby mobile devices and/or wireless base stations.
The input/output interface 818 may further connect the DSP 802 to the alert 826 that, when triggered, causes the UA 10 to provide a notice to the user, for example, by ringing, playing a melody, or vibrating. The alert 826 may serve as a mechanism for alerting the user to any of various events such as an incoming call, a new text message, and an appointment reminder by silently vibrating, or by playing a specific pre-assigned melody for a particular caller.
The keypad 828 couples to the DSP 802 via the interface 818 to provide one mechanism for the user to make selections, enter information, and otherwise provide input to the UA 10. The keyboard 828 may be a full or reduced alphanumeric keyboard such as QWERTY, Dvorak, AZERTY and sequential types, or a traditional numeric keypad with alphabet letters associated with a telephone keypad. The input keys may include a trackwheel, an exit or escape key, a trackball, and other navigational or functional keys, which may be inwardly depressed to provide further input function. Another input mechanism may be the LCD 830, which may include touch screen capability and also display text and/or graphics to the user. The LCD controller 832 couples the DSP 802 to the LCD 830.
The CCD camera 834, if equipped, enables the UA 10 to take digital pictures. The DSP 802 communicates with the CCD camera 834 via the camera controller 836. In another embodiment, a camera operating according to a technology other than Charge Coupled Device cameras may be employed. The GPS sensor 838 is coupled to the DSP 802 to decode global positioning system signals, thereby enabling the UA 10 to determine its position. Various other peripherals may also be included to provide additional functions, e.g., radio and television reception.
The UA 10, access device 120, and other components described above might include a processing component that is capable of executing instructions related to the actions described above.
The processor 1010 executes instructions, codes, computer programs, or scripts that it might access from the network connectivity devices 1020, RAM 1030, ROM 1040, or secondary storage 1050 (which might include various disk-based systems such as hard disk, floppy disk, or optical disk). While only one processor 1010 is shown, multiple processors may be present. Thus, while instructions may be discussed as being executed by a processor, the instructions may be executed simultaneously, serially, or otherwise by one or multiple processors. The processor 1010 may be implemented as one or more CPU chips.
The network connectivity devices 1020 may take the form of modems, modem banks, Ethernet devices, universal serial bus (USB) interface devices, serial interfaces, token ring devices, fiber distributed data interface (FDDI) devices, wireless local area network (WLAN) devices, radio transceiver devices such as code division multiple access (CDMA) devices, global system for mobile communications (GSM) radio transceiver devices, worldwide interoperability for microwave access (WiMAX) devices, and/or other well-known devices for connecting to networks. These network connectivity devices 1020 may enable the processor 1010 to communicate with the Internet or one or more telecommunications networks or other networks from which the processor 1010 might receive information or to which the processor 1010 might output information.
The network connectivity devices 1020 might also include one or more transceiver components 1025 capable of transmitting and/or receiving data wirelessly in the form of electromagnetic waves, such as radio frequency signals or microwave frequency signals. Alternatively, the data may propagate in or on the surface of electrical conductors, in coaxial cables, in waveguides, in optical media such as optical fiber, or in other media. The transceiver component 1025 might include separate receiving and transmitting units or a single transceiver. Information transmitted or received by the transceiver 1025 may include data that has been processed by the processor 1010 or instructions that are to be executed by processor 1010. Such information may be received from and outputted to a network in the form, for example, of a computer data baseband signal or signal embodied in a carrier wave. The data may be ordered according to different sequences as may be desirable for either processing or generating the data or transmitting or receiving the data. The baseband signal, the signal embedded in the carrier wave, or other types of signals currently used or hereafter developed may be referred to as the transmission medium and may be generated according to several methods well known to one skilled in the art.
The RAM 1030 might be used to store volatile data and perhaps to store instructions that are executed by the processor 1010. The ROM 1040 is a non-volatile memory device that typically has a smaller memory capacity than the memory capacity of the secondary storage 1050. ROM 1040 might be used to store instructions and perhaps data that are read during execution of the instructions. Access to both RAM 1030 and ROM 1040 is typically faster than to secondary storage 1050. The secondary storage 1050 is typically comprised of one or more disk drives or tape drives and might be used for non-volatile storage of data or as an over-flow data storage device if RAM 1030 is not large enough to hold all working data. Secondary storage 1050 may be used to store programs that are loaded into RAM 1030 when such programs are selected for execution.
The I/O devices 1060 may include liquid crystal displays (LCDs), touch screen displays, keyboards, keypads, switches, dials, mice, track balls, voice recognizers, card readers, paper tape readers, printers, video monitors, or other well-known input/output devices. Also, the transceiver 1025 might be considered to be a component of the I/O devices 1060 instead of or in addition to being a component of the network connectivity devices 1020. Some or all of the I/O devices 1060 may be substantially similar to various components depicted in the previously described drawing of the UA 10, such as the display 702 and the input 704.
The following 3rd Generation Partnership Project (3GPP) Technical Specifications (TS) are incorporated herein by reference: TS 36.321, TS 36.331, and TS 36.300, TS 36.211, TS 36.212 and TS 36.213.
While several embodiments have been provided in the present disclosure, it should be understood that the disclosed systems and methods may be embodied in many other specific forms without departing from the spirit or scope of the present disclosure. The present examples are to be considered as illustrative and not restrictive, and the intention is not to be limited to the details given herein. For example, the various elements or components may be combined or integrated in another system or certain features may be omitted, or not implemented.
Also, techniques, systems, subsystems and methods described and illustrated in the various embodiments as discrete or separate may be combined or integrated with other systems, modules, techniques, or methods without departing from the scope of the present disclosure. Other items shown or discussed as coupled or directly coupled or communicating with each other may be indirectly coupled or communicating through some interface, device, or intermediate component, whether electrically, mechanically, or otherwise. Other examples of changes, substitutions, and alterations are ascertainable by one skilled in the art and could be made without departing from the spirit and scope disclosed herein.
To apprise the public of the scope of this invention, the following claims are made.
Fong, Mo-Han, Cai, Zhijun, Heo, Youn Hyoung, Earnshaw, Mark, McBeath, Sean
Patent | Priority | Assignee | Title |
10257812, | Apr 07 2010 | Koninklijke Philips N.V. | Method for communicating in a mobile network |
10425212, | Sep 28 2010 | Nokia Technologies Oy | Carrier indicator field usage and configuration in carrier aggregation |
11848775, | Feb 15 2010 | SUN PATENT TRUST | Communication apparatus and communication method |
8514826, | Nov 02 2010 | LG Electronics Inc. | Method and apparatus for transmitting control information in radio communication system |
8711671, | Jul 03 2009 | BEIJING XIAOMI MOBILE SOFTWARE CO ,LTD | Extension of physical downlink control channel coverage |
8811284, | Mar 16 2009 | LG Electronics Inc | Method and apparatus for supporting carrier aggregation |
8861394, | Nov 02 2010 | LG Electronics Inc. | Method and apparatus for transmitting control information in radio communication system |
8902770, | Sep 28 2010 | Nokia Technologies Oy | Carrier indicator field usage and configuration in carrier aggregation |
9155044, | Mar 16 2009 | LG Electronics Inc. | Method and apparatus for supporting carrier aggregation |
9178670, | Nov 27 2009 | LG Electronics Inc | Downlink control information transmitting method and base station, and downlink control information receiving method and user device |
9191951, | May 18 2010 | NTT DoCoMo, Inc | Radio communication system for optimal CFI control in a cross-carrier scheduling environment |
9237596, | Nov 15 2009 | LG Electronics Inc | Method and apparatus for performing power control by terminal in wireless communication system using multiple carriers |
9380533, | Mar 16 2009 | LG Electronics Inc. | Method and apparatus for supporting carrier aggregation |
9426671, | Apr 07 2010 | Koninklijke Philips Electronics N V | Method for communicating in a mobile network during a transitional configuration mode |
9461798, | Nov 02 2010 | LG Electronics Inc. | Method and apparatus for transmitting control information in radio communication system |
9565005, | Nov 02 2010 | LG Electronics Inc. | Method and apparatus for transmitting control information in radio communication system |
9736880, | Nov 15 2009 | LG Electronics Inc. | Method and apparatus for performing power control by terminal in wireless communication system using multiple carriers |
9883536, | Jan 18 2013 | NTT DoCoMo, Inc | Radio base station and mobile station |
Patent | Priority | Assignee | Title |
20110110315, | |||
20110110316, | |||
20110201333, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 15 2010 | Research In Motion Limited | (assignment on the face of the patent) | / | |||
Jul 14 2010 | FONG, MO-HAN | Research In Motion Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024761 | /0273 | |
Jul 15 2010 | CAI, ZHIJUN | Research In Motion Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024768 | /0344 | |
Jul 15 2010 | MCBEATH, SEAN | Research In Motion Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024768 | /0344 | |
Jul 15 2010 | EARNSHAW, MARK | Research In Motion Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024761 | /0273 | |
Jul 22 2010 | HEO, YOUN HYOUNG | Research In Motion Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024761 | /0273 | |
Mar 08 2011 | Research In Motion Corporation | Research In Motion Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 026659 | /0859 | |
Jul 09 2013 | Research In Motion Limited | BlackBerry Limited | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 037963 | /0731 | |
May 27 2016 | BlackBerry Limited | Hilco Patent Acquisition 55, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 039538 | /0156 | |
Jan 25 2017 | Hilco Patent Acquisition 55, LLC | Golden Valley Holdings Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 041422 | /0206 | |
Nov 21 2017 | Golden Valley Holdings Limited | GUANGDONG OPPO MOBILE TELECOMMUNICATIONS CORP , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 044491 | /0180 | |
Nov 21 2017 | Golden Valley Holdings Limited | GUANGDONG OPPO MOBILE TELECOMMUNICATIONS CORP , LTD | CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT APPL NO 13619970 PREVIOUSLY RECORDED AT REEL: 044491 FRAME: 0181 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 047434 | /0227 | |
Nov 21 2017 | Golden Valley Holdings Limited | GUANGDONG OPPO MOBILE TELECOMMUNICATIONS CORP , LTD | CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE PROPERTY NUMBER PREVIOUSLY RECORDED AT REEL: 044491 FRAME: 0180 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 047995 | /0103 |
Date | Maintenance Fee Events |
Aug 29 2016 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Aug 29 2016 | M1554: Surcharge for Late Payment, Large Entity. |
Jul 27 2017 | ASPN: Payor Number Assigned. |
Jun 18 2020 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Sep 09 2024 | REM: Maintenance Fee Reminder Mailed. |
Date | Maintenance Schedule |
Jan 22 2016 | 4 years fee payment window open |
Jul 22 2016 | 6 months grace period start (w surcharge) |
Jan 22 2017 | patent expiry (for year 4) |
Jan 22 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 22 2020 | 8 years fee payment window open |
Jul 22 2020 | 6 months grace period start (w surcharge) |
Jan 22 2021 | patent expiry (for year 8) |
Jan 22 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 22 2024 | 12 years fee payment window open |
Jul 22 2024 | 6 months grace period start (w surcharge) |
Jan 22 2025 | patent expiry (for year 12) |
Jan 22 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |