A wind power electricity generating system having a nacelle; a rotary assembly rotating about an axis with respect to the nacelle; and an angular speed detection device having at least one image sensor facing a surface of the rotary assembly.
|
1. A wind power electricity generating system comprising:
a nacelle;
a rotary assembly rotatable about an axis with respect to the nacelle; and
a rotary assembly angular speed detection device fixed to the nacelle and including at least one image sensor facing a surface of the rotary assembly.
36. A method of controlling a wind power electricity generating system including a nacelle, a rotary assembly rotatable about an axis with respect to the nacelle and a television camera, said method comprising:
(a) acquiring a plurality of images of a surface of the rotary assembly by the television camera fixed to the nacelle;
(b) processing at least two of any overlapping images of the surface of the rotary assembly; and
(c) determining a displacement of the rotary assembly.
29. A wind power electricity generating system comprising:
a nacelle;
a rotary assembly rotatable about an axis with respect to the nacelle; and
a rotary assembly angular speed detection device fixed to the nacelle and including:
a television camera facing a surface of the rotary assembly, said television camera acquires a plurality of images at an acquisition rate, and
an image processing unit coupled to the television camera, said image processing unit receives the plurality of images processes at least two of any overlapping images and determines a displacement of the rotary assembly.
21. A method of controlling a wind power electricity generating system including a nacelle and a rotary assembly rotatable about an axis with respect to the nacelle and a rotary assembly angular speed detection device, said method comprising:
(a) acquiring a plurality of images of a surface of the rotary assembly by the rotary assembly angular speed detection device fixed to the nacelle;
(b) determining an angular speed of the rotary assembly based on the acquired images; and
(c) controlling the wind power electricity generating system based on the determined angular speed of the rotary assembly.
15. A wind power electricity generating system angular speed detection device comprising:
at least one image sensor fixed to a nacelle and facing a surface of a rotary assembly rotatable rotate about an axis with respect to the nacelle, said at least one image sensor acquires a plurality of images of a plurality of portions of the surface of the rotary assembly at an acquisition rate;
at least one light source facing said surface, said at least one light source and configured to illuminate an area of the surface covered by the image sensor; and
an image processing unit coupled to the image sensor, said image processing unit processes at least two of any overlapping acquired images to detect an angular speed of the rotary assembly.
2. The wind power electricity generating system of
3. The wind power electricity generating system of
4. The wind power electricity generating system of
5. The wind power electricity generating system of
6. The wind power electricity generating system of
7. The wind power electricity generating system of
8. The wind power electricity generating system of
9. The wind power electricity generating system of
10. The wind power electricity generating system of
11. The wind power electricity generating system of
12. The wind power electricity generating system of
13. The wind power electricity generating system of
14. The wind power electricity generating system of
16. The wind power electricity generating system angular speed detection device of
17. The wind power electricity generating system angular speed detection device of
18. The wind power electricity generating system angular speed detection device of
19. The wind power electricity generating system angular speed detection device of
20. The wind power electricity generating system angular speed detection device of
22. The method of
23. The method of
24. The method of
25. The method of
(i) acquiring and storing an image of a marker on the surface of the rotary assembly;
(ii) comparing the images acquired by the image sensor with the stored image of the marker;
(iii) determining a passage of the marker; and
(iv) determining an angular position of the rotary assembly based on the angular distance traveled by the rotary assembly since the passage of the marker.
26. The method of
27. The method of
28. The wind power electricity generating system of
30. The wind power electricity generating system of
31. The wind power electricity generating system of
32. The wind power electricity generating system of
33. The wind power electricity generating system of
34. The wind power electricity generating system of
35. The wind power electricity generating system of
37. The method of
(i) determining a plurality of matching image elements in said overlapping images, and
(ii) determining a displacement of the matching image elements.
38. The method of
determining a tangential component of the determined displacement of the matching image elements; and
an angular distance traveled by the rotary assembly in the time lapse between the acquisition of the overlapping images by the tangential component of said determined displacement of the matching image elements.
39. The method of
determining a radial component of the determined displacement of the matching image elements; and
determining a radial displacement of the rotary assembly with respect to the axis by the radial component of the determined displacement of the matching image elements.
40. The method of
41. The method of
42. The method of
|
This application claims the benefit of and priority to Italian Patent Application No. MI2009A 001029, filed on Jun. 10, 2009, the entire contents of which are incorporated herein.
Known wind power electricity generating systems comprise a hub; a number of blades fitted to the hub; and an electric machine comprising a stator and a rotor.
In actual use of these wind power electricity generating systems, the wind blows on the blades to rotate the hub about the axis, and so transfer the kinetic energy of the wind to the hub; and rotation of the hub is transferred to the electric machine, in particular to the rotor which is connected to and rotates with the hub about the axis.
The hub, blades, and rotor define the rotary assembly.
In these known wind power electricity generating systems, the angular speed of the rotary assembly must be detected to control the wind power system. More specifically, the angular speed of the rotor must be detected to control an inverter coupled to the electric machine, and/or to control the pitch of the blades with respect to the wind, and/or to calculate the power coefficient of the system, and/or to monitor system operation and efficiency, and/or to keep within a maximum angular speed.
The angular speed detection device most commonly employed in wind power systems is an encoder, of which there are various known types. The most commonly used are incremental and absolute encoders, which comprise a photodetector or proximity sensor.
Known incremental and absolute encoders comprise a disk, the lateral face of which has at least one succession of holes arranged in at least one circle; and a device for detecting the holes. The disk is fixed to the rotary assembly, and the hole detecting device is fixed to the nacelle.
One known incremental encoder disk has at least one succession of equally spaced holes, and the hole detecting device comprises at least one proximity sensor alongside the disk, or at least one light source and at least one photodetector on either side of the disk.
As the disk rotates, the hole detecting device detects the holes and generates a signal indicating the angular distance travelled and the angular speed of the disk, and therefore of the rotary assembly.
Some known incremental encoders have at least two proximity sensors or at least two photodetectors, and holes arranged in at least two circles, and detect the rotation direction of the disk.
In known absolute encoders, on the other hand, the holes are arranged unevenly in a given configuration in at least two circles, and the hole detecting device comprises at least two photodetectors or at least two proximity sensors. Absolute encoders process the signals from the proximity sensors or photodetectors to determine angular position with respect to a fixed reference.
One problem of using such known encoders in direct-transmission wind power systems lies in the encoder requiring a large disk fixed to the rotary assembly.
In some known direct-transmission wind power systems, the rotor and hub are hollow, are connected directly to each other, and have inside diameters allowing access by workers to the inside for maintenance or inspection. In such cases, using an encoder calls for a disk fixed to the rotary assembly and large enough to permit easy access, which poses two problems: the weight of the disk itself, and the precision with which the holes are formed, which affects the accuracy with which angular speed is determined. Moreover, encoders are sensitive to vibration caused by the blades; and the holes are subject to clogging by dirt, thus impairing reliability of the hole detecting device.
The present disclosure relates to a wind power electricity generating system and relative control method.
More specifically, the present disclosure relates to a wind power electricity generating system comprising a nacelle; a rotary assembly rotating about an axis with respect to the nacelle; and an angular speed detection device for detecting the angular speed of the rotary assembly.
It is thus an object of the present disclosure to provide a wind power system equipped with an angular speed detection device designed to eliminate the drawbacks of the known art.
According to one embodiment of the present disclosure, there is provided a wind power electricity generating system comprising a nacelle; a rotary assembly rotating about an axis with respect to the nacelle; and an angular speed detection device for detecting the angular speed of the rotary assembly; the wind power system being characterized in that the angular speed detection device comprises at least one image sensor facing a surface of the rotary assembly.
Using an image sensor as described herein, the rotary assembly need no longer be equipped with a disk with at least one succession of holes. In fact, any existing surface of the rotary assembly can be used in combination with the image sensor to detect angular speed, and can therefore be selected on the grounds of simplifying installation of the image sensor.
In one embodiment, the image sensor is fixed to the nacelle to acquire images of portions of the surface of the rotary assembly; said surface being an annular or cylindrical surface.
In another embodiment, the surface of the rotary assembly has non-uniform optical properties.
It is a further object of the present disclosure to provide a method of controlling a wind power system, designed to eliminate the drawbacks of the known art.
According to certain embodiments of the present disclosure, there is provided a method of controlling a wind power electricity generating system; the wind power system comprising a nacelle, and a rotary assembly rotating about an axis with respect to the nacelle; and the method being characterized by comprising the steps of acquiring images of a surface of the rotary assembly; and determining the angular speed of the rotary assembly on the basis of the acquired images.
Additional features and advantages are described in, and will be apparent from, the following Detailed Description and the figures.
A non-limiting embodiment of the present disclosure will be described by way of example with reference to the accompanying drawings, in which:
Referring now to the example embodiments of the present disclosure illustrated in
In the example shown, system 1 is a variable-angular-speed, direct-transmission wind power system.
Wind power system 1 comprises a pylon 2, a nacelle 3, a hub 4, three blades 5, an electric machine 6, an angular speed detection device 7 (
The three blades 5 are fitted to hub 4, which in turn is fitted to nacelle 3, which in turn is fitted to pylon 2.
Nacelle 3 is mounted to rotate about an axis Al with respect to pylon 2 to position blades 5 facing the wind; hub 4 is mounted to rotate about an axis A2 with respect to nacelle 3; and each blade 5 is mounted to rotate about a respective axis A3 with respect to hub 4.
With reference to
Hollow shaft 9 is fitted, on bearings 11, to nacelle 3 and connected directly to electric machine 6.
Electric machine 6 comprises a stator 12 and a rotor 13. Stator 12 defines a portion of nacelle 3 and comprises stator windings 14; and rotor 13 is hollow, comprises permanent magnets 15, and is fixed directly to hollow shaft 9.
In the example shown, electric machine 6 is synchronous.
The wind rotates hub 4 about axis A2; rotation of hub 4 is transferred to and so rotates rotor 13 about axis A2; and the relative movement of permanent magnets 15 with respect to stator windings 14—in the form of rotation of rotor 13 at variable angular speed—induces voltage at the terminals of stator windings 14.
Hub 4, blades 5, and rotor 13 are integral with one another, and define a rotary assembly 16 which rotates about axis A2 with respect to nacelle 3.
With reference to
Angular speed is detected by angular speed detection device 7 (
With reference to
In the embodiment illustrated in the
The television camera is positioned to acquire images of portions of surface 19 of rotor 13. In
In an alternative embodiment (not shown in the attached drawings), surface 19 is cylindrical.
In one embodiment, surface 19 is a surface with non-uniform optical properties, such as a rough and uneven surface.
In other embodiments, surface 19 is coated, such as to enhance the roughness of surface 19, or with a coating of uneven color. In one such embodiment, the coating may be of paint.
Light sources 20 are positioned adjacent to image sensor 18 and facing surface 19, and may each be of any type, including but not limited to, an incandescent lamp, a fluorescent lamp, a halogen lamp, one or more LEDs, or a laser.
More specifically, light sources 20 are located on opposite sides of image sensor 18 and positioned so the light beams emitted converge on an area of surface 19 covered by image sensor 18. More specifically, light sources 20 are equidistant from image sensor 18. Moreover, light sources 20 are equidistant from the area of surface 19 covered by image sensor 18.
With reference to
Image processing unit 21 processes the images using an image processing algorithm.
The image processing algorithm determines, in overlapping images, image elements corresponding to the same portion of surface 19, (i.e., determines different sets of pixels representing the same portion of surface 19 in overlapping images).
The image processing algorithm then determines displacement of the image elements corresponding to the same portion of surface 19 in overlapping images.
The displacement is broken down into a radial component with respect to axis A2, and a tangential component perpendicular to the radial component.
From the tangential component, image processing unit 21 determines the angular distance travelled by rotor 13 in the time lapse between acquisition of the processed images containing the corresponding image elements, and, on the basis of the acquisition rate, calculates the angular speed of rotary assembly 16.
Image processing unit 21 also determines the rotation direction of rotary assembly 16 from the tangential component.
From the radial component, image processing unit 21 calculates the relative displacement of rotor 13 with respect to stator 12 and radially with respect to axis A2.
In one embodiment, angular speed detection device 7 also comprises a marker 23, which is defined by an appropriately colored, such as an even-colored, body fixed to surface 19, or by a small reflector fixed to surface 19, or by a small, appropriately painted area of surface 19.
Marker 23 indicates an angular position of rotor 13 with respect to an assumed reference.
Image processing unit 21 comprises a memory 24, in which are stored the angular position, indicated by marker 23, of rotor 13 with respect to the assumed reference, and an image of marker 23. The image acquired by image sensor 18 is compared with the image of marker 23, and, if they match, image processing unit 21 records passage of marker 23, and determines the angular position of rotary assembly 16 with respect to the assumed reference on the basis of the angular distance—determined as described above—traveled by rotor 13 since the passage of marker 23.
Image processing unit 21 therefore provides measurements of the angular speed, radial displacement, and angular position of rotary assembly 16.
With reference to
Control device 8 controls wind power system 1 on the basis of the angular speed and/or angular position of rotary assembly 16 supplied by angular speed detection device 7. The control functions performed by control device 8 include: monitoring correct operation of wind power system 1; controlling blade pitch with respect to the wind; calculating the power coefficient of wind power system 1; controlling an inverter coupled to electric machine 6; controlling the efficiency of wind power system 1; indicating radial displacement of rotor 13 with respect to stator 12; and keeping rotary assembly 16 within the maximum angular speed.
Control device 8 also processes the angular speed and/or angular position of rotary assembly 16 by fast Fourier transform (FFT) to determine events.
In one embodiment, additional communication devices (not shown in the drawings) are associated with control device 8 of wind power system 1 to transmit the angular speed and/or angular position of rotary assembly 16 to a remote control centre (not shown in the drawings) coupled by cable or radio to wind power system 1.
In a different embodiment (not shown) of the present disclosure, the permanent magnets of the rotor are replaced with conducting bars arranged about the rotor, parallel to the rotor axis, and joined by two rings of conducting material to form a so-called squirrel cage; and the electric machine is asynchronous.
Clearly, changes may be made to the system and method as described herein without, however, departing from the scope of the accompanying Claims. Thus, it should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art, for example, to the shape of the inflatable annular structures or to the means of connecting them. Such changes and modifications can be made without departing from the spirit and scope of the present subject matter and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.
Patent | Priority | Assignee | Title |
8536728, | Feb 11 2009 | Vensys Energy AG | Machine support for receiving a rotor/generator assembly of a gearless wind energy plant |
8970778, | Oct 19 2011 | Vitec Group PLC | Camera support apparatus |
9094591, | Oct 19 2011 | Vitec Group PLC | Camera support apparatus |
9217414, | Dec 20 2011 | WINDFIN B V | Wind power turbine for generating electric energy |
9847700, | Jul 24 2012 | SIEMENS ENERGY GLOBAL GMBH & CO KG | Monitoring system for an electric machine |
Patent | Priority | Assignee | Title |
1894357, | |||
1948854, | |||
1979813, | |||
2006172, | |||
2040218, | |||
2177801, | |||
2469734, | |||
2496897, | |||
2655611, | |||
2739253, | |||
2806160, | |||
2842214, | |||
2903610, | |||
3004782, | |||
3072813, | |||
3083311, | |||
3131942, | |||
3168686, | |||
3221195, | |||
3363910, | |||
3364523, | |||
3392910, | |||
3468548, | |||
3700247, | |||
3724861, | |||
3746349, | |||
3748089, | |||
3789252, | |||
3841643, | |||
3860843, | |||
3942026, | Jun 11 1974 | Wind turbine with governor | |
3963247, | Dec 01 1970 | STAMICARBON B.V. | Shaft seal |
3968969, | Mar 01 1974 | Sealing arrangement | |
4022479, | Jan 02 1976 | Sealing rings | |
4061926, | Mar 24 1976 | Wind driven electrical generator | |
4087698, | Apr 22 1977 | Franklin W., Baumgartner | Alternating current power generating system |
4273343, | Nov 10 1978 | IHC Holland N.V. | Shaft seal |
4289970, | Nov 22 1978 | Wind powered electrical generator | |
4291235, | Feb 26 1979 | Windmill | |
4292532, | Mar 14 1980 | LES INDUSTRIES C-MAC INC | Two-stage electric generator system |
4336649, | Dec 26 1978 | The Garrett Corporation | Method of making rotor assembly having anchor with undulating sides |
4339874, | Dec 26 1978 | The Garrett Corporation | Method of making a wedge-shaped permanent magnet rotor assembly |
4348604, | Jun 13 1980 | General Dynamics Corp. | Totally enclosed air cooled electrical machines |
4350897, | Oct 24 1980 | Lighter than air wind energy conversion system | |
4354126, | Sep 12 1980 | Sundstrand Corporation | Dynamoelectric machine with a permanent magnet rotor having laminated poles |
4368895, | Dec 01 1980 | Mitsubishi Denki Kabushiki Kaisha | Shaft sealing device utilizing a non-uniform groove depth |
4398773, | May 12 1979 | Kernforschungsanlage Julich Gesellschaft mit beschrankter Haftung | Magnetic suspension assembly for a rotor |
4452046, | Jul 24 1980 | System for the obtaining of energy by fluid flows resembling a natural cyclone or anti-cyclone | |
4482831, | Apr 05 1982 | Magneto arrangement | |
4490093, | Jul 13 1981 | U.S. Windpower, Inc. | Windpower system |
4517483, | Dec 27 1983 | Sundstrand Corporation | Permanent magnet rotor with saturable flux bridges |
4517484, | Feb 18 1982 | ATELIERS DE CONSTRUCTIONS ELECTRIQUES DE CHARLEROI ACEC | Double gap electric generating machines |
4521026, | Sep 21 1983 | RCA Corporation | Shaft seal |
4585950, | Dec 06 1984 | Wind turbine with multiple generators | |
4613779, | Jul 29 1983 | Electrical pulse generator | |
4638200, | May 23 1984 | Precision Mecanique Labinal | High speed permanent magnet rotor |
4648801, | Sep 20 1982 | James Howden & Company Limited | Wind turbines |
4694654, | Oct 29 1983 | Isuzu Motors Limited | Exhaust energy recovery and generator for use with an engine |
4700096, | Feb 28 1985 | Auxilec | High speed synchronous machine having a rotor provided with magnets arranged for orthoradial magnetic induction |
4714852, | Aug 29 1984 | Fanuc Ltd. | Permanent-magnet field synchronous motor |
4720640, | Sep 23 1985 | TurboStar, Inc. | Fluid powered electrical generator |
4722661, | Oct 09 1985 | NGK Insulators, Ltd. | Magnetic-drive centrifugal pump |
4724348, | Dec 03 1984 | General Electric Company | Rotatable assembly for dynamoelectric machines having means for reducing release of magnet material particles therefrom |
4761590, | Jul 20 1987 | Polestar Magnetronics Inc. | Electric motor |
4792712, | Dec 03 1984 | General Electric Company | Rotor having magnets with enclosing shells |
4801244, | Jun 27 1986 | Flygt AB | Device |
4866321, | Mar 26 1985 | LAMB, WILLIAM C , A CORP OF LA | Brushless electrical machine for use as motor or generator |
4900965, | Sep 28 1988 | HORBAL, LINDA | Lightweight high power electromotive device |
4906060, | Mar 23 1989 | Twind Energy Corporation | Apparatus and method for controlling the output frequency of a wind-driven alternator |
4973868, | Aug 03 1988 | J M VOITH GMBH | Electrical machine with permanent magnet excitation |
4976587, | Jul 20 1988 | DWR WIND TECHNOLOGIES INC | Composite wind turbine rotor blade and method for making same |
5004944, | Dec 23 1985 | UQM TECHNOLOGIES, INC | Lightweight high power electromagnetic transducer |
5063318, | Aug 25 1989 | Sundstrand Corporation | Preloaded permanent magnet rotor assembly |
5090711, | Aug 18 1988 | Americhem, Inc. | Seal assemblies for internal mixers |
5091668, | Dec 08 1989 | KLEBER GIRAUDOUX | Motor having flux-concentrating permanent magnets |
5177388, | May 23 1990 | NIPPONDENSO CO , LTD , | Tandem type alternator |
5191255, | Feb 19 1991 | Magnetospheric Power Corp. Ltd. | Electromagnetic motor |
5275139, | Feb 09 1993 | Fel-Pro Incorporated | Method of sealing a high performance automotive engine and engine assembly |
5280209, | Nov 14 1989 | The United States of America as represented by the Secretary of the Army; UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE ARMY | Permanent magnet structure for use in electric machinery |
5281094, | May 13 1991 | AlliedSignal Inc | Electromechanical apparatus for varying blade of variable-pitch fan blades |
5298827, | Nov 26 1991 | Mitsubishi Denki Kabushiki Kaisha | Permanent magnet type dynamoelectric machine rotor |
5302876, | Apr 02 1991 | Fanuc, Ltd. | Rotor of synchronous motor |
5311092, | Dec 23 1985 | UQM TECHNOLOGIES, INC | Lightweight high power electromagnetic transducer |
5315159, | Oct 12 1989 | Holec Projects B.V. | Wind turbine |
5331238, | Mar 01 1993 | Sundstrand Corporation | Apparatus for containment and cooling of a core within a housing |
5410997, | Feb 09 1993 | Fel-Pro Incorporated | High performance automotive engine gasket and method of sealing a high performance engine |
5419683, | Nov 10 1990 | Wind turbine | |
5456579, | May 31 1994 | Wind turbine blade with governor for maintaining optimum rotational speeds | |
5483116, | Aug 30 1993 | Nippondenso Co., Ltd. | Rotor for a rotating electric machine |
5506453, | Feb 09 1990 | Machine for converting wind energy to electrical energy | |
5579800, | Jul 05 1994 | TYCO VALVES & CONTROLS INC | Rotary valve position indicator and method |
5609184, | Nov 20 1993 | AB Elektronik GmbH | Regulating device |
5663600, | Mar 03 1995 | General Electric Company | Variable speed wind turbine with radially oriented gear drive |
5670838, | Jun 05 1991 | UNIQUE MOBILITY, INC | Electrical machines |
5696419, | Jun 13 1994 | Alternative Generation Devices, Inc.; ALTERNATIVE GENERATION DEVICE, INC | High-efficiency electric power generator |
5704567, | Oct 16 1995 | ARMY, UNITED STATES OF AMERICA THE, AS REPRESENTED BY THE SECRETARY OF | Blade de-icer for rotary wing aircraft |
5746576, | Oct 15 1996 | XZERES CORP | Wind energy conversion device with angled governing mechanism |
5777952, | Jul 12 1995 | Hitachi, LTD; HITACHI COMPUTER PERIPHERALS CO , LTD | Thin bias magnet unit for magneto-optical recording device |
5783894, | Oct 31 1995 | Method and apparatus for generating electrical energy | |
5793144, | Aug 30 1993 | NIPPONDENSO CO , LTD | Rotor for a rotating electric machine |
5798632, | Jul 18 1995 | Alliance for Sustainable Energy, LLC | Variable speed wind turbine generator with zero-sequence filter |
5801470, | Dec 19 1996 | General Electric Company | Rotors with retaining cylinders and reduced harmonic field effect losses |
5811908, | May 02 1995 | Oppama Industry Co. Ltd. | Magneto electric generator rotor and an implement for removing this rotor |
5814914, | Dec 27 1996 | BERG AND BERG ENTERPRISES, LLC | Electric motor or generator |
5844333, | Nov 12 1996 | UNIFIN INTERNATIONAL, INC | Device and method for cooling a motor |
5844341, | Jun 03 1993 | Aea Technology PLC | Electromagnetic machine with at least one pair of concentric rings having modularized magnets and yokes |
5857762, | Jan 11 1994 | ENGICS AG | Bicycle lighting system and generator |
5886441, | Feb 15 1993 | Fanuc, Ltd. | Rotor for synchronous motor |
5889346, | Feb 15 1993 | Fanuc Ltd. | Rotor for synchronous motor |
5894183, | Oct 29 1996 | Emerson Electric Co | Permanent magnet generator rotor |
5925964, | Aug 30 1993 | Denso Corporation | Rotor for a rotating electric machine |
5952755, | Mar 18 1997 | Electric Boat Corporation | Permanent magnet motor rotor |
5961124, | Oct 31 1994 | Leybold Aktiengesellschaft | Sealing system for a vertically disposed shaft |
5973435, | May 07 1997 | Denso Corporation | Rotary electric machine having auxiliary permanent magnets |
5986374, | Jan 18 1996 | NIDEC CORPORATION | Vehicle mounted motor with rotor having ferrite magnet section with embedded permanent magnet pieces therein |
5986378, | Dec 27 1996 | BERG AND BERG ENTERPRISES, LLC | Electric motor and generator having amorphous core pieces being individually accommodated in a dielectric housing |
6013968, | Jan 26 1998 | Robert Bosch GmbH | Synchronous machine, in particular generator for motor vehicle |
6037692, | Dec 16 1997 | MAGNETIC MOTORS, INC | High power low RPM D.C. motor |
6064123, | Oct 13 1995 | Horizontal axis wind turbine | |
6067227, | May 28 1992 | Fujitsu Limited; PFU Limited | Heat sink for cooling a heat producing element and application |
6089536, | Jul 19 1996 | Hitachi, Ltd. | Motor-operated flow control valve and exhaust gas recirculation control valve for internal combustion engine |
6093984, | Aug 21 1998 | Kabushiki Kaisha Toshiba | Rotor for electric motor |
6127739, | Mar 22 1999 | Jet assisted counter rotating wind turbine | |
6172429, | Jan 27 1998 | Unilever Home & Personal Care USA, Division of Conopco, Inc | Hybrid energy recovery system |
6177746, | Oct 21 1999 | RAVEN TECHNOLOGY LLC | Low inductance electrical machine |
6193211, | Jul 19 1996 | Hitachi, Ltd.; Hitachi Car Engineering Co., Ltd. | Motor-operated flow control valve and gas recirculation control valve for internal combustion engine |
6194799, | Dec 16 1997 | MAGNETIC MOTORS, INC | High-power low-RPM DC motor |
6215199, | Nov 13 1999 | Adolf, Lysenko; Sergey, Lysenko | Wind-driven electrical energy generating device |
6232673, | Apr 12 1999 | Winergy AG | Windmill |
6278197, | Feb 05 2000 | Contra-rotating wind turbine system | |
6285090, | Mar 10 1997 | Jeumont Industrie | Low-speed directly driven wind turbine |
6326711, | Sep 07 1999 | Tokyo Parts Industrial Co., Ltd. | DC brushless motor having eccentric rotor |
6365994, | Jul 19 1996 | Hitachi, Ltd.; Hitachi Car Engineering Co., Ltd. | Motor-operated flow control valve and exhaust gas recirculation control valve for internal combustion engine |
6373160, | Jan 30 1998 | Electric machine | |
6376956, | Mar 12 1999 | Denso Corporation | Permanent magnet pole arrangement of motor |
6378839, | Jul 19 1996 | Hitachi, Ltd.; Hitachi Car Engineering Co., Ltd. | Motor-operated flow control valve and exhaust gas recirculation control valve for internal combustion engine |
6384504, | Aug 27 1997 | L-3 Communications Corporation | Electric machine with a rotor constructed of permanent magnets and magnetic flux guides |
6417578, | Oct 30 1996 | Prime Energy Corporation | Power-transducer/conversion system and related methodology |
6428011, | Sep 16 1998 | AES Engineering Limited | Mechanical seals |
6452287, | Jun 14 1999 | LOOKER, LYNELLE; LYNELLE LOOKER | Windmill and method to use same to generate electricity, pumped air or rotational shaft energy |
6452301, | Nov 02 2001 | Electric Boat Corporation | Magnet retention arrangement for high speed rotors |
6455976, | Sep 27 1999 | Nissan Motor Co., Ltd. | Motor/generator with separated cores |
6472784, | Dec 16 1997 | MAGNETIC MOTORS, INC | Methods and apparatus for increasing power of permanent magnet motors |
6474653, | May 07 1999 | Firma Carl Freudenberg | Seal arrangement |
6476513, | Sep 28 2000 | Electrical generator system | |
6483199, | Apr 28 2000 | Mitsubishi Denki Kabushiki Kaisha | Wind power generating device |
6492743, | Jun 28 2001 | Jet assisted hybrid wind turbine system | |
6492754, | Oct 31 2001 | Electric Boat Corporation | Magnet retention channel arrangement for high speed operation |
6499532, | May 04 1999 | OILFIELD