A stabilized support for supporting motion-sensitive, ultra-lightweight, camera equipment includes a hollow platform on which the camera equipment is mounted, and a structure on which the platform is detachably mounted. The structure has a handle, a counterweight mounted below the platform, and an arm for connecting the handle with the counterweight. The platform has a plurality of interior compartments preferably arranged in generally parallel rows at opposite sides of the platform, each row extending past a center of gravity. A plurality of ballast weights is held and confined in the interior compartments within the platform to balance the support when held by the handle, or supported by optional support legs. The placement of the ballast weights is based on a balancing procedure in which the camera equipment is balanced relative to a stationary horizontal support surface.
|
1. A stabilized support for supporting motion-sensitive equipment, comprising:
a platform on which the equipment is mounted;
a structure on which the platform is mounted, the structure including a handle for holding by an operator, a counterweight mounted below the platform, and an arm for connecting the handle with the counterweight; and
a plurality of ballast weights resting on the platform, the ballast weights having a mass and being selectively placed on the platform with a mass distribution relative to a center of gravity of the support to balance the support.
6. A stabilized support for supporting motion-sensitive camera equipment, comprising:
a platform on which the camera equipment is mounted, the platform having upper and lower housing portions;
a structure on which the platform is mounted, the structure including a handle for holding by an operator, a counterweight mounted below the platform, and an arm for connecting the handle with the counterweight; and
a plurality of ballast weights resting on top of one of the housing portions, the ballast weights having a mass and being selectively placed on the one housing portion with a mass distribution relative to a center of gravity of the support to balance the support.
8. A weight-stabilized arrangement, comprising:
a motion-sensitive apparatus; and
a support for supporting, and customized to, the apparatus, the support including
a platform on which the apparatus is mounted,
a structure on which the platform is mounted, the structure including a handle for holding by an operator, a counterweight mounted below the platform, and an arm for connecting the handle with the counterweight, and
a plurality of ballast weights pre-positioned and resting on the platform, the ballast weights having a mass and being selectively placed on the platform with a mass distribution relative to a center of gravity of the support to balance the arrangement.
2. The stabilized support of
3. The stabilized support of
4. The stabilized support of
5. The stabilized support of
7. The stabilized support of
9. The arrangement of
10. The arrangement of
11. The arrangement of
12. The arrangement of
|
This is a continuation of U.S. patent application Ser. No. 12/490,584 filed Jun. 24, 2009, now U.S. Pat. No. 7,976,227.
This application claims the priority of U.S. provisional patent application Ser. No. 61/142,503, filed Jan. 5, 2009.
This invention generally relates to a stabilized equipment support and a method of balancing the same and, more particularly, to supporting ultra-lightweight cameras or other motion-sensitive equipment to isolate such equipment from unwanted motion during use.
Still picture and motion picture (video) cameras have, at some time during their use, been held by a human operator whose inherent instability tended to produce blurred still and moving images. The center of gravity laid within the camera and, by holding the camera at its exterior surface, the operator's inevitable unsteady hand motions exerted forces in directions effectively tangential to the camera's center of gravity, thereby resulting in undesirable motions of the camera along the pan and/or tilt and/or roll axes.
One approach to solving such motion problems was to mount the camera on pods, e.g., monopods or tripods. Another approach was to mount the camera on shoulder mounts and body braces to secure the camera to the operator's body. However, neither of these approaches were altogether satisfactory when the camera operator was ambulatory.
As exemplified by U.S. Pat. No. 5,098,182; U.S. Pat. No. 5,229,798; and U.S. Pat. No. 5,579,071, a more effective approach employed an equipoising camera support that statically and/or dynamically isolated the camera from both angular and spatial motions, thereby producing stable images even when the camera operator was ambulatory. Such equipoising supports have become standard tools in the still and video camera industries.
However, as satisfactory as such equipoising supports have been, they were primarily designed to support relatively large and heavy still and video cameras, weighing on the order of 10 pounds and much more. It was discovered that as the weight of the camera increased, the stability of the resulting image also tended to increase. Hence, it was believed that the lighter the camera, the less useful such an equipoising support would be.
Nevertheless, camera technology evolved towards miniaturization and lighter cameras. A full-sized consumer video device weighing about 5.5 pounds (i.e., the original “CamCorder”) contained a camera and a recorder and was designed to rest on the shoulder of the operator, and was followed over the years by more compact and ever lighter devices weighing on the order of 2.6 pounds and, hence, were entirely hand-supported. In recent years, ultra-lightweight cameras (less than two pounds), such as web cameras, weighing less than one pound have been developed, and the current ultra-lightweight cameras are so compact and light that they have even been incorporated into other devices, such as cellular phones weighing on the order of five ounces. In addition to the traditional unsteadiness of a handheld camera, these handheld devices were being operated by amateur photographers, still further resulting in unstable and often unacceptable still and video images, especially during ambulatory operation.
Efforts have been made to respond to the motion problem aggravated by ever lighter and lighter cameras, by providing miniature versions of many of the traditional camera supports, e.g., shoulder mounts, body braces and pods, that have been used in connection with the heavier commercial camera equipment used by professionals. Despite the bias against its use for light cameras, a miniaturized equipoising support having a bottom counterweight mounted below an overhead camera has also been tried. However, in practice, the counterweight was often too light, or too close to the overhead camera, and the resulting support was imbalanced. To correct such weight imbalances, the art proposed, e.g., in U.S. Pat. No. 5,098,182, to mount small weights either on the lower counterweight, or on the camera itself. However, attaching such small weights to the counterweight made the equipoising support bottom heavy, and attaching such small weights to each camera was a cumbersome, laborious balancing procedure, typically performed while holding the support in one's unsteady and fatigued hand. In any event, there was always the possibility that the attached weights could shift in position, or even become detached, when the camera operator was ambulatory.
Thus, these various approaches have failed to effectively and satisfactorily eliminate the problems of instability encountered in connection with operation of the ever-lighter, digital, still and motion, cameras that have been developed, and it therefore is desirable to furnish a stabilized equipment support particularly well suited to the special requirements of ultra-lightweight, handheld, digital cameras, particularly consumer-operated video cameras and like devices, e.g., those incorporated into cellular telephones. It is also desirable to improve the balancing procedure to avoid the instability and unsteadiness of one's hand that prevents an accurate balance from being obtained, and to avoid the shifting and detachment of separate weights arranged on the support.
One aspect of this invention is directed to a stabilized support for supporting motion-sensitive equipment, especially an ultra-lightweight camera, and for isolating the equipment from unwanted motion. The stabilized support includes a platform on which the equipment is mounted, and a structure on which the platform is detachably mounted. The structure includes a handle to be gripped and held by a human operator, a counterweight mounted below the platform, and an arcuate arm for connecting the handle with the counterweight. A plurality of ballast weights is supported by the platform to balance the support about its center of gravity. The ballast weights add weight to an upper portion of the support, and thus compensate for the very low weight of the equipment.
Preferably, the platform has an interior, and the ballast weights are mounted in the interior of the platform. The platform advantageously has a plurality of interior compartments, preferably arranged in generally parallel rows at opposite sides of the platform, each row extending in opposite directions fore and aft of the center of gravity. Each ballast weight is held and confined in a selected individual compartment. The interior confinement of the ballast weights prevents them from shifting and detachment, especially when the camera is moved, especially when turned upside down during operation, and/or when the operator is ambulatory. In addition, by placing the ballast weights fore and aft of the center of gravity, a measure of rotational stability is added.
It is further advantageous if a mounting plate is fixed to the equipment. The equipment and the plate are jointly removably and adjustably mounted on the platform. This enables the equipment to be readily mounted on, and detached from, the platform. In a preferred embodiment, the mounting plate has a trapezoidal cross-section, and the platform has a trapezoidal channel of complementary contour to the plate for slidably receiving the plate in a dovetail joint. In the event that the equipment has a control, such as a slide switch for releasing a battery for powering the equipment, and if the fixed mounting plate covers that control in certain versions of the equipment, then another aspect of this invention proposes configuring the mounting plate with a pair of hinged plate portions movable relative to each other. Thus, one of the plate portions can be pivoted away from blocking the control to enable ready access to the control without removing the plate from the equipment when, for example, the battery needs replacement.
The placement of the ballast weights in selected ones of the interior compartments is determined by a balancing procedure, as described below. To aid the balancing procedure, the platform is configured with a coupler aligned with the center of gravity along a vertical coupler axis for receiving a stationary balance tool when the platform is detached from the structure. An adjustable element is provided on the platform for balancing the platform relative to the stationary balance tool in a balanced position. A squaring tool is fixed to the equipment mounted on the platform during the balancing procedure and has indicia thereon. This indicia, together with additional information, e.g., the weight of the equipment, is used to determine how many ballast weights are to be placed within the platform.
A pair of foldable legs is optionally mounted on the arm for supporting the stabilized support on a support surface when the stabilized support is to be used as a tripod, or not in ambulatory use. Thus, the stabilized support may be supported by the handle or by the legs. The handle preferably has a virtually friction-free, three-axis, ball bearing gimbal that is indexably lockable and threaded into the coupler. The handle can engage a mounting notch for convenient fold-up storage during transport or equipment storage.
Still another aspect of this invention is directed to the method of balancing the motion-sensitive camera equipment. The method is performed by initially mounting the camera equipment in one orientation on the squaring tool having indicia. This squaring tool resembles a carpenter's square and has a horizontal plate meeting a vertical plate at a right angle. For example, the camera equipment is turned 90 degrees from its normal, upright, intended position of use and is mounted with its side surface contacting the horizontal plate of the squaring tool, with its bottom surface contacting the vertical plate of the squaring tool, and with its viewfinder folded flat against the side surface. Then, the squaring tool and the camera equipment in said one orientation is mounted for free pivoting movement, in a seesaw-like manner, about the coupler axis on the stationary balance tool mounted on a stationary horizontal support surface. The stationary balance tool has a fulcrum situated along the coupler axis. Then, when the squaring tool with the camera equipment in said one orientation are horizontally balanced on the stationary balance tool, indicia on the squaring tool is read. This indicia, together with additional information, e.g., the weight of the equipment, is then used to determine how many ballast weights are to be placed within the above-described platform, as well as the placement of the ballast weights. A chart, slide ruler, software program, online calculator, or the like is provided for correlating the indicia and the equipment weight to the number and placement of the ballast weights.
The method is further performed by removing the squaring tool from the camera equipment, and mounting the camera equipment in another orientation on the ballasted platform, that is, with the ballast weights already positioned within the platform. For example, the camera equipment is mounted upright in its normal position of use, with its viewfinder deployed, i.e., extending horizontally away from a side surface of the upright camera equipment, and with its bottom surface contacting the platform via the mounting plate. Then, the ballasted platform with the camera equipment in said other orientation is mounted for free pivoting movement, in a seesaw-like manner, about the coupler axis on the stationary balance tool, again mounted on the stationary horizontal support surface, and again with its fulcrum along the coupler axis. Then, the ballasted platform with the camera equipment in said other orientation is adjusted until they assume a horizontally balanced position. Thus, the camera equipment in its normal position of use on the ballasted platform is horizontally balanced, i.e., from side-to-side.
The method is still further performed by mounting the ballasted platform with the camera equipment in said other orientation on the above-described support structure having the counterweight mounted below the ballasted platform, by mounting the support structure and the ballasted platform with the camera equipment in said other orientation for free pivoting movement, in a seesaw-like manner, about the coupler axis on the stationary balance tool, and by adjusting the equipment and the mounting plate relative to the platform in a coarse adjustment, and by adjusting the counterweight in a fine adjustment, until the support structure and the ballasted platform with the camera equipment in said other orientation is horizontally balanced on the stationary balance tool, again mounted on the stationary horizontal support surface, and again with its fulcrum along the coupler axis.
Thus, the balancing procedure is no longer performed while holding the support or its component parts in one's unsteady hand, but instead, is performed while balancing the support and/or its component parts relative to a stationary horizontal support surface. The operator's hand is no longer fatigued during the balancing procedure. This avoids the prior art's problems of instability, fatigue and unsteadiness of one's hand that prevents an accurate balance from being obtained.
The novel features which are considered as characteristic of the invention are set forth in particular in the appended claims. The invention itself, however, both as to its construction and its method of operation, together with additional objects and advantages thereof, will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
Referring now to the drawings, reference numeral 10 generally identifies a stabilized support for supporting motion-sensitive equipment 12, especially an ultra-lightweight still or video, digital camera, and for isolating the equipment 12 from unwanted motion. As shown in
Preferably, the platform 14 has upper and lower housing portions 14A, 14B bounding an interior and movable from side-to-side (right-to-left) in a generally horizontal plane relative to each other. The ballast weights 22 are mounted in the interior of the platform 14, preferably in the lower portion 14B (see
As shown in
In the event that the equipment 12 has a control 30, such as a slide switch, as shown in
The placement of the ballast weights 22 in selected ones of the interior compartments 24 is determined by a balancing procedure, as described below. To aid the balancing procedure, the platform 14 is, in one embodiment, configured with a center channel 34 aligned with the center of gravity (see
A pair of foldable legs 46 (see
Still another aspect of this invention is directed to the method of balancing the motion-sensitive camera equipment 12. The method is performed by initially mounting the camera equipment 12, as shown in
The method is further performed by removing the squaring tool 42 from the camera equipment 12, and mounting the camera equipment 12 in another orientation on the ballasted platform 14, that is, with the ballast weights 22 already positioned within the platform 14. For example, the camera equipment 12 is mounted upright in its normal position of use, as shown in
The method is still further performed by mounting the ballasted platform 14, as shown in
The following chart (Table 1) gives representative correlation data used in the balancing procedure.
TABLE 1
Indicia
Number of
Number of
Equipment
Reading
bottom
top
Number of
Weight (oz.)
(inches)
counterweights
ballast weights
handle turns
8
1
0
28
3
8
3
1
27
4
9
2
0
28
3
9
3
1
27
4
9
4
1
25
4
Thus, by way of example, if the indicia 44 on the ruler 74 reads a value of three inches, and if the equipment 12 weight is eight ounces, then one bottom counterweight 18 and twenty-seven top ballast weights 22 will be required, and in addition, the handle 16 and the gimbal 60 are threaded into the coupler 62 by four turns. The above-described balancing is actually achieved slightly above the center of gravity of the entire support 10 such that the support 10 will have a tendency to be slightly bottom heavy and hang upright. The adjustability of the gimbal handle 16, i.e., the number of turns threaded into the coupler, compensates for the offset center of gravity.
It will be understood that each of the elements described above, or two or more together, also may find a useful application in other types of constructions differing from the types described above. For example, the equipment need not only be still or video cameras, but can equally well be video recorders, video projectors, and any device that images a target, such as electro-optical readers of bar code symbols, optical character recognition readers, scanners, etc., as well as devices that incorporate imagers, such as cellular telephones, computers, personal digital assistants, gaming consoles, telescopes, etc.
As described, the equipment 12 mounted on the ballasted platform 14 is balanced as an assembly prior to mounting on the structure 16, 18, 20. This enables a plurality of such assemblies to be readily interchanged on a single structure 16, 18, 20. The adjusting element 38 and the adjustable counterweight 18 can be used for fine tuning of the balance. The ballast weights 22 inside the platform provide for coarse tuning of the balance.
As described, the stabilized support 10 can be adapted to support many different types of equipment 12. The stabilized support 10 can also be customized to support a single piece of equipment. The stabilized support 10 and the particular piece of equipment 12 are together customized to comprise a weight-stabilized arrangement. For example, since the physical characteristics of a specific piece of equipment 12 are known in advance, a manufacture can pre-load the ballast weights 22 within the platform, and even pre-balance the stabilized support 10, thereby customizing its use just for that specific piece of equipment. The customized support can then be sold separately from, or in conjunction with, that specific piece of equipment. If desired, the platform 14 can be sealed so that the ballast weights 22 cannot be removed therefrom.
