A nacelle assembly includes an inlet lip section and an airfoil adjacent to the inlet lip section. The airfoil is selectively moveable between a first position and a second position to adjust the flow of oncoming airflow and to influence an effective boundary layer thickness of the nacelle assembly.
|
19. A method of increasing an effective boundary layer thickness of an inlet section of a nacelle of a gas turbine engine, comprising the steps of:
(a) sensing an operability condition;
(b) communicating a sensing signal representative of the operability condition; and
(c) selectively translating an airfoil positioned adjacent to the inlet lip section in a radial outward direction from the nacelle without moving any other portion of the nacelle in response to the sensing signal.
1. A nacelle assembly, comprising:
an inlet lip section; and
at least one airfoil stored in a cavity defined inside said inlet lip section, wherein said cavity is disposed between a radially outer and a radially inner wall of said inlet lip section, and said at least one airfoil is selectively moveable between a first position and a second position in response to a sensing signal and without moving any other portion of the nacelle assembly to influence a flow of oncoming airflow and influence an effective boundary layer thickness of the nacelle assembly.
12. A gas turbine engine, comprising:
at least one fan section, at least one compressor section, at least one combustor section and at least one turbine section, wherein said fan section includes a geartrain;
a nacelle assembly at least partially surrounding said at least one compressor section, said at least one combustor section and said at least one turbine section, wherein said nacelle assembly includes an inlet lip section and at least one airfoil adjacent to said inlet lip section, said at least one airfoil selectively moveable between a first position and a second position to influence an effective boundary layer thickness of said nacelle assembly;
a controller that identifies an operability condition, wherein said controller selectively commands movement of said at least one airfoil between said first position and said second position in response to said operability condition; and
a sensor that produces a sensing signal representing said operability condition and communicates said sensing signal to said controller.
2. The assembly as recited in
3. The assembly as recited in
5. The assembly as recited in
6. The assembly as recited in
7. The assembly as recited in
8. The assembly as recited in
9. The assembly as recited in
11. The assembly as recited in
13. The gas turbine engine as recited in
14. The gas turbine engine as recited in
15. The gas turbine engine as recited in
16. The gas turbine engine as recited in
17. The gas turbine engine as recited in
18. The gas turbine engine as recited in
20. The method as recited in
moving the airfoil between a first position and a second position, wherein the second position is radially outward from the first position.
21. The method as recited in
(c) returning the airfoil to the first position in response to sensing a cruise condition.
22. The method as recited in
(d) pivoting the airfoil from the second position to a third position different than the first position to control a flow stagnation point of oncoming airflow.
23. The method as recited in
|
This invention generally relates to a gas turbine engine, and more particular to a nacelle assembly for a turbofan gas turbine engine.
In an aircraft gas turbine engine, such as a turbofan engine, air is pressurized in a compressor and mixed with fuel in a combustor for generating hot combustion gases. The hot combustion gases flow downstream through turbine stages which extract energy from the hot combustion gases. A fan supplies air to the compressor.
Combustion gases are discharged from the turbofan engine through a core exhaust nozzle and a quantity of fan air is discharged through an annular fan exhaust nozzle defined at least partially by a nacelle assembly surrounding the core engine. A majority of propulsion thrust is provided by the pressurized fan air which is discharged through the fan exhaust nozzle, while the remaining thrust is provided from the combustion gases discharged through the core exhaust nozzle.
The fan section of a turbofan gas turbine engine may be geared to control a tip speed of the fan section. The ability to reduce the fan section tip speed results in decreased noise due to the fan section tip speed being lower than the speed of the rotating compressor. Controlling the fan section tip speed allows the fan section to be designed with a larger diameter, which further decreases noise. However, the nacelle assembly of the turbofan engine must be large enough to support the large diameter fan section.
It is known in the field of aircraft gas turbine engines that the performance of a turbofan engine varies during diversified conditions experienced by the aircraft. An inlet lip section located at the foremost end of the turbofan nacelle assembly is typically designed to enable operation of the turbofan engine and reduce the separation of airflow from the inlet lip section of the nacelle assembly during these diversified conditions. For example, the inlet lip section requires a “thick” inlet lip section to support operation of the engine during specific flight conditions, such as crosswind conditions, take-off and the like. Disadvantageously, the “thick” inlet lip section may reduce the efficiency of the turbofan engine during normal cruise conditions of the aircraft. As a result, the maximum diameter of the nacelle assembly may be approximately 10-20% larger than needed at cruise conditions.
In addition, boundary layer separation is a common problem associated with “thin” inlet lip sections. Boundary layer separation occurs where airflow communicated through the inlet lip section separates from the outer and/or inner flow surfaces of the inlet lip section, which may cause engine stall, the loss of the capability to generate thrust, and may decrease engine efficiency.
Attempts have been made to reduce the onset of boundary layer separation within the nacelle assembly. For example, small vortex generators are known which increase the velocity gradient of oncoming airflow near the effective boundary layer of the inlet lip section. In addition, synthetic jets are known which introduce an airflow at the boundary layer to increase the velocity gradient of the oncoming airflow near the boundary separation point. However, these attempts have proved complex, expensive and have not fully reduced the onset of boundary layer separation.
Accordingly, it is desirable to improve the performance of a turbofan gas turbine engine during diversified conditions to provide a nacelle assembly having a reduced thickness, reduced weight and reduced drag.
A nacelle assembly includes an inlet lip section and an airfoil adjacent to the inlet lip section. The airfoil is selectively moveable between a first position and a second position to adjust the flow of oncoming airflow and influence an effective boundary layer thickness of the nacelle assembly.
A gas turbine engine includes a compressor section, a combustor section, a turbine section, and a nacelle assembly which partially surrounds the compressor section, the combustor section and the turbine section. The nacelle assembly includes an inlet lip section and an airfoil adjacent to the inlet lip section. The airfoil is selectively moveable between a first position and a second position. A controller identifies an operability condition and selectively moves the airfoil between the first position and the second position in response to the operability condition to influence an effective boundary layer thickness of the nacelle assembly.
A method of increasing an effective boundary layer thickness of an inlet lip section of a nacelle of a gas turbine engine includes sensing an operability condition, and selectively translating an airfoil positioned adjacent to the inlet lip section in a radial outward direction relative to the nacelle.
The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description. The drawings that accompany the detailed description can be briefly described as follows.
In a two spool design, the high pressure turbine 20 utilizes the extracted energy from the hot combustion gases to power the high pressure compressor 16 through a high speed shaft 19, and a low pressure turbine 22 utilizes the energy extracted from the hot combustion gases to power the low pressure compressor 15 and the fan section 14 through a low speed shaft 21. However, the invention is not limited to the two spool gas turbine architecture described and may be used with other architecture such as a single spool axial design, a three spool axial design and other architectures. That is, the present invention is applicable to any gas turbine engine, and to any application.
The example gas turbine engine 10 is in the form of a high bypass ratio turbofan engine mounted within a nacelle assembly 26, in which a significant amount of the air pressurized by the fan section 14 bypasses the core engine for the generation of propulsion thrust. The nacelle assembly 26 partially surrounds an engine casing 31. The example illustrated in
In one example, the bypass ratio (i.e., the ratio between the amount of airflow communicated through the fan bypass passage 30 relative to the amount of airflow communicated through the core engine itself) is greater than 10 and the fan section 14 diameter is substantially larger than the diameter of the low pressure compressor 15. The low pressure turbine 22 has a pressure ratio that is greater than five, in one example. The engine 10 may include a geartrain 23 which reduces the speed of the rotating fan section 14. The geartrain 23 can be any known gear system, such as a planetary gear system with orbiting planet gears, a planetary system with non-orbiting planet gears, or other type of gear system. In the disclosed example, the geartrain 23 has a constant gear ratio. It should be understood, however, that the above parameters are only examples of a contemplated geared turbofan engine. That is, the invention is applicable to a traditional turbofan engine as well as other engine architectures.
The discharge airflow F1 is discharged from the engine 10 through a fan exhaust nozzle 33. Core exhaust gases C are discharged from the core engine through a core exhaust nozzle 32 defined between the engine casing 31 and a center plug 34 disposed coaxially around a longitudinal centerline-axis A of the gas turbine engine 10.
The inlet lip section 38 of the nacelle assembly 26 defines a contraction ratio. The contraction ratio represents a relative thickness of the inlet lip section 38 of the nacelle assembly 26 and is represented by the ratio of a highlight area Ha (ring shaped area defined by a highlight diameter Dh) and a throat area Ta (ring shaped area defined by throat diameter Dt) of the inlet lip section 38. Current industry standards typically use a contraction ratio of approximately 1.300 to prevent the separation of the oncoming airflow F2 from the inlet lip section 38, but other contraction ratios may be feasible. “Thick” inlet lip section designs, which are associated with large contraction ratios, increase the maximum diameter Dmax and increase weight and drag penalties associated with the nacelle assembly 26.
Increasing the relative thickness of the boundary layer 35 of the inlet lip section 38 during specific flight conditions allows the oncoming airflow F2 to smoothly enter the inlet lip section 38 with reduced airflow separation, thereby simulating a “thick” inlet lip section 38 that enables the nacelle assembly 26 to be designed with a reduced contraction ratio. In one example, the increased boundary layer 35 thickness is achieved by translating an airfoil 50 (See
The airfoil 50 is positioned adjacent to the inlet lip section 38 of the nacelle assembly 26. The term “adjacent” as used herein means at any position downstream from the foremost end 29 of the inlet lip section 38 at which the airfoil 50 will have any measurable influence on the boundary layer 35. The airfoil 50 is received within a cavity 52 provided within the nacelle assembly 26. The airfoil 50 is selectively introduced at the boundary layer 35 of the inlet lip section 38. The airfoil 50 is introduced at an exterior wall 55 of the nacelle assembly (see
The simulated increased thickness of the inlet lip section 38 is achieved by introducing the airfoil 50 at the boundary layer 35 in response to a detected operability condition. While a single airfoil 50 is illustrated, a plurality of airfoils 50 could be spaced circumferentially about the nacelle assembly 26 such that the “thick” lip function occurs around the entire circumference of the inlet lip section 38 (See
A sensor 61 detects the operability condition and communicates with a controller 62 to translate the airfoil 50 in a radial outward direction relative to the nacelle assembly 26. Of course, this view is highly schematic. It should be understood that the sensor 61 and the controller 62 may be programmed to detect any known operability condition of the aircraft. Also, the sensor 61 can be replaced by any control associated with the gas turbine engine 10 or an associated aircraft. In fact, the controller 62 itself can generate the signal to translate the airfoil 50.
The airfoil 50 is moveable between a first position X (i.e., the stored position within the cavity 52, represented by phantom lines) and a second position X′ (represented by solid lines) via an actuator assembly 56 in response to detecting an operability condition of the gas turbine engine 10, for example. A person of ordinary skill in the art having the benefit of this disclosure would be able to implement an appropriate actuator assembly 56 to translate the airfoil 50, including but not limited to pneumatic, hydraulic and electromechanical actuator assemblies. In another example, the airfoil 50 is moveable to any position between the first position X and the second position X′. The second position X′ is radially outward from the first position X.
The oncoming airflow F2 is forced to flow around the airfoil 50 in response to translating the airfoil 50 to the second position X′, thereby simulating a “thick” inlet lip section 38 as required during certain operability conditions (See
The airfoil 50 is pivotable between the second position X′ to another position Y (represented by phantom lines) by rotating the airfoil 50 about the pivot mount 64. In one example, the position Y is roughly perpendicular to the oncoming airflow F2. Positioning the airfoil 50 at the position Y provides the ability to control a flow stagnation point of a gas turbine engine 10. The flow stagnation point occurs where the velocity gradient of the oncoming airflow F2 is reduced to zero and reverses directions.
In one example, the airfoil 50 is pivoted to the position Y, or any other position between the second position X′ and the position Y, in response to an operability condition. The sensor 61 detects the operability condition and communicates with the controller 62 to pivot the airflow 50 about the pivot mount 64 via the actuator assembly 56, for example. In one example, the operability condition includes a takeoff condition. In another example, the operability condition includes a cross-wind condition. In yet another example, the operability condition includes a windmilling condition. However, other operability conditions may be suitable for pivoting the airfoil 50 to position Y, or to any other positions. In other words, the controller 62 and the sensor 61 are programmable to detect flow stagnation points and adjust the airfoil 50 accordingly.
During normal cruise operation (e.g., a generally constant speed at generally constant, elevated altitude), the airfoil 50 is returned to the first position X within the cavity 52 of the nacelle assembly 26. In the stored position, the outer surface 90 of the airfoil 50 is flush with the outer flow surface of the nacelle assembly. For example, where the airfoil 50 is positioned adjacent to the exterior wall 55 of the nacelle assembly 26, the airfoil 50 is flush with the exterior wall 55 where positioned within the cavity 52 (See
By simulating a “thick” inlet lip section 38 during specific flight conditions, the aircraft may be designed having a “thin” inlet lip section 38 (i.e., a slim-line nacelle having a reduced contraction ration is achieved). Therefore, efficiency is improved during normal cruise operations. Further, by increasing the boundary layer 35 thickness during diverse operability conditions, performance of the gas turbine engine 10 is improved during each specific operability condition. As a result, the nacelle assembly 26 is designed per specific cruise conditions of the aircraft. A reduced maximum diameter of the nacelle assembly 26 may therefore be achieved while reducing weight, reducing fuel burn and increasing the overall efficiency of the gas turbine engine 10.
The foregoing description shall be interpreted as illustrative and not in any limiting sense. A worker of ordinary skill in the art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
Winter, Michael, Jain, Ashok K.
Patent | Priority | Assignee | Title |
10072511, | Oct 02 2014 | ROLLS-ROYCE NORTH AMERICAN TECHNOLOGIES INC.; Rolls-Royce Corporation | Engine nacelle |
10167085, | Jan 27 2016 | General Electric Company | Nozzle and vane system for nacelle anti-icing |
10273903, | Mar 31 2015 | Rolls-Royce Corporation; ROLLS-ROYCE NORTH AMERICAN TECHNOLOGIES INC. | Engine nacelle |
10294862, | Nov 23 2015 | Rolls-Royce Corporation | Turbine engine flow path |
10436112, | Jun 26 2017 | The Boeing Company | Translating turning vanes for a nacelle inlet |
10501196, | Sep 30 2016 | General Electric Company | Nacelle for an aircraft aft fan |
10513978, | May 02 2016 | General Electric Company | Directed flow nozzle swirl enhancer |
10533497, | Apr 18 2016 | RTX CORPORATION | Short inlet with integrated liner anti-icing |
10837362, | Oct 12 2016 | General Electric Company | Inlet cowl for a turbine engine |
11518499, | Sep 30 2016 | General Electric Company | Nacelle for an aircraft aft fan |
11555449, | Oct 12 2016 | General Electric Company | Inlet cowl for a turbine engine |
11584509, | Jun 27 2019 | SUPRA LUMINA TECHNOLOGIES INC. | Axial flow ducted fan with a movable section |
11891163, | Jun 27 2019 | SUPRA LUMINA TECHNOLOGIES INC. | Axial flow ducted fan with a movable section |
11933246, | Apr 17 2019 | SAFRAN AIRCRAFT ENGINES | Turbojet engine comprising a nacelle with an air intake to promote a reversed thrust phase |
12129795, | Apr 02 2019 | SAFRAN AIRCRAFT ENGINES | Air inlet duct for a nacelle of an aircraft propulsion assembly |
Patent | Priority | Assignee | Title |
2632295, | |||
2915262, | |||
2948111, | |||
3059878, | |||
3074232, | |||
3119581, | |||
3222863, | |||
3298637, | |||
3422624, | |||
3524611, | |||
3532100, | |||
3541794, | |||
3568694, | |||
3575259, | |||
3583417, | |||
3611724, | |||
3618699, | |||
3618876, | |||
3623328, | |||
3623494, | |||
3652036, | |||
3662556, | |||
3664612, | |||
3699682, | |||
3736750, | |||
3763874, | |||
3770228, | |||
3905566, | |||
4012013, | Feb 05 1976 | The Boeing Company | Variable camber inlet for supersonic aircraft |
4044973, | Dec 29 1975 | The Boeing Company | Nacelle assembly and mounting structures for a turbofan jet propulsion engine |
4083181, | Jun 14 1976 | The United States of America as represented by the Administrator of the | Gas turbine engine with recirculating bleed |
4132240, | Mar 28 1977 | General Electric Company | Variable double lip quiet inlet |
4147029, | Jan 02 1976 | General Electric Company | Long duct mixed flow gas turbine engine |
4154256, | Mar 29 1978 | The United States of America as represented by the Administrator of the | Self stabilizing sonic inlet |
4220171, | May 14 1979 | The United States of America as represented by the Administrator of the | Curved centerline air intake for a gas turbine engine |
4475702, | Dec 28 1982 | The Boeing Company | Variable camber leading edge assembly for an airfoil |
4722357, | Apr 11 1986 | United Technologies Corporation | Gas turbine engine nacelle |
4738416, | Sep 26 1986 | Quiet Nacelle Corporation | Nacelle anti-icing system |
4865268, | Jun 19 1987 | MTU Motoren - Und Turbinen-Union Muenchen | Jet engine nacelle |
4899958, | Dec 05 1988 | Mitsubishi Jukogyo Kabushiki Kaisha | Air intake system of an aircraft |
4912921, | Mar 14 1988 | SUNDSTRAND CORPORATION, 4751 HARRISON AVENUE, P O BOX 7003, ROCKFORD, ILLINOIS 61125, A CORP OF DE | Low speed spool emergency power extraction system |
4993663, | Jun 01 1989 | GENERAL ELECTRIC COMPANY, A CORP OF NY | Hybrid laminar flow nacelle |
5000399, | Feb 23 1990 | General Electric Company | Variable contour annular air inlet for an aircraft engine nacelle |
5012639, | Jan 23 1989 | UNITED TECHNOLOGIES CORPORATION, A CORP OF DE | Buffer region for the nacelle of a gas turbine engine |
5014933, | Apr 27 1989 | The Boeing Company | Translating lip aircraft cowling structure adapted for noise reduction |
5058617, | Jul 23 1990 | General Electric Company | Nacelle inlet for an aircraft gas turbine engine |
5127222, | Jan 23 1989 | United Technologies Corporation | Buffer region for the nacelle of a gas turbine engine |
5141182, | Jun 01 1990 | General Electric Company | Gas turbine engine fan duct base pressure drag reduction |
5143329, | Jun 01 1990 | General Electric Company | Gas turbine engine powered aircraft environmental control system and boundary layer bleed |
5145126, | Nov 16 1990 | Rolls-Royce plc | Engine nacelle |
5156362, | May 31 1991 | General Electric Company | Jet engine fan nacelle |
5177957, | Mar 22 1990 | MTU Motoren-und Turbinen-Union Muchen GmbH | Propfan turbine engine |
5261227, | Nov 24 1992 | General Electric Company | Variable specific thrust turbofan engine |
5284012, | May 16 1991 | General Electric Company | Nacelle cooling and ventilation system |
5297765, | Nov 02 1992 | Rohr, Inc. | Turbine engine nacelle laminar flow control arrangement |
5349814, | Feb 03 1993 | General Electric Company | Air-start assembly and method |
5351476, | May 16 1991 | General Electric Company | Nacelle cooling and ventilation system |
5357742, | Mar 12 1993 | General Electric Company | Turbojet cooling system |
5447283, | Feb 02 1994 | Grumman Aerospace Corporation | Blown boundary layer control system for a jet aircraft |
5568724, | Oct 15 1991 | MTU Motoren-und Turbinen Union Munchen GmbH | Turbofan engine with means to smooth intake air |
5586431, | Dec 06 1994 | United Technologies Corporation | Aircraft nacelle ventilation and engine exhaust nozzle cooling |
5593112, | Dec 06 1994 | BOEING COMPANY,THE | Nacelle air pump for vector nozzles for aircraft |
5725182, | Feb 21 1995 | Hispano-Suiza Aerostructures | Turbo fan engine thrust reverser |
5727380, | Jul 12 1995 | Hispano-Suiza Aerostructures | Turbojet engine thrust reverser with asymmetrical doors |
5732547, | Oct 13 1994 | The Boeing Company | Jet engine fan noise reduction system utilizing electro pneumatic transducers |
5743488, | Dec 05 1995 | Short Brothers Plc | Aerodynamic low drag structure |
5803410, | Dec 01 1995 | The United States of America as represented by the Administrator of the | Skin friction reduction by micro-blowing technique |
5813625, | Oct 09 1996 | McDonnell Douglas Helicopter Company | Active blowing system for rotorcraft vortex interaction noise reduction |
5841079, | Nov 03 1997 | VOUGHT AIRCRAFT INDUSTRIES, INC | Combined acoustic and anti-ice engine inlet liner |
5934611, | Oct 20 1997 | VOUGHT AIRCRAFT INDUSTRIES, INC | Low drag inlet design using injected duct flow |
5971328, | Jan 15 1998 | FLEXSYS, INC | System for varying a surface contour |
5987880, | Jul 08 1997 | McDonnell Douglas Corporation | Supersonic engine, multi-port thrust reversing system |
6055805, | Aug 29 1997 | United Technologies Corporation | Active rotor stage vibration control |
6089505, | Jul 22 1997 | McDonnell Douglas | Mission adaptive inlet |
6109566, | Feb 25 1999 | United Technologies Corporation; Sikorsky Aircraft Corporation | Vibration-driven acoustic jet controlling boundary layer separation |
6129309, | Jul 24 1998 | McDonnell Douglas Corporation | Aircraft engine apparatus with reduced inlet vortex |
6129311, | Jul 30 1997 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Engine nacelle outer cowl panel with integral track fairings |
6170253, | Nov 01 1997 | Rolls-Royce plc | Cascade structure arrangement for a gas turbine engine |
6179251, | Feb 06 1998 | Northrop Grumman Corporation | Thin inlet lip design for low drag and reduced nacelle size |
6231006, | Mar 28 2000 | McDonnell Douglas Corporation | Mission adaptive inlet |
6259976, | Sep 25 1999 | LEMELSON MEDICAL EDCATION AND RESEARCH FOUNDATION | Fuzzy logic based emergency flight control with thrust vectoring |
6260567, | Jul 22 1997 | Boeing Company, the | Mission adaptive inlet |
6334753, | Jul 31 2000 | RAYTHEON TECHNOLOGIES CORPORATION | Streamlined bodies with counter-flow fluid injection |
6340135, | May 30 2000 | Rohr, Inc.; ROHR, INC | Translating independently mounted air inlet system for aircraft turbofan jet engine |
6360989, | Sep 17 1999 | Rolls-Royce plc | Nacelle assembly for a gas turbine engine |
6375118, | Aug 30 2000 | Boeing Company, the | High frequency excitation apparatus and method for reducing jet and cavity noise |
6379110, | Feb 25 1999 | United Technologies Corporation; Sikorsky Aircraft Corporation | Passively driven acoustic jet controlling boundary layers |
6390418, | Feb 25 1999 | United Technologies Corporation; Sikorsky Aircraft Corporation | Tangentially directed acoustic jet controlling boundary layer |
6471477, | Dec 22 2000 | The Boeing Company | Jet actuators for aerodynamic surfaces |
6651929, | Oct 29 2001 | Pratt & Whitney Canada Corp. | Passive cooling system for auxiliary power unit installation |
6655632, | Aug 27 2002 | General Electric Company | System and method for actively changing an effective flow-through area of an inlet region of an aircraft engine |
6698691, | Feb 15 2001 | Airbus Operations SAS | Process for de-icing by forced circulation of a fluid, an air intake cowling of a reaction motor and device for practicing the same |
6708711, | Nov 02 2001 | Airbus Operations SAS | Air inlet for commercial aircraft jet engine nacelle |
6763651, | Oct 25 2002 | The Boeing Company | Active system for wide area suppression of engine vortex |
6764043, | Dec 11 2002 | The Boeing Company | Rotatable scarf inlet for an aircraft engine and method of using the same |
6793177, | Nov 04 2002 | P Tech, LLC | Active drag and thrust modulation system and method |
6971229, | Feb 26 2003 | JPMORGAN CHASE BANK, N A , AS SUCCESSOR COLLATERAL AGENT | Confluent exhaust nozzle |
7048229, | Sep 26 2000 | TECHLAND RESEARCH, INC | Low sonic boom inlet for supersonic aircraft |
7048230, | May 29 2003 | Rolls-Royce plc | Laminar flow nacelle for an aircraft engine |
7090165, | Jun 02 2003 | Rolls-Royce plc | Aeroengine nacelle |
7131612, | Jul 29 2003 | Pratt & Whitney Canada Corp. | Nacelle inlet lip anti-icing with engine oil |
7165744, | Jan 21 2004 | Rolls-Royce plc | Turbine engine arrangements |
7255309, | Jul 14 2004 | The Boeing Company | Vernier active flow control effector |
7617670, | Mar 31 2006 | Lockheed Martin Corporation | Flow control redistribution to mitigate high cycle fatigue |
7739865, | Jun 10 2004 | RTX CORPORATION | Gas turbine engine inlet with noise reduction features |
7766280, | May 29 2007 | RAYTHEON TECHNOLOGIES CORPORATION | Integral suction device with acoustic panel |
7802760, | Aug 14 2004 | Rolls-Royce plc | Boundary layer control arrangement |
7870721, | Nov 10 2006 | RTX CORPORATION | Gas turbine engine providing simulated boundary layer thickness increase |
20040237534, | |||
20050060982, | |||
20050274103, | |||
20060155432, | |||
20070221788, | |||
20080092548, | |||
20080112799, | |||
20080267762, | |||
20080283676, | |||
20080286094, | |||
20090003997, | |||
20090008508, | |||
20090121083, | |||
FR980347, | |||
GB1312619, | |||
GB1336724, | |||
GB1382809, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 13 2007 | JAIN, ASHOK K | United Technologies Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019201 | /0790 | |
Apr 18 2007 | WINTER, MICHAEL | United Technologies Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019201 | /0790 | |
Apr 24 2007 | United Technologies Corporation | (assignment on the face of the patent) | / | |||
Apr 03 2020 | United Technologies Corporation | RAYTHEON TECHNOLOGIES CORPORATION | CORRECTIVE ASSIGNMENT TO CORRECT THE AND REMOVE PATENT APPLICATION NUMBER 11886281 AND ADD PATENT APPLICATION NUMBER 14846874 TO CORRECT THE RECEIVING PARTY ADDRESS PREVIOUSLY RECORDED AT REEL: 054062 FRAME: 0001 ASSIGNOR S HEREBY CONFIRMS THE CHANGE OF ADDRESS | 055659 | /0001 | |
Apr 03 2020 | United Technologies Corporation | RAYTHEON TECHNOLOGIES CORPORATION | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 054062 | /0001 |
Date | Maintenance Fee Events |
Sep 28 2016 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Nov 23 2020 | REM: Maintenance Fee Reminder Mailed. |
May 10 2021 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Apr 02 2016 | 4 years fee payment window open |
Oct 02 2016 | 6 months grace period start (w surcharge) |
Apr 02 2017 | patent expiry (for year 4) |
Apr 02 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 02 2020 | 8 years fee payment window open |
Oct 02 2020 | 6 months grace period start (w surcharge) |
Apr 02 2021 | patent expiry (for year 8) |
Apr 02 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 02 2024 | 12 years fee payment window open |
Oct 02 2024 | 6 months grace period start (w surcharge) |
Apr 02 2025 | patent expiry (for year 12) |
Apr 02 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |