An paintball loader for supplying paintballs to a paintball marker is provided. The loader includes a container for storing a plurality of paintballs. An outfeed tube on the container is connected to an inlet tube on the marker. The loader further includes a drive shaft, and a feeder rotatably disposed in the container for feeding paintballs into the outfeed tube. The loader further includes a mechanical drive handle accessible externally of the loader and connected to the drive shaft to manually wind the drive spring.

Patent
   8387607
Priority
Apr 28 2004
Filed
Oct 31 2011
Issued
Mar 05 2013
Expiry
Apr 28 2025
Assg.orig
Entity
Large
15
93
window open
6. A paintball loader, comprising:
a container body configured to hold paintballs;
a rotatable drive shaft;
a feeder secured to the drive shaft and rotatable with the drive shaft;
a motor in communication with the drive shaft for rotating the drive shaft in a first direction; and
an actuator configured for operation by a user of the paintball loader, the actuator positioned adjacent an outer wall of the paintball loader and accessible externally of the body of the paintball loader, the actuator adapted to cause rotation of the drive shaft upon operation.
10. A paintball loader, comprising:
a container body configured to hold paintballs;
a rotatable drive shaft;
a feeder secured to the drive shaft and rotatable with the drive shaft;
a motor in communication with the drive shaft for rotating the drive shaft in a first direction; and
an actuator configured for operation by a user of the paintball loader, the actuator positioned adjacent an outer wall of the paintball loader and accessible externally of the body of the paintball loader, the actuator adapted to cause rotation of the drive shaft upon operation, wherein the actuator is positioned below the motor when the paintball loader is oriented for feeding paintballs.
12. A paintball loader, comprising:
a container body configured to hold paintballs;
a rotatable drive shaft;
a feeder secured to the drive shaft and rotatable with the drive shaft;
a motor housed within the body of the paintball loader in communication with the drive shaft for rotating the drive shaft in a first direction;
a power source housed within the body of the paintball loader in communication with the motor; and
an actuator configured for operation by a user of the paintball loader, the actuator positioned adjacent an outer wall of the paintball loader and accessible externally of the body of the paintball loader, the actuator adapted to cause rotation of the drive shaft upon operation.
1. A drive assist mechanism for use with a paintball loader comprising:
a drive shaft longitudinally positioned along a center axis and rotatable about the center axis;
a drive member mounted on the drive shaft and rotatable about the center axis in coordination with the drive shaft;
a feeder secured to the drive shaft and rotatable about the center axis;
a motor coupled to the drive shaft for rotating the drive shaft about the center axis;
a microprocessor in communication with the motor and a sensor, the microprocessor controlling the operation of the motor; and
an actuator configured for manual operation in communication with the drive shaft, at least a portion of the actuator extending externally from a body of the paintball loader, wherein operating the actuator moves the drive shaft.
4. A paintball loader for use on a paintball marker, the paintball loader comprising:
a loader housing for holding a plurality of paintballs;
a drive assist mechanism for feeding paintballs into an inlet of a chamber of the marker comprising:
a drive shaft longitudinally positioned along a center axis and rotatable about the center axis;
a feeder secured to the drive shaft and rotatable about the center axis;
a motor coupled to the drive shaft for rotating the drive shaft about the center axis, the motor in communication with a microprocessor and sensor; and
an actuator in communication with the drive shaft, at least a portion of the actuator positioned to extend externally from the loader housing, the actuator rotatable about an axis, wherein operation of the actuator moves the drive shaft and feeder.
2. The drive assist mechanism of claim 1, wherein the feeder is a drive cone.
3. The paintball loader of claim 1, wherein the motor is configured to rotate the drive shaft in a first direction for feeding paintballs, and the actuator is configured to rotate the drive shaft in a direction opposite the first direction.
5. The paintball loader of claim 4, wherein the motor is configured to rotate the drive shaft in a first direction for feeding paintballs, and the actuator is configured to rotate the drive shaft in a direction opposite the first direction.
7. The paintball loader of claim 6, further comprising a microprocessor and a sensor in communication with the microprocessor.
8. The paintball loader of claim 6, wherein the feeder is biased by a spring.
9. The paintball loader of claim 6, wherein the actuator is configured to cause the rotation of the drive shaft in a direction opposite the first direction.
11. The paintball loader of claim 10, wherein the actuator is configured to cause the rotation of the drive shaft in a direction opposite the first direction.
13. The paintball loader of claim 12, wherein the actuator is configured to cause the rotation of the drive shaft in a direction opposite the first direction.

This application is a continuation of U.S. patent application Ser. No. 12/050,229, filed Mar. 18, 2008, now U.S. Pat. No. 8,047,191, issuing Nov. 1, 2010, which is a continuation of U.S. patent application Ser. No. 11/116,595, filed Apr. 28, 2005, now U.S. Pat. No. 7,343,909, issued Mar. 18, 2008, which claims the benefit of U.S. Provisional Patent Application No. 60/566,381, filed on Apr. 28, 2004, the entire contents of all of which are incorporated herein by reference as if fully set forth.

The present invention relates to paintball loaders, and more particularly to an externally mounted, manually operated handle connected to an extended drive shaft of an active feed paintball loader.

Agitating paintball loaders are well known in the art of paintball sports, and operate by having a paintball agitator advance balls from the bottom of a loader into an outfeed tube. One problem with convention agitators is that a jam can occur, such as when a paintball becomes lodged in the agitator or feeder. In order to clear the jam, the paintball sport player must shake the loader.

Active or force feeding paintball loaders are technologically advanced loaders that use battery-operated motors to forcibly drive paintballs from the loader, into an outfeed tube, and into the breech of a paintball marker. Examples of such loaders can be found in U.S. Pat. Nos. 6,213,110, 6,502,567, 6,701,907, and 6,792,933, the entire disclosures of which are incorporated by reference herein. As paintball loaders have evolved into electronically controlled devices capable of actively or forcibly feeding paintballs into a paintball gun, there has arisen a need for the loader to employ a mechanical backup system if a jam occurs.

Thus, there has arisen the need for a device that includes a mechanism for allowing the user to manually manipulate the motor driven system of an active feed paintball loader to clear paintball jams.

One aspect of the present invention is directed to a drive assist mechanism for use with an active feed paintball loader. The drive assist mechanism comprises a drive shaft longitudinally positioned along a center axis and rotatable about the center axis. A drive member is mounted on the drive shaft and rotatable about the center axis in coordination with the drive shaft. A feeder is secured to the drive shaft and independently rotatable about the center axis relative to the drive member. A spring is located between the drive member and the feeder and adapted to maintain constant tension on the feeder when the drive shaft rotates in a feeding direction. A manual drive handle is secured to the drive shaft and extends externally from the loader. The manual drive handle is rotatable about the center axis in coordination with the drive shaft.

Another aspect of the present invention is directed toward a drive assist mechanism for use on an active feed paintball loader. The drive assist comprises an axial member rotatably positioned about a center axis. A first spool is mounted on the axial member and rotatable about the center axis in coordination with the axial member. The first spool includes a pressure wall. A second spool is secured to the axial member and independently rotatable about the center axis relative to the first spool. The second spool has a retaining wall. The drive assist further comprises a spring having a first end engaged to the pressure wall and a second end engaged to the retaining wall. The spring is adapted to wind when the first spool is rotated about the second spool. A manual drive handle is provided to be fixedly secured to the axial member and extends to a position external to the loader. The manual drive handle is rotatable about the center axis in coordination with the axial member.

Another aspect of the present invention is directed toward an active feed paintball loader for use on a paintball marker. The active feed paintball loader comprises a loader housing for holding a plurality of paintballs and a drive assist mechanism for feeding paintballs into an inlet of a chamber of the marker. The drive assist mechanism further comprises a drive shaft longitudinally positioned along a center axis and rotatable about the center axis, a feeder independently rotatable about the center axis relative to the drive shaft, a spring having a first end engaged to the drive shaft and a second end engaged to the feeder, the spring being adapted to maintain constant tension on the feeder when the drive shaft rotates about the center axis in a feeding direction, and a manual drive handle secured to the drive shaft and positioned to extend externally from the loader housing. The manual drive handle is rotatable about the center axis in coordination with the drive shaft.

Another aspect of the present invention is directed to a manual agitator for an active feed paintball loader. The manual agitator comprises a drive shaft longitudinally positioned along a center axis and rotatable about the center axis. A drive member is mounted on the drive shaft and rotatable about the center axis in coordination with the drive shaft. A feeder is secured to the drive shaft and independently rotatable about the center axis relative to the drive member. A manual drive handle is secured to the drive shaft and positioned to extend externally from the loader. The manual drive handle is rotatable about the center axis in coordination with the drive shaft.

Another aspect of the present invention is directed to an active feed paintball loader for actively maintaining a paintball stack. The active feed paintball loader comprises a feeder, a drive shaft, a motor in communication with the drive shaft for rotating the drive shaft in a feeding direction, a spring positioned between the drive shaft and the feeder, the drive shaft winding the spring to maintain sufficient tension on the spring for maintaining the paintball stack, and a drive assist mechanism comprising a mechanical drive handle positioned adjacent an outer wall of the loader and accessible externally of the loader. The mechanical drive handle adapted to manually rotate the drive shaft.

Another aspect of the present invention is directed to an active feed paintball loader for supplying paintballs to a paintball marker. The active feed paintball loader comprises a container for storing a plurality of paintballs, the container having an outfeed tube. A feeder is rotatably disposed in the container for feeding the paintballs into the outfeed tube. A motor is provided for rotating the feeder. A drive spring is provided having a first end and a second end. The first end of the drive spring is engaged to the feeder to provide a driving force to rotate the feeder within the container. The second end of the drive spring is coupled to the motor. The motor operates to wind the drive spring to maintain sufficient tension on the drive spring to maintain a paintball stack in the outfeed tube. A mechanical drive handle is further provided to be positioned adjacent an outer wall of the loader and accessible externally of the loader. The mechanical drive handle is adapted to manually wind the drive spring.

Another aspect of the present invention is directed to an active feed paintball loader for use on a paintball marker. The active feed paintball loader comprises a loader housing for holding a plurality of paintballs and a drive assist mechanism for feeding paintballs into an inlet of a chamber of the marker. The drive assist mechanism further comprises a drive shaft longitudinally positioned along a center axis and rotatable about the center axis, a drive cone secured to the drive shaft and independently rotatable about the center axis relative to the drive shaft, the drive cone providing a support beneath the paintballs, a spring having a first end engaged to the drive shaft and a second end engaged to the drive cone, the spring adapted to maintain constant tension on the drive cone when the drive shaft rotates about the center axis in a feeding direction, and a manual drive handle secured to the drive shaft and positioned to extend externally from the loader housing. The manual drive handle is rotatable about the center axis in coordination with the drive shaft.

Another aspect of the present invention is directed to an active feed paintball loader for actively maintaining a paintball stack. The active feed paintball loader comprises a drive shaft, a feeder rotatable about the drive shaft and providing support beneath at least one paintball in the paintball stack, and a motor in communication with the drive shaft for rotating the drive shaft in a feeding direction. The motor is coupled to a microprocessor to control operation of the motor. The active feed paintball loader further comprises a spring positioned between the drive shaft and the feeder. The drive shaft is adapted to wind the spring to maintain sufficient tension on the spring for maintaining the paintball stack. A drive assist mechanism is further provided manually rotate the drive shaft. The drive assist mechanism comprises a mechanical drive handle positioned adjacent an outer wall of the loader and accessible externally of the loader.

The foregoing summary, as well as the following detailed description of preferred embodiments of the invention, will be better understood when read in conjunction with the appended drawings. In the drawings:

FIG. 1 is a side elevational view of an active feed paintball loader constructed in accordance with the teachings of the present invention and operatively attached to a paintball marker illustrated in phantom.

FIG. 2 is side cut-away view of the active feed paintball loader of FIG. 1 illustrating the loader housing in phantom.

FIG. 3 is a partial top view of the active feed paintball loader of FIG. 2.

FIG. 4 is an exploded top perspective view of the feeder of FIG. 2.

FIG. 5 is an exploded bottom perspective view of the feeder of FIG. 2.

FIG. 6 is a plan view of the inner spool of the feeder shown disengaged from the outer wall of the spring housing and spring and showing the position of engagement between the spring and inner spool in dashed lines.

FIG. 7 is a top cross-sectional view of the feeder and spring housing utilizing a compression spring in an alternate embodiment.

FIG. 8 is a top cross-sectional view of the feeder and spring housing utilizing a coil spring in an alternate embodiment.

FIG. 9 is an exploded view of the drive shaft and handle of FIG. 3.

FIG. 10 is a bottom plan view of the drive member and ratchet system illustrating the loader housing in phantom.

Certain terminology is used in the following description for convenience only and is not limiting. The words “top,” “bottom,” “side,” “front,” “rear,” “central,” “upper,” and “lower” designate positions in the attached drawings. The words “inwardly” and “outwardly” refer to directions toward and away from, respectively, the geometric center of the loader and designated parts thereof.

With reference to FIGS. 1-10, wherein like numerals indicate like elements throughout, preferred embodiments of the invention will be described below.

FIG. 1 is a side elevational view of an active feed paintball loader 10 constructed in accordance with the teachings of the present invention and operatively attached to a representative paintball marker 20, illustrated in phantom. The paintball marker 20 includes a main body 22, a compressed gas cylinder 24, a front handgrip 26, a barrel 28, and a rear handgrip 30. The paintball marker 20 also includes an inlet tube 32 leading to a firing chamber (not shown) in the interior of the main body and a trigger 34. The front handgrip 26 projects downwardly from the barrel 28 and provides an area for gripping by an operator of the paintball marker 20. The compressed gas cylinder 24 is typically secured to a rear portion of the paintball marker 20. The compressed gas cylinder 24 normally contains CO2, although any compressible gas may be used.

In operating the paintball marker 20, the trigger 34 is squeezed, thereby actuating the compressed gas cylinder 24 to release bursts of compressed gas. The bursts of gas are used to eject paintballs outwardly through the barrel 28. The paintballs are continually fed by the paintball loader 10 through the inlet tube 32 to the firing chamber. Although FIG. 1 depicts an automatic paintball marker 20, the paintball marker 20 may also be a semi-automatic marker.

Active feed paintball loaders are described in detail in U.S. Pat. No. 6,213,110 (“Rapid Feed Paintball Loader”), U.S. Pat. No. 6,502,567 (“Rapid Feed Paintball Loader With Pivotable Deflector”), U.S. Pat. No. 6,701,907 (“Spring Loaded Feed Mechanism For Paintball Loader”), and U.S. Pat. No. 6,792,933 (Drive Cone For Paintball Loader), the entire contents of which are each incorporated herein by reference. The active feed paintball loader 10 includes a paintball container 42 having a container wall 44 forming an interior area 46. The container 42 may be divided into an upper portion 48 and a lower portion 50. Generally, an exit tube 52 leads from the lower portion 50 of the container 42 to an outlet opening 54, although the exit tube 52 may be positioned at another location in the container 42. The exit tube 52 is positioned adjacent the inlet tube 32 of the paintball marker 20. Referring to FIGS. 2-5, a feed mechanism 56 is used to drive or urge the paintballs toward the exit tube 52 and into the inlet tube 32.

The feed mechanism 56 is coupled to a motor 58 to drive paintballs toward the exit tube 52, or a manual drive assist mechanism 60 can be used to drive the feed mechanism 56, as described in greater detail below. The manual drive assist mechanism 60 extends from the lower portion 50 of the container 42 and includes a manually operated handle 62 connected to an extended drive shaft 64.

Referring to FIGS. 3-5, the operation of the feed mechanism 56 will be explained. While a preferred feed mechanism 56 is shown, various other components may be substituted for driving paintballs into the paintball marker 20. The feed mechanism 56 includes a feeder 66 or other agitating device to drive, force or urge paintballs 68 into the exit tube 52, and a drive mechanism 70.

A variety of feeders 66 can be used in the present invention, including an impeller, drive cone, paddle wheel, fin, carrier or other device which can direct or otherwise force or urge paintballs into the exit tube 52. By way of example and not limitation, a drive cone 72 is shown in the Figures, and includes a housing 74 with a plurality of fins 76 which preferably extend in a radial direction from the housing 74. The drive cone 72 also preferably includes flanges 78 that extend between adjacent fins 76. The flanges 78 of the drive cone 72 provide at least some support from beneath a paintball adjacent the drive cone. While fins 76 are shown, it is appreciated that the feeder 66 may include recesses or pockets within which the paintballs 68 sit as they are shuttled toward the exit tube 52. A cylindrical opening 80 is formed in the center of the housing 74 for receiving a fastener 82. The fastener 82 is used to couple, engage or mount the feeder 66 to a drive shaft 64.

As shown in FIGS. 4 and 5, the feeder 66 is mounted on the extended drive shaft 64. The extended drive shaft 64 is connected to the motor 58 to rotate about a central axis CA. As the motor 58 operates, the feeder 66 turns, forcing balls into exit tube 52. Thus, when the motor 58 is in operation, a relatively constant pressure is applied to the paintballs 68 in the exit tube 52, as will be discussed in more detail below.

In some active feed loaders, a spring may connect the drive shaft 64 and the drive cone 72, such as in U.S. Pat. No. 6,701,907 (“Spring Loaded Feed Mechanism For Paintball Loader”), incorporated herein by reference. A similar embodiment is disclosed with respect to FIGS. 4 and 5, herein. Referring to FIG. 5, the bottom of the feeder 66 is shown in detail. The housing 74 includes an inner spool 84 having a retaining wall 86 affixed thereto. The retaining wall 86 is designed to engage a first end 87 of a spring 89, which will be discussed below.

As shown in FIGS. 4 and 5, a spring housing 88 is secured to the drive shaft 66. The spring housing 88 is disposed about the extended drive shaft 64 and positioned so as to be below the feeder 66. The spring housing 88 includes a central opening 90 and an outer wall 92 having a pressure wall 94 affixed thereto. The pressure wall 94 is designed to engage a second end 98 of the spring 89. The drive shaft 64 is designed to pass through the central opening 90 and secure the spring housing 88 such that rotation of the drive shaft 64 produces concomitant rotation of the spring housing 88. In the illustrated embodiment, a portion of the drive shaft 64 is shown non-cylindrical in shape and the opening 90 is formed with a mating non-cylindrical shape so that spring housing 88 is turned in coordination with the drive shaft 64. One or more fastening devices 96 such as an E clip can be used to restrain vertical movement of the spring housing 88 on the drive shaft 64.

The inner spool 84 and outer wall 92 define a spring chamber 100 for spring 89 to be positioned. Although a spring is shown in the figures, other biasing members, such as elastomers can be used. As shown in FIGS. 4 and 5, the spring 89 is a torsion spring, however, other suitable springs can be used, such as a coil spring, compression spring, spiral spring, without limitation. One having ordinary skill in the art would appreciate that any type of suitable spring can be used in accordance with this invention. As shown in FIG. 6, the spring 89 is mounted so as to bias the feeder 66 against rotation relative to the spring housing 88. Rotation of the spring housing 88 about the central axis CA relative to the feeder 66 causes the spring 89 to wind.

Still with reference to FIGS. 4 and 5, the drive shaft 64 projects downward from the spring housing 88 and is adapted to engage a drive member 102 that is part of the drive mechanism 70. In the embodiment shown in FIGS. 2, 3, 4 and 5, the drive member 102 is a gear having a plurality of spaced apart gear teeth 104. The gear teeth 104 are adapted to engage with mating teeth on a second gear 106 having a drive belt 107 connected to the motor 58. While the drive member 102 in the illustrated embodiment is a gear, other types of conventional drive members can be used to produce controlled rotation, such as a pulley mechanism or stepper motor.

It will be appreciated that the above embodiment of the drive mechanism 70 is a preferred embodiment only, and that other drive suitable drive mechanisms may be used. For example, as shown in FIGS. 7 and 8, the drive shaft 64 can be coupled directly to the motor 58. The drive shaft 64 winds a spring 89 to rotate the feeder 66 in a similar manner as described above. In the embodiment illustrated in FIG. 7, the spring 89 is a compression spring having a first end 87 engaged to the retaining wall 86 of the inner spool 84 and a second end 98 engaged to the pressure wall 94 of the spring housing 88. In the embodiment shown in FIG. 8, the spring 89 is a coil spring having a first end 87 directly connected to the inner spool 84 of the feeder 66 and a second end 98 directly connected to the outer wall 92 of the spring housing 88.

The operation of the feeder as set forth in the embodiment of FIGS. 4 and 5 is similar to that set forth in U.S. Pat. No. 6,701,907 (“Spring Loaded Feed Mechanism For Paintball Loader”), which is incorporated herein by reference. During operation of the drive mechanism 70, the motor 58 rotates the drive shaft 64, in this case in a counter-clockwise direction looking at the loader 10 from above, which in turn winds the spring 89. As spring 89 is wound it exerts a rotational force on the feeder 66 in a feeding direction, which in this case is counter-clockwise. Winding the spring 89 refers to increasing tension on the spring 89 to exert force on the feeder 66 so that releasing the tension on the spring 89 causes the feeder 66 to rotate in the feeding direction.

The interior area 46 of the container wall 44 stores a plurality of paintballs 68 prior to being discharged from the paintball marker 20 when the paintball marker 20 is fired. As the drive shaft 64 continues to rotate, individual paintballs 68 are moved along flanges 78 of feeder 66 toward the exit tube 52. Once a paintball 68 enters the firing chamber of the paintball marker 20 through the inlet tube 32, the paintballs 68 are maintained in a paintball stack in the exit tube 52 of the loader 10. Once a paintball stack is present in the exit tube 52, the back up of paintballs 68 prevents the feeder 66 from further rotation in the feeding direction. A paintball stack, as used herein, is defined as a line of paintballs maintained in a row, forced by an amount of tension from the drive spring 89 toward the exit tube 52 of the paintball loader 10 or inlet tube 32 of a paintball marker 20 attached to the loader 10. Although the feeder 66 is prevented from moving, the drive shaft 64 continues to rotate as previously discussed. When the feeder 66 is stationary, the further rotation of the drive shaft 64 causes the drive shaft 64 to wind the drive spring 89. This provides a constant tension on the paintball stack.

Referring to FIG. 2, a microprocessor 108 connected to at least one sensor 110 (two sensors are illustrated FIG. 2) can also be used in conjunction with the loader 10 of the present invention to deactivate the drive motor 58 when the exit tube 52 is full. The sensors 110 are preferably positioned in the exit tube 52 of the paintball loader 10 to detect either the presence or absence of paintballs within the exit tube 52 and relay that information to the microprocessor 108 for controlling operation of the motor 58. It should be appreciated that the sensors can be positioned in other areas such as the inlet tube 32, the firing chamber, etc. The microprocessor 108 is in communication with the motor 58. When the sensor 110 detects either the presence or absence of paintballs within the exit tube 52, the microprocessor 108 receives a signal. If paintballs are present in the exit tube 52, the microprocessor 108 may send a signal to turn the motor 58 off. When the sensor 110 does not detect any paintballs within the exit tube 52, the microprocessor 108 can then signal the motor 58 to turn on and rotate the feeder 66, providing additional paintballs to the inlet tube 32 of the paintball marker 20. It should be understood that any acceptable sensors may be utilized to detect paintballs, such as optical or infrared sensors, a contact pad, an actuator switch, etc., without departing from the scope of the present invention.

In an alternative embodiment, a microprocessor can be used to turn off the motor 58 based on the anti-rotational force exerted on the motor 58. As the spring 89 is wound, the torque required for further rotation of the drive shaft 64 increases until the amount of torque required to further wind the drive spring 89 exceeds the capability of the motor 58, causing the motor 58 to stall. As the motor 58 begins to slow down and eventually stall, the current flowing through the motor 58 exceeds the upper limit, such that the microprocessor causes the motor 58 to turn off. In this manner, the micrcoprocessor controls the amount of stored energy in the drive spring 89.

The extended drive shaft 64 of the present invention is provided to have at least a lower portion 112 extending through the lower portion 50 of the container wall 44 for external access. It should be appreciated that the extended drive shaft 22 may extend through either the bottom or top of the loader 10, depending on the desired configuration. An upper portion 114 of the drive shaft 64 is mechanically connected to (or formed integral with) the feeder 66 or other agitating device employed by the active feed loader 10. A handle 62 is attached to the lower portion 112 of the extended drive shaft 64 on the external side of the container wall 44 of the loader 10, so that it can be accessed by a user. In the illustrated embodiment, a portion of the drive shaft 64 is shown non-cylindrical in shape to mate with a non-cylindrical opening 63 formed on the handle 62 so that drive shaft 62 is turned in coordination with the handle 62. The handle 62 may take the form of a crank handle having a plurality of circumferentially projecting teeth 115 as shown in FIGS. 4, 5, and 9. Turning the handle 62 will turn the drive shaft 64 and, thus the feeder 66. Because of the spring 89 located at a position between the drive shaft 64 and the feeder 66, the drive shaft 64 is free to move. Hence, if a jam occurs, turning the handle 62 in a direction opposite the feeding direction will relieve pressure on the paintball stack, and the loader 10 may be manipulated to release a jammed paintball. Releasing the handle 62 will allow the spring 89 to again bias the feeder 66 in the feeding direction, thereby urging paintballs into the exit tube 52.

In addition to assisting the operation of the active feed loader 10 when a jam occurs, the present invention may also provide a means for mechanically operating the loader 10 if the power source of the loader 10 is disconnected or drained of power. As previously discussed, the loader 10 is equipped with a spring 89 held within a spring chamber 100 and disposed between the drive shaft 64 and the feeder 66 for biasing the feeder 66 in the direction of the rotation of the feeder 66 when operated by the motor 58. The handle 62 is mounted to the drive shaft 64 as described above. Manually turning the drive shaft 64 in a counter-clockwise direction will cause a winding of the spring 89. This creates tension between the spring 89 and the drive cone 72. Paintballs 68 will drop into the gap between the fins 76 of the drive cone 72. When the handle 62 is released, the spring 89 will unwind, causing the drive cone 72 to turn and, accordingly, feeding of the paintballs 68 into the exit tube 52 of the loader 10 for firing by the paintball marker 20. Hence, in this embodiment, if a power source such as a battery powering the motor 58 of the active feed loader 10 loses power, a paintball sport player can turn handle 62 to wind the spring 89 and still shoot several paintballs.

A ratchet system 116 as shown in FIG. 10 comprising a ratchet wheel and pawl 118 may also be employed to store potential rotatational energy upon winding spring 89. In the embodiment shown in FIG. 10, drive member 102 can be used as a ratchet wheel. However, it should be appreciated that a ratchet wheel can be separately mounted to the drive shaft 64 apart from drive member 102. A pawl 118 is preferably pivotally secured within the interior area 46 of the container 42 to engage the spaced apart teeth 104 of the gear 102. A spring 120 is preferably provided to bias a head 122 of the pawl 118 into engagement with the spaced apart teeth 104. The handle 62 can be used as described above to wind spring 89 to manually rotate the feeder 66. As the handle 62 is turned, the pawl 118 ratchets with the teeth 104 of the gear 102, thereby preventing unwinding of spring 89 and storage of the spring's energy. A means for disengaging the pawl 118 from the teeth 104 is provided, such as a switch accessible on the external side of the container wall 44, for moving the pawl 118 out of engagement from the teeth 104. However, it should be appreciated that any means adapted to disengage the pawl 118 from the teeth 104 may be used.

When the pawl 118 is disengaged from the teeth 104, the energy stored during winding of the spring 89 is released, and thus, the feeder 66 may rotate to urge paintballs 68 into the exit tube 52 of the loader 10. The spring energy provides short bursts of firing, far beyond the firing rates available for a loader limited to “shake and shoot.”

In the embodiment illustrated in FIG. 3, a biasing member 124 extending from the lower container wall 44 can be removable engaged to the handle 62 to store potential rotatational energy upon winding spring 89. As shown in FIG. 3, the biasing member 124 can be moved into engagement with the teeth 115 of the handle 62 upon winding of spring 89, and removed from engagement to allow the spring 89 to unwind to rotate the feeder 66 in the same manner as discussed above.

A pull cord mechanism can also be used in accordance with the present invention to assist the winding of spring 89. In this embodiment, a cord, string or other flexible material is preferably secured at a first end to one of the drive shaft 64, drive member 102, or spring housing 88. A second end of the cord is preferably exposed through the exterior of the container wall 44 to permit user accessibility. When the spring 89 is in a resting state, the cord is wound within the interior area 46 of the container 42. When a user pulls the cord, spring 89 is wound, storing energy in the spring 89. When the cord is released, energy in the spring 89 causes the feeder 66 to rotate in the same manner as discussed above. Unwinding of spring 89 simultaneously causes the cord to retract back into the interior area 46 of the container 42. Hence, in this embodiment, if a power source such as a battery powering the motor 58 of the active feed loader 10 loses power, a paintball sport player can operate the cord to wind the spring 89 and still shoot several paintballs.

A rack and pinion type actuator can also be used in accordance with the present invention to assist the winding of spring 89. In this embodiment, a rack having a plurality of teeth is spring biased within the interior area 46 of the container 42. The teeth of the rack mesh with complimentary teeth of a gear secured to the drive shaft 64. Drive member 102 may be used to engage the rack. As the rack is moved in a linear direction, it preferably causes the gear to rotate in the feeding direction, thus, rotating the drive shaft 64 and winding the spring 89. The rack can have a portion that extends externally from the loader 10 or can be connected to a handle or lever that extends externally from the loader 10 so that a user may move the rack to wind spring 89. Hence, in this embodiment, if a power source such as a battery powering the motor 58 of the active feed loader 10 loses power, a paintball sport player can operate the rack to wind the spring 89 and still shoot several paintballs.

While various methods, configurations, and features of the present invention have been described above and shown in the drawings for the various embodiments of the present invention, those of ordinary skill in the art will appreciate from this disclosure that any combination of the above features can be used without departing from the scope of the present invention. Accordingly, it is recognized by those skilled in the art that changes may be made to the above described methods and embodiments of the invention without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular methods and embodiments disclosed, but is intended to cover all modifications which are within the spirit and scope of the invention as defined by the appended claims and/or shown in the attached drawings.

Christopher, James T., Goddard, Chris T., Schilling, Albert G.

Patent Priority Assignee Title
10184741, Oct 14 2014 Magpul Industries Corp. Drum magazine assembly and methods
10677550, Oct 14 2014 SUNTRUST BANK, AS ADMINISTRATIVE AGENT Drum magazine assembly and methods
11085718, Oct 14 2014 Magpul Industries Corp. Drum magazine assembly and methods
11680763, Oct 14 2014 Magpul Industries Corp. Drum magazine assembly and methods
11796280, Nov 26 2019 KORE OUTDOOR US , INC Projectile loader having streamlined external body and internal opening mechanism
8950386, Jan 24 2011 Daniel Hedberg Development AB Ball feeding arrangement
9212864, Dec 16 1999 KEE ACTION SPORTS LLC; GI SPORTZ DIRECT LLC Paintball loader
9528784, Oct 14 2014 Magpul Industries Corp. Drum magazine assembly and methods
9658027, Jun 21 2013 KORE OUTDOOR US , INC Compressed gas gun having built-in, internal projectile feed mechanism
9733042, Apr 08 2015 KORE OUTDOOR US , INC Paintball loader with hinged sidewall
9970733, Dec 16 1999 GI SPORTZ DIRECT LLC Paintball loader
D708681, May 06 2013 KORE OUTDOOR LTD Paintball loader
ER4717,
ER6029,
RE45986, Dec 16 1999 KEE ACTION SPORTS LLC; GI SPORTZ DIRECT LLC Spring loaded feed mechanism for paintball loader
Patent Priority Assignee Title
4027646, Jun 08 1976 CITICORP NORTH AMERICA, INC Propulsion device for tennis balls and like spherical objects
4034644, Jun 10 1974 Industriewerke Karlsruhe-Augsburg Aktiengesellschaft Firearm and magazine construction
4207857, May 18 1978 Automatic ball server
4299383, Nov 30 1978 Tennis training device
4332097, Oct 01 1979 Drum magazine for automatic pistol or the like
4563999, Mar 24 1982 Ball separating device for ball throwing machines, especially for squash balls or tennis balls
4834060, Mar 25 1987 GREENE, WILLIAM J Hand carried battery powered ball throwing apparatus
5097985, May 31 1990 Baseball soft-toss pitching machine and method
5490493, Jan 04 1991 Machine for delivering balls, especially tennis balls
5791325, Apr 30 1997 HSBC BANK CANADA Paint ball gun agitator, sensor trigger and duration control
5816232, May 15 1997 HSBC BANK CANADA Paintball loader having active feed mechanism
5947100, Apr 30 1997 HSBC BANK CANADA Paint ball gun agitator sound trigger and duration control
5954042, Nov 10 1997 HSBC BANK CANADA Paintball loader
6109252, Apr 05 1997 HSBC BANK CANADA Projectile feed system
6213110, Dec 16 1999 KEE ACTION SPORTS LLC; GI SPORTZ DIRECT LLC Rapid feed paintball loader
6305367, Feb 26 1999 AIRGUN DESIGNS, INC Hopper feeder
6327953, May 17 1999 HSBC BANK CANADA Device for storing projectile balls and for feeding them to the projectile chamber of a hand weapon
6415781, Mar 10 1999 X O INDUSTRIES INC Bulk loader for paintball gun
6467473, Feb 26 1999 AIRGUN DESIGNS, INC Paintball feeders
6488019, Feb 26 1999 Feeder for a paintball gun
6526955, Sep 11 2001 Lacquer bullet gun feeding system
6609511, Feb 26 1999 Airgun Designs, Inc. Conveyor feed apparatus for a paintball gun
6644293, Jul 11 2001 Paintball marker loader apparatus
6701907, Dec 16 1999 KEE ACTION SPORTS LLC; GI SPORTZ DIRECT LLC Spring loaded feed mechanism for paintball loader
6739323, Jan 04 2002 KORE OUTDOOR US INC Feed mechanism for paint ball gun
6792933, Dec 16 1999 KEE ACTION SPORTS LLC; GI SPORTZ DIRECT LLC Drive cone for paintball loader
6889680, Apr 12 2002 KORE OUTDOOR US , INC Differential detection system for controlling feed of a paintball loader
6915792, Apr 06 2004 Paintgun with a revolving disc for feeding paintballs
7021302, Aug 30 2002 KORE OUTDOOR US , INC Active feed paintball loader with flexible impeller
7234456, Oct 14 2004 KORE OUTDOOR US , INC Device for feeding balls into the ball chamber of a handgun
7343909, Apr 28 2004 KEE ACTION SPORTS LLC; GI SPORTZ DIRECT LLC Mechanical drive assist for active feed paintball loader
7357129, Aug 30 2002 KORE OUTDOOR US , INC Active feed paintball loader with flexible impeller
7357130, May 05 2005 HSBC BANK CANADA Spring-assisted paintball loader
7428899, Oct 14 2004 KORE OUTDOOR US , INC Device for storing projectile balls and feeding them into the projectile chamber of a gun
7441556, Jan 14 2005 Paintball feeder
7445002, Apr 12 2002 KORE OUTDOOR US , INC Differential detection system for controlling feed of a paintball loader
7458370, Dec 01 2005 HSBC BANK CANADA Paintball feeding device of a paintball marker gun
7568478, Oct 26 2004 DYE PRECISION, INC Paintball loader
7654255, Oct 06 2005 KEE Action Sports I LLC Self-regulation paintball agitator system
7770569, Oct 14 2004 KORE OUTDOOR US , INC Procedure and device for feeding balls into the projectile chamber of a handgun
7832389, Oct 11 2005 KORE OUTDOOR US , INC Magnetic drive bypass system for paintball loader
8047191, Apr 28 2004 KORE OUTDOOR US , INC Mechanical drive assist for active feed paintball loader
20020014230,
20020092513,
20030047173,
20030127084,
20040074487,
20040211402,
20050217653,
20060054151,
20060081233,
20060081234,
20060196489,
20060249131,
20070012303,
20070012304,
20070017494,
20070017495,
20070023025,
20070062506,
20070246479,
20080047536,
20080141990,
20080178859,
20090000608,
20090025700,
20090133680,
DE19922589,
DE2035097,
DE3721527,
DE4343870,
DE876370,
EP75970,
EP1054228,
EP1653189,
FR921527,
GB2322438,
GB470201,
GB551077,
JP1179898,
JP6325233,
TW255391,
WO144745,
WO242708,
WO3087698,
WO2007033309,
WO2007035601,
WO2007044546,
WO2007044822,
WO2007098554,
WO2008104061,
WO2009009748,
WO9813660,
///////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 24 2005GODDARD, CHRIS T NATIONAL PAINTBALL SUPPLY, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0276730103 pdf
Oct 14 2005SCHILLING, ALBERT G NATIONAL PAINTBALL SUPPLY, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0276730103 pdf
Oct 14 2005CHRISTOPHER, JAMES T NATIONAL PAINTBALL SUPPLY, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0276730103 pdf
Nov 17 2006NATIONAL PAINTBALL SUPPLY, INC AJ Acquisition I LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0276730160 pdf
Feb 02 2007AJ Acquisition I LLCKEE Action Sports I LLCCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0276750222 pdf
Oct 31 2011KEE Action Sports I LLC(assignment on the face of the patent)
Jul 23 2015KEE Action Sports Technology Holdings, LLCHSBC BANK CANADACORRECTIVE ASSIGNMENT TO CORRECT THE CONVEYING PARTY DATA PREVIOUSLY RECORDED AT REEL: 036228 FRAME: 0186 ASSIGNOR S HEREBY CONFIRMS THE SECURITY INTEREST 0362530301 pdf
Jul 23 2015KEE Action Sports II LLCHSBC BANK CANADACORRECTIVE ASSIGNMENT TO CORRECT THE CONVEYING PARTY DATA PREVIOUSLY RECORDED AT REEL: 036228 FRAME: 0186 ASSIGNOR S HEREBY CONFIRMS THE SECURITY INTEREST 0362530301 pdf
Jul 23 2015KEE Action Sports I LLCHSBC BANK CANADACORRECTIVE ASSIGNMENT TO CORRECT THE CONVEYING PARTY DATA PREVIOUSLY RECORDED AT REEL: 036228 FRAME: 0186 ASSIGNOR S HEREBY CONFIRMS THE SECURITY INTEREST 0362530301 pdf
Jul 23 2015KEE ACTION SPORTS LLCHSBC BANK CANADACORRECTIVE ASSIGNMENT TO CORRECT THE CONVEYING PARTY DATA PREVIOUSLY RECORDED AT REEL: 036228 FRAME: 0186 ASSIGNOR S HEREBY CONFIRMS THE SECURITY INTEREST 0362530301 pdf
Jul 23 2015KEE ACTIONS SPORTS LLCHSBC BANK CANADASECURITY INTEREST SEE DOCUMENT FOR DETAILS 0362280186 pdf
Jul 23 2015KEE Action Sports I LLCHSBC BANK CANADASECURITY INTEREST SEE DOCUMENT FOR DETAILS 0362280186 pdf
Jul 23 2015KEE Action Sports II LLCHSBC BANK CANADASECURITY INTEREST SEE DOCUMENT FOR DETAILS 0362280186 pdf
Jul 23 2015KEE Action Sports Technology Holdings, LLCHSBC BANK CANADASECURITY INTEREST SEE DOCUMENT FOR DETAILS 0362280186 pdf
Dec 23 2015KEE ACTION SPORTS LLCGI SPORTZ DIRECT LLCCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0421640816 pdf
Dec 23 2015KEE Action Sports I LLCKEE ACTION SPORTS LLCMERGER SEE DOCUMENT FOR DETAILS 0421640639 pdf
Nov 30 2020KSV RESTRUCTURING INC , AS THE COURT APPOINTED RECEIVER OF GI SPORTZ DIRECT LLCKORE OUTDOOR US , INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0553620601 pdf
Jul 26 2022HSBC BANK CANADAG I SPORTZ INC GI SPORTZ DIRECT LLC TIPPMANN US HOLDCO, INC TIPPMANN FINANCE LLC TIPPMANN SPORTS, LLC TIPPMANN SPORTS EUR PE, SPRLRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0609890170 pdf
Aug 09 2022KORE OUTDOOR US INC CANADIAN IMPERIAL BANK OF COMMERCE, AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0611310903 pdf
Date Maintenance Fee Events
Oct 14 2016REM: Maintenance Fee Reminder Mailed.
Mar 03 2017M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Mar 03 2017M1554: Surcharge for Late Payment, Large Entity.
Oct 26 2020REM: Maintenance Fee Reminder Mailed.
Mar 02 2021M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Mar 02 2021M1555: 7.5 yr surcharge - late pmt w/in 6 mo, Large Entity.


Date Maintenance Schedule
Mar 05 20164 years fee payment window open
Sep 05 20166 months grace period start (w surcharge)
Mar 05 2017patent expiry (for year 4)
Mar 05 20192 years to revive unintentionally abandoned end. (for year 4)
Mar 05 20208 years fee payment window open
Sep 05 20206 months grace period start (w surcharge)
Mar 05 2021patent expiry (for year 8)
Mar 05 20232 years to revive unintentionally abandoned end. (for year 8)
Mar 05 202412 years fee payment window open
Sep 05 20246 months grace period start (w surcharge)
Mar 05 2025patent expiry (for year 12)
Mar 05 20272 years to revive unintentionally abandoned end. (for year 12)