More particularly, the weight-stabilized arrangement (comprising the combination of the stabilized support 10 and a specific piece of equipment 12) is customized by taking into account the overall geometry of the stabilized support 10 as it relates to such factors including, but not limited to, the placement and mass distribution of the specific piece of equipment 12, the placement and mass distribution of front weights on the arcuate arm 20, the placement and mass distribution of a bottom counterweight 18, the placement and mass distribution of ballast weights 22 in the platform, the placement and mass distribution of the platform 14, and the placement and mass distribution of the gimbal handle 16, and, in short, the weight and mass distribution of all the elements of the stabilized support 10 and the equipment 12. In order to accommodate a specific payload, i.e., a specific piece of equipment 12, each element of the stabilized support 10 is carefully designed and placed such that its mass and location of its center of gravity will work in unison with the payload's characteristics, e.g., weight and location of center of gravity, in order to achieve a stabilized arrangement that is properly balanced at a specific point for a specific payload. These elements must also be placed such that they will not physically interfere with the operator during use, e.g., having the lower counterweight 18 hit the operator's forearm.
While the invention has been illustrated and described as embodied in a stabilized equipment support and a method of balancing the same and, more particularly, to supporting ultra-lightweight cameras or other motion-sensitive equipment to isolate such equipment from unwanted motion during use, as well as a weight-stabilized arrangement in which the support and the equipment are customized to each other, it is not intended to be limited to the details shown, since various modifications and structural changes may be made without departing in any way from the spirit of the present invention.
Without further analysis, the foregoing will so fully reveal the gist of the present invention that others can, by applying current knowledge, readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this invention and, therefore, such adaptations should and are intended to be comprehended within the meaning and range of equivalence of the following claims.
Orf, Hans Robert, Rush, Frank A
Patent | Priority | Assignee | Title |
8714744, | Oct 07 2009 | Gimbaled handle stabilizing controller assembly | |
8845103, | Oct 07 2009 | Gimbaled handle stabilizing controller assembly | |
D715847, | Apr 15 2013 | Handle for multiple imagers |
Patent | Priority | Assignee | Title |
4341452, | Aug 10 1981 | DULIN & THIENPONT, LTD | Triaxial universal camera mount |
4545660, | May 27 1983 | Camera handle with retractable bipod support | |
4570887, | Oct 17 1983 | Quick-connect mount for a camera and tripod | |
5081478, | Feb 13 1990 | FUJIFILM Corporation | Adjustably mounted camera grip |
5098182, | Sep 22 1988 | Stabilized equipment support, primarily for use with light-weight cameras | |
5229798, | Sep 22 1988 | Stabilized equipment support, primarily for use with hand-held cameras | |
5243370, | Aug 30 1988 | Camera stabilizer | |
5579071, | Mar 21 1994 | BROWN, GARRETT W | Camera stabilizing support |
5622012, | May 07 1993 | Panel, and also a hinge section which is suitable, inter alia, for such a panel | |
6330752, | Feb 04 2000 | Adjustable squaring tool | |
6663298, | Feb 07 2002 | Hand held counter balance and shock absorber camera mount | |
7563038, | Jun 20 2005 | Lino Manfrotto + Co. S.p.A. | Support for a camcorder |
7936984, | Apr 10 2008 | Camera Motion Research, LLC | Stabilizer device for optical equipment |
20040233389, | |||
20060262274, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 21 2011 | The Tiffen Company LLC | (assignment on the face of the patent) | / | |||
Aug 10 2016 | The Tiffen Company LLC | WEBSTER BUSINESS CREDIT CORPORATION | SECURITY AGREEMENT | 040773 | /0545 |
Date | Maintenance Fee Events |
Sep 09 2016 | REM: Maintenance Fee Reminder Mailed. |
Jan 29 2017 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jan 29 2016 | 4 years fee payment window open |
Jul 29 2016 | 6 months grace period start (w surcharge) |
Jan 29 2017 | patent expiry (for year 4) |
Jan 29 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 29 2020 | 8 years fee payment window open |
Jul 29 2020 | 6 months grace period start (w surcharge) |
Jan 29 2021 | patent expiry (for year 8) |
Jan 29 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 29 2024 | 12 years fee payment window open |
Jul 29 2024 | 6 months grace period start (w surcharge) |
Jan 29 2025 | patent expiry (for year 12) |
Jan 29 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |