A micro-lens and a method for forming the micro-lens is provided. A micro-lens includes a substrate and lens material located within the substrate, the substrate having a recessed area serving as a mold for the lens material. The recessed can be shaped such that the lens material corrects for optical aberrations. The micro-lens can be part of a micro-lens array. The recessed area can serve as a mold for lens material for the micro-lens array and can be shaped such that the micro-lens array includes arcuate, non-spherical, or non-symmetrical micro-lenses.
|
12. A system comprising:
a processor; and
an imaging device, the imaging device comprising:
a plurality of pixel cells each having a photosensor, wherein each pixel cell has a center; and
a micro-lens array including a plurality of micro-lenses each associated with one of said pixel cells, each micro-lens having a focal point, wherein the focal point of at least a first microlens is shifted, by a first distance, away from the center of the pixel cell associated with the first micro-lens.
11. An imaging system comprising:
an imager comprising:
an array of pixel cells; and
a micro-lens array positioned over the array of pixel cells, the micro-lens array comprising a plurality of micro-lenses, each of the micro-lenses having a respective focal point, wherein the focal point of at least one of the plurality of micro-lenses differs from the focal point of at least one other of the plurality of micro-lenses, and wherein the differing focal points of the plurality of micro-lenses focus light to different depths in the pixel cells.
1. An imaging system comprising:
an imager comprising:
an array of pixel cells;
a micro-lens array positioned over the array of pixel cells, the micro-lens array comprising a plurality of micro-lenses, each of the micro-lenses having a respective focal point, wherein the focal point of at least one of the plurality of micro-lenses differs from the focal point of at least one other of the plurality of micro-lenses, wherein the micro-lens array is formed in a substrate positioned over the array of pixel cells, wherein the micro-lens array comprises lens material; and
a plurality of openings in the substrate, wherein each opening contains lens material that forms a respective plurality of given micro-lenses out of the plurality of micro-lens in the micro-lens array, each of the given micro-lenses having a respective focal point.
2. The system of
3. The system of
4. The system of
5. The system of
6. The system of
7. The system of
8. The system of
9. The system of
10. The system of
13. The system of
14. The system of
15. The system of
17. The system of
18. The system of
19. The system of
20. The system of
21. The system of
23. The system of
24. The system of
25. The system of
|
The present application is a continuation of U.S. patent application Ser. No. 11/385,679, filed on Mar. 22, 2006, now U.S. Pat. No. 7,566,405 which is a divisional of U.S. patent application Ser. No. 10/721,165, filed on Nov. 26, 2003, (now U.S. Pat. No. 7,333,267), the disclosures of which are incorporated by reference in their entirety.
The present invention relates generally to the field of semiconductor devices and more particularly, to micro-lenses utilized in imager devices or displays.
The semiconductor industry currently uses different types of semiconductor-based imagers, such as charge coupled devices (CCDs), CMOS active pixel sensors (APS), photodiode arrays, charge injection devices and hybrid focal plane arrays, among others, that use micro-lenses. Semiconductor-based displays using micro-lenses are also known.
It is desirable to maximize the amount of light received by the photo-conversion devices of an imager. One way to increase the light received by the photo-conversion devices is to increase the amount of light received by micro-lenses, which collect external light and focus it on the photo-conversion device. Another way is to enhance the positioning of the focal point of each micro-lens to ensure that much of the light received by the micro-lenses is focused on the photo-conversion devices.
Micro-lenses may be formed through an additive process in which a lens material is formed on a substrate and subsequently is formed into a micro-lens shape. Micro-lenses also may be formed by a subtractive process in a substrate. Known subtractive processes are complex and manufacturing micro-lenses from such known processes is difficult.
The present invention provides an easily manufactured micro-lens which can be used in an imager or display device. In one exemplary embodiment, the micro-lens includes a substrate and lens material located within the substrate, the substrate having an opening serving as a mold for the lens material. The opening can be shaped such that the lens material corrects for optical aberrations.
In an exemplary embodiment of an imager, the imager includes a plurality of pixel cells each having a photo-conversion device, a mask for directing electromagnetic radiation to each photo-conversion device, a color filter assembly, and a micro-lens array including a plurality of micro-lenses each associated with one of the pixel cells. The micro-lens array includes a recessed area in a substrate serving as a mold for lens material. The micro-lens array can be configured to effect a change in focal point between the micro-lenses to correct for optical aberrations and/or for the wavelength dependency of the photo-conversion devices for each of the colors detected.
In an exemplary micro-lens system embodiment, a micro-lens system is provided that includes a first micro-lens array including a first plurality of micro-lenses and a second micro-lens array including a second plurality of micro-lenses. The first micro-lens array is positioned over the second micro-lens array.
In an exemplary fabrication embodiment, a method is provided for manufacturing a micro-lens array. The method includes the acts of forming a recessed area in a substrate, wherein the recessed area includes a plurality of micro-lens sections having different profiles, and filling the recessed area with a lens material to form a plurality of micro-lenses.
These and other features of the invention will be more readily understood from the following detailed description of the invention, which is provided in connection with the accompanying drawings.
With specific reference to
At Step 100 (
As illustrated (
Next, at Step 105, electromagnetic radiation, such as light 34, is directed through the lithographic mask 30 to image the photo resist layer 36 and expose first portions 38, leaving second portions 39 unexposed. Following Step 105, at Step 110 portions of the photo resist layer 36 are removed using a suitable resist developer, such as, for example, dilute TMAH. The photo resist layer 36 illustrated in
The remainder of the photo resist layer 36 is then used as an etch mask. Specifically, at Step 115, the substrate 40 is etched through the etch mask (remainder of photo resist layer 36) to form a recessed area 46 (
As illustrated in
Next, at step 120, the remainder of the photo resist layer 36 is removed and the micro-lens array mold 46 for the micro-lens array is filled to form an array of micro-lenses 48 having micro-lenses 48A-C. Preferably, the micro-lens array mold 46 is filled with a lens material 47 (
With specific reference to
As illustrated in
Referring to
By forming micro-lenses through the above-described subtractive method, individual micro-lens structures can be formed for each type of color pixel cells to take advantage of the different absorption depths of light in the substrate 40 due to the different wavelengths of light which pass through the various filters. The focal point of each micro-lens is wavelength dependent. For example, light through a blue filter absorbs at the surface of a silicon substrate and thus requires a short focal length, while light through a red filter absorbs several microns into the silicon substrate and thus requires a longer focal length. Thus, forming micro-lenses with structural differences depending on the wavelength of light to be detected by a pixel cell enhances the light received at each photosensor by controlling the position of the focal point for each micro-lens.
Further, if a photosensor is not centered within its respective pixel cell, then the focal point of the micro-lens would be shifted along the X-Y plane. The use of non-symmetrical lens sections, such as the non-symmetrical lens section 149 adjusts the focal point. Additionally, if the imager 160 is positioned so close to a primary imaging lens, for example, a camera lens, that the size of the imager is comparable to the distance between the camera lens and the imager, the incident angle of light on each pixel cell changes significantly across the imager. This results in signal intensity and color changes across the image, as well as added pixel cell cross talk. By providing micro-lenses with changing shapes for respective lens sections, the effects caused by the close proximity of the imager to the camera lens can be compensated for.
Micro-lenses according to embodiments of the invention described above in connection with
The lens systems 250, 350 are advantageous in that they allow for additional control to be exerted over chromatic properties. Chromatic aberrations can be alleviated at least to some extent with the lens systems 250, 350. The micro-lens arrays in the lens systems 250, 350 may have differing refractive indexes and/or different lens shapes to assist in correcting chromatic aberrations.
While the invention has been described in detail in connection with exemplary embodiments known at the time, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Patent | Priority | Assignee | Title |
11187831, | Apr 19 2016 | Lumentum Operations LLC | Semiconductor lens optimization of fabrication |
8675118, | Sep 30 2010 | Samsung Electronics Co., Ltd. | Image sensor |
Patent | Priority | Assignee | Title |
5479049, | Feb 01 1993 | Sharp Kabushiki Kaisha | Solid state image sensor provided with a transparent resin layer having water repellency and oil repellency and flattening a surface thereof |
5764319, | Aug 08 1995 | Sony Corporation | Transmissive display device with microlenses and microprisms adjacent counter electrode |
5790730, | Nov 10 1994 | Package for integrated optic circuit and method | |
5815229, | Nov 21 1994 | Seiko Epson Corporation | Microlens imbedded liquid crystal projection panel including thermal insulation layer |
6469832, | Dec 28 1999 | Seiko Epson Corporation | Method for manufacturing microlens substrate, microlens substrate, opposing substrate for liquid crystal panel, liquid crystal panel, and projection display apparatus |
6781762, | Jun 12 2002 | 138 EAST LCD ADVANCEMENTS LIMITED | Method of manufacturing microlens, microlens, microlens array plate, electrooptic device and electronic equipment |
6821810, | Aug 07 2000 | Taiwan Semiconductor Manufacturing Company | High transmittance overcoat for optimization of long focal length microlens arrays in semiconductor color imagers |
6909554, | Dec 27 2000 | II-VI Incorporated; MARLOW INDUSTRIES, INC ; EPIWORKS, INC ; LIGHTSMYTH TECHNOLOGIES, INC ; KAILIGHT PHOTONICS, INC ; COADNA PHOTONICS, INC ; Optium Corporation; Finisar Corporation; II-VI OPTICAL SYSTEMS, INC ; M CUBED TECHNOLOGIES, INC ; II-VI PHOTONICS US , INC ; II-VI DELAWARE, INC; II-VI OPTOELECTRONIC DEVICES, INC ; PHOTOP TECHNOLOGIES, INC | Wafer integration of micro-optics |
7042527, | Aug 31 2000 | VISTA PEAK VENTURES, LLC | Field sequential display of color video picture with color breakup prevention |
7115853, | Sep 23 2003 | Aptina Imaging Corporation | Micro-lens configuration for small lens focusing in digital imaging devices |
20050103745, | |||
JP2001239532, | |||
JP5150103, | |||
JP9116127, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 13 2003 | BOETTIGER, ULRICH C | Micron Technology, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 040345 | /0883 | |
Nov 24 2003 | LI, JIN | Micron Technology, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 040345 | /0883 | |
Sep 26 2008 | Micron Technology, Inc | Aptina Imaging Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 040823 | /0001 | |
Jun 23 2009 | Aptina Imaging Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Feb 07 2013 | ASPN: Payor Number Assigned. |
Aug 26 2016 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Aug 20 2020 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 21 2024 | REM: Maintenance Fee Reminder Mailed. |
Date | Maintenance Schedule |
Mar 05 2016 | 4 years fee payment window open |
Sep 05 2016 | 6 months grace period start (w surcharge) |
Mar 05 2017 | patent expiry (for year 4) |
Mar 05 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 05 2020 | 8 years fee payment window open |
Sep 05 2020 | 6 months grace period start (w surcharge) |
Mar 05 2021 | patent expiry (for year 8) |
Mar 05 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 05 2024 | 12 years fee payment window open |
Sep 05 2024 | 6 months grace period start (w surcharge) |
Mar 05 2025 | patent expiry (for year 12) |
Mar 05 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |