Methods and apparatus for use with gas-filled downhole tools are disclosed herein. A disclosed example method includes opening an isolation valve of a downhole tool, wherein the isolation valve is in fluid communication with first and second ports of the downhole tool, and wherein the first and second ports are in fluid communication with respective first and second ends of an interior cavity of the downhole tool; coupling a source of inert gas to the first port and flowing the inert gas into the interior cavity of the downhole tool to expel air from the interior cavity through the second port; closing the second port when the air is expelled from the interior cavity; and closing the isolation valve to seal the inert gas in the interior cavity.
|
11. An apparatus, comprising:
a downhole tool having an interior cavity and first and second opposing ends of the interior cavity;
a first port adjacent the first end and a second port adjacent the second end, wherein the first and second ports are fluidly coupled to the interior cavity, and wherein the second port is configured to expel a gas from the interior cavity;
an isolation valve in fluid communication with the interior cavity and the first port, wherein the isolation valve is configured to enable the interior cavity to be filled with an inert gas; and
a plug configured to close the second port after the interior cavity is filled with the inert gas.
8. A method, comprising:
coupling a pressure source to a first port of a downhole tool, wherein the first port is adjacent a first end of the downhole tool and in fluid communication with an interior cavity of the downhole tool;
changing a pressure of the interior cavity of the via the pressure source; and
determining whether the interior cavity of the downhole tool is sealed based on an amount of pressure change in the interior cavity of the downhole tool, wherein determining whether the interior cavity of the downhole tool is sealed comprises performing the determination following assembly of the downhole tool and prior to using the downhole tool in a borehole.
1. A method, comprising:
opening an isolation valve of a downhole tool, wherein the isolation valve is in fluid communication with first and second ports of the downhole tool, and wherein the first and second ports are in fluid communication with respective first and second ends of an interior cavity of the downhole tool;
coupling a source of inert gas to the first port and flowing the inert gas into the interior cavity of the downhole tool to expel air from the interior cavity through the second port;
closing the second port when the air is expelled from the interior cavity, wherein closing the second port comprises installing a plug in the second port; and
closing the isolation valve to seal the inert gas in the interior cavity.
19. A method, comprising:
opening an isolation valve of a downhole tool, wherein the isolation valve is in fluid communication with first and second ports of the downhole tool, and wherein the first and second ports are in fluid communication with respective first and second ends of an interior cavity of the downhole tool;
coupling a source of inert gas to the first port and flowing the inert gas into the interior cavity of the downhole tool to expel air from the interior cavity through the second port;
closing the second port when the air is expelled from the interior cavity;
closing the isolation valve to seal the inert gas in the interior cavity;
decoupling the source of inert gas from the first port after closing the isolation valve; and
closing the first port after decoupling the source of inert gas from the first port by installing a plug in the first port.
2. The method of
3. The method of
5. The method of
6. The method of
7. The method of
9. The method of
10. The method of
12. The apparatus of
13. The apparatus of
14. The apparatus of
15. The apparatus of
16. The apparatus of
17. The apparatus of
18. The apparatus of
|
During a drilling operation, it may be desirable to evaluate and/or measure properties of encountered formations and formation fluids. In some cases, a drillstring is removed from a borehole and a wireline tool is deployed into the borehole to test, evaluate and/or sample the formations and/or formation fluid(s). In other cases, the drillstring may be provided with devices to test, evaluate and/or sample the surrounding formations and/or formation fluid(s) without having to remove the drillstring from the borehole. The devices or tools used to test, evaluate and/or sample formations and/or formation fluid(s) often include electronic components disposed within a sealed enclosure or interior cavity.
The present disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is to be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of various embodiments. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact.
One or more aspects of the present disclosure relate to methods and apparatus to purge air, which may include airborne pollutants and/or moisture, from sealed interior spaces or cavities of downhole tools. Electronic components can degrade in the presence of certain airborne pollutants and moisture. The degradation of electronic components by airborne pollutants and moisture may be exacerbated in high-temperature environments encountered by downhole tools. For example, countermeasures, such as desiccant bags, are ineffective at high temperatures. Therefore, purging airborne pollutants and/or moisture may be particularly advantageous for downhole tools having one or more electronic components disposed within interior spaces or cavities of these downhole tools.
According to one or more aspects of this disclosure, a downhole tool having one or more electronic components installed in a sealed interior cavity may be configured to receive an inert gas, such as nitrogen, into the interior cavity. To receive the inert gas, the downhole tool may include an entry port configured to be fluidly coupled to a source of inert gas. The flow of inert gas into the interior cavity may expel atmospheric air, as well as any airborne pollutants and/or moisture suspended or otherwise associated with the air, from the interior cavity through an exit port.
When substantially all of the atmospheric air has been expelled from the interior cavity, the exit port may be closed by, for example, filling the exit port with a plug configured to seal the exit port. Additionally, an isolation valve in fluid communication with the entry port may then be closed to seal the inert gas in the interior cavity. When the isolation valve and the exit port have been closed, thereby sealing the inert gas in the interior cavity, the source of inert gas may be removed or fluidly decoupled from the entry port. The entry port may then be closed by, for example, filling the entry port with a plug configured to seal the entry port. As a result, the interior cavity of the downhole tool may be filled with the inert gas, which has a known purity. Therefore, the contents of the interior cavity are known to exclude airborne pollutants and/or moisture that may be hazardous to electronic components disposed within the interior cavity.
Additionally, the example methods and apparatus described herein may be used to increase a pressure rating of a downhole tool. Before being deployed into a well, the entry port described above may be used to introduce a gas to the interior cavity of the downhole tool to increase pressure within the cavity above atmospheric pressure. For example, when the interior cavity is purged of air and instead filled with an inert gas, an amount of inert gas sufficient to pressurize the interior cavity substantially above an atmospheric pressure may be provided. Thus, when the downhole tool is deployed in a wellbore or borehole, this increased internal pressure decreases a pressure differential between the interior cavity of the downhole tool and an external environment outside the downhole tool. This decreased pressure differential may enable the downhole tool to withstand higher external pressure, such as found within a wellbore or borehole.
Still further, the example methods and apparatus described herein may be used to ensure that a downhole tool has been properly assembled. For example, the example methods and apparatus described herein may be used to determine whether an interior cavity of the downhole tool is sealed. To make this determination, the entry port described herein may be configured to receive a pressure source capable of lowering the pressure within the interior cavity of the downhole tool below, for example, an atmospheric pressure. If the interior cavity of the downhole tool is properly sealed, the pressure within the interior cavity will drop in response to the pressure source being coupled to the entry port. On the other hand, if the interior cavity of the downhole tool is improperly sealed, the pressure within the interior cavity will fail to drop sufficiently in response to the pressure source being coupled to the entry port.
As illustrated in
In the example depicted in
The example bottom hole assembly 100 of
The example LWD tool 120 and/or the example MWD module 130 of
The logging and control computer 160 may include a user interface that enables parameters to be input and or outputs to be displayed that may be associated with the drilling operation and/or the formation traversed by the borehole 11. While the logging and control computer 160 is depicted uphole and adjacent the wellsite system, a portion or all of the logging and control computer 160 may be positioned in the bottom hole assembly 100 and/or in a remote location.
The wireline tool 200 also includes a formation tester 214 having a selectively extendable fluid admitting assembly 216 and a selectively extendable tool anchoring member 218 that are respectively arranged on opposite sides of the body 208. The fluid admitting assembly 216 is configured to selectively seal off or isolate selected portions of the wall of the wellbore 202 to fluidly couple to the adjacent formation F and draw fluid samples from the formation F. The formation tester 214 also includes a fluid analysis module 220 through which the obtained fluid samples flow. The fluid may thereafter be expelled through a port (not shown) or it may be sent to one or more fluid collecting chambers 222 and 224, which may receive and retain the formation fluid for subsequent testing at the surface or a testing facility.
In the illustrated example, the electrical control and data acquisition system 206 and/or the downhole control system 212 are configured to control the fluid admitting assembly 216 to draw fluid samples from the formation F and to control the fluid analysis module 220 to measure the fluid samples. In some example implementations, the fluid analysis module 220 may be configured to analyze the measurement data of the fluid samples as described herein. In other example implementations, the fluid analysis module 220 may be configured to generate and store the measurement data and subsequently communicate the measurement data to the surface for analysis at the surface. Although the downhole control system 212 is shown as being implemented separate from the formation tester 214, in some example implementations, the downhole control system 212 may be implemented in the formation tester 214.
One or more modules or tools of the example drill string 12 shown in
The example downhole tool 300 of
As described above, the presence of airborne pollutants and/or moisture in the interior cavity 308 can adversely affect the electronic component(s) 302, particularly under the environmental conditions in a wellbore or borehole. Therefore, the example downhole tool 300 of
The example entry port 310 may be configured to removably engage additional or alternative devices. For example, the example entry port 310 may be configured to engage a pressure source (not shown) to determine whether the interior cavity 308 of the downhole tool 300 is properly sealed. To make this determination, the pressure source is fluidly coupled to the entry port 310 and acts to lower the pressure of the interior cavity 308, for example, at a predetermined rate. If the pressure of the interior cavity 308 drops at a rate different from the predetermined rate, the downhole tool 300 is not properly sealed. Otherwise, if the pressure of the interior cavity 308 drops at the predetermined rate or within a threshold of the predetermined rate, the downhole tool 300 is properly sealed. The example downhole tool 300 of
Additionally, or alternatively, the example entry port 310 may be configured to engage a pressure source to increase a pressure rating of the downhole tool 300. For example, the pressure within the interior cavity 308 can be increased via the pressure source, thereby reducing a pressure differential between the interior cavity 308 and a high-pressure external environment, such as the borehole 11 of
The upper head 304 of the example downhole tool 300 also includes an isolation valve 314 in fluid communication with the entry port 310 and the interior cavity 308. Thus, the isolation valve 314 is capable of isolating the entry port 310 from the interior cavity 308. However, when the isolation valve 314 is open and the inert gas source 312 is coupled to the entry port 310, the inert gas flows through the entry port 310 and the isolation valve 314 into the interior cavity 308 in a direction indicated by an arrow 316.
When the example downhole tool 300 is being purged using the example methods and apparatus described herein, the inert gas fills the interior cavity 308 and forces the atmospheric air (as well as any airborne pollutants or moisture) within the interior cavity 308 toward the lower head 306. In the illustrated example, the lower head 306 includes an exit port 318 in fluid communication with the interior cavity 308. When the exit port 318 is open and the inert gas is flowing into the interior cavity 308 from the isolation valve 314, atmospheric air is expelled through the exit port 318 until substantially all, if not all, of the interior cavity 308 is filled with the inert gas. Once the interior cavity 308 is at least substantially full of the inert gas, the exit port 318 can be shut or closed to prevent air flow to and from the interior cavity 308 via the exit port 318. In the illustrated example, the exit port 318 is sealed shut using a plug 320 configured to engage the exit port 318. The example plug 320 includes a threaded portion configured to mate with a correspondingly threaded portion of the exit port 320. The example exit port 318 may be sealed closed using other suitable device(s) or method(s).
When the example downhole tool 300 is being purged using the example methods and apparatus described herein and the exit port 318 has been sealed using the plug 320, the isolation valve 314 may be closed. Because the exit port 318 and the isolation valve 314 are the only points of entry for gas flow into the interior cavity 308, the inert gas forced into the interior cavity 308 as described above is sealed therein. Once the isolation valve 314 is shut to seal the inert gas in the interior cavity 308, the entry port 310 can be shut or closed. In the illustrated example, the entry port 310 is sealed shut or closed using a plug (not shown) configured to engage the entry port 310. A plug similar to the threaded plug 320 used to seal the exit port 318 may be used to seal the entry port 310. Alternatively, the example entry port 310 may be sealed shut using other suitable device(s) or method(s).
To begin the example process of
To prepare the downhole tool 300 to receive an inert gas, such as nitrogen, the isolation valve 314 is opened (block 402). Furthermore, the entry port 310 and the exit port 318 are also opened (block 404). In the illustrated example of
Once the isolation valve 314, the entry port 310 and the exit port 318 are open, the inert gas source 312 is fluidly coupled to the entry port 310 (block 406). As described above, inert gas flows from the entry port 310, through the isolation valve 314 and into the interior cavity 308. The inert gas begins filling the interior cavity 308 in the direction of the arrow 316, thereby forcing the atmospheric air in the interior cavity 308 out of the exit port 318.
When substantially all, if not all, of the atmospheric air is expelled from the interior cavity 308 (block 408), the exit port 318 is closed (block 410). The decision made at block 408 may be based on a suitable measurement or calculation capable of determining the substantial contents of the interior cavity 308. For example, the decision made at block 408 may be in terms of whether the entire interior cavity 308 is filled with the inert gas by monitoring a gas concentration at the exit port 318 and/or lower head 306. That is, as the inert gas flows through the interior cavity 308 in the direction of the arrow 316 of
In the illustrated example, the exit port 318 is plugged using the example plug 320 that was removed from the exit port 318 at block 404 above. However, alternative devices and/or methods may be used to close the exit port 318. After the exit port 318 has been sealed to prevent escape of the inert gas from the interior cavity 308 to the external environment, the isolation valve 314 is closed (block 412). At this point, the interior cavity 308 is sealed and substantially full of the inert gas. Therefore, the source of inert gas 312 is removed or decoupled from the entry port 310 (block 414) and the entry port 310 is sealed (block 416). In the illustrated example of
Generally, the example process of
To begin the example process of
To extract or purge atmospheric air from a cavity of the downhole tool 300, a source of vacuum pressure is coupled to the entry port 310 of the downhole tool 300 (block 502). The isolation valve 314 is then opened to allow the vacuum to extract or purge any air from the cavity 308 (block 504). In this manner, the vacuum source removes contaminants from the cavity 308 by vaporizing and/or drawing the contaminants out of the cavity 308. When substantially all, if not all, of the atmospheric air and/or other contaminants have been expelled from the interior cavity 308 (block 506), the isolation valve 314 is closed (block 508).
The cavity 308 may then be filled using a source of inert gas 312. In the illustrated example of
To conclude the example process of
As shown in the example of
A body 606 of the example seat 600 includes an annular groove 608 configured to receive a sealing member, such as an O-ring. The sealing member to be received by the annular groove 608 is capable of forming a seal between the body 606 of the seat 600 and an internal surface of the downhole tool 300, such as an annular portion of the upper head 304 of
A body 706 of the example stem 700 also includes an annular groove 708 configured to receive a sealing member, such as an O-ring. The sealing member to be received by the annular groove 708 of the example stem 700 is capable of forming a seal between the body 706 of the stem 700 and an internal surface of the seat 600. Additionally, or alternatively, the seat 600 and the stem 700 may be coupled via complimentary threaded portions thereof. The example stem 700 also includes a recessed space 710 configured to receive a tool, such as an Allen wrench or hex key. The tool can be inserted into the recessed space 710 for purposes of opening and closing the isolation valve 314 by seating the stem 700 into the seat 600 and unseating the stem 700 from the seat 600, respectively.
In view of the foregoing description and the figures, it should be clear that the present disclosure introduces a method comprising: opening an isolation valve of a downhole tool, wherein the isolation valve is in fluid communication with first and second ports of the downhole tool, and wherein the first and second ports are in fluid communication with respective first and second ends of an interior cavity of the downhole tool; coupling a source of inert gas to the first port and flowing the inert gas into the interior cavity of the downhole tool to expel air from the interior cavity through the second port; closing the second port when the air is expelled from the interior cavity; and closing the isolation valve to seal the inert gas in the interior cavity. Closing the second port may comprise installing a plug in the second port. The method may further comprise decoupling the source of inert gas from the first port after closing the isolation valve. The method may further comprise closing the first port after decoupling the source of inert gas from the first port by installing a plug in the first port. The inert gas may comprise nitrogen. The downhole tool may be configured for conveyance in a borehole via at least one of a wireline or a drillstring. Closing the isolation valve to seal the inert gas in the interior cavity may be performed after a sufficient amount of the inert gas is flowed into the interior cavity to displace and expel substantially all airborne pollutants from the interior cavity. Closing the isolation valve may be performed after the interior space is pressurized with the inert gas at a pressure greater than atmospheric pressure.
The present disclosure also introduces a method comprising: coupling a pressure source to a first port of a downhole tool, wherein the first port is adjacent a first end of the downhole tool and in fluid communication with an interior cavity of the downhole tool; changing a pressure of the interior cavity of the via the pressure source; and determining whether the interior cavity of the downhole tool is sealed based on an amount of pressure change in the interior cavity of the downhole tool. The method may further comprise closing a second port of the downhole tool, wherein the second port is adjacent a second end of the downhole tool and in fluid communication with the interior cavity of the downhole tool. Changing the pressure of the interior cavity may comprise reducing the pressure of the interior space to be less than atmospheric pressure. Determining whether the interior cavity of the downhole tool is sealed may comprise performing the determination following assembly of the downhole tool and prior to using the downhole tool in a borehole.
The present disclosure also introduces an apparatus comprising: a downhole tool having an interior cavity and first and second opposing ends of the interior cavity; a first port adjacent the first end and a second port adjacent the second end, wherein the first and second ports are fluidly coupled to the interior cavity, and wherein the second port is configured to expel a gas from the interior cavity; an isolation valve in fluid communication with the interior cavity and the first port, wherein the isolation valve is configured to enable the interior cavity to be filled with an inert gas; and a plug configured to close the second port after the interior cavity is filled with the inert gas. The downhole tool may be configured for conveyance in a borehole via at least one of a wireline or a drillstring. The apparatus may further comprise an electronic circuit disposed in the interior cavity. The first end of the downhole tool may be a pin end and the second end of the downhole tool may be a box end. The isolation valve may be configured to be manually closed after the plug closes the second port. The apparatus may further comprise a second plug configured to close the first port after the isolation valve is closed. The apparatus may further comprise an upper head portion configured to include the isolation valve and the first port. The apparatus may further comprise a lower head portion configured to include the second port.
The foregoing outlines features of several embodiments so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions and alterations herein without departing from the spirit and scope of the present disclosure.
The Abstract at the end of this disclosure is provided to comply with 37 C.F.R. §1.72(b) to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Patent | Priority | Assignee | Title |
11774002, | Apr 17 2020 | Schlumberger Technology Corporation | Hydraulic trigger with locked spring force |
ER3816, | |||
ER5383, |
Patent | Priority | Assignee | Title |
4723967, | Apr 27 1987 | MILLIPORE INVESTMENT HOLDINGS LIMITED 1013 CENTRE ROAD, SUITE 350 | Valve block and container for semiconductor source reagent dispensing and/or purification |
4802502, | Feb 20 1987 | MI Drilling Fluids Company | Purge air control system |
5749389, | Dec 22 1993 | Liquid Air Corporation | Purgeable connection for gas supply cabinet |
6408691, | Nov 27 2000 | Well monitoring system | |
6668924, | Nov 14 2000 | Schlumberger Technology Corporation | Reduced contamination sampling |
6966348, | May 23 2002 | VERSUM MATERIALS US, LLC | Purgeable container for low vapor pressure chemicals |
20080087470, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 14 2010 | Schlumberger Technology Corporation | (assignment on the face of the patent) | / | |||
Jul 14 2010 | GREEN, TAYLOR | Schlumberger Technology Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024683 | /0322 | |
Jul 14 2010 | FRELS, MIKE | Schlumberger Technology Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024683 | /0322 |
Date | Maintenance Fee Events |
Sep 15 2016 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 10 2020 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Sep 11 2024 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 26 2016 | 4 years fee payment window open |
Sep 26 2016 | 6 months grace period start (w surcharge) |
Mar 26 2017 | patent expiry (for year 4) |
Mar 26 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 26 2020 | 8 years fee payment window open |
Sep 26 2020 | 6 months grace period start (w surcharge) |
Mar 26 2021 | patent expiry (for year 8) |
Mar 26 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 26 2024 | 12 years fee payment window open |
Sep 26 2024 | 6 months grace period start (w surcharge) |
Mar 26 2025 | patent expiry (for year 12) |
Mar 26 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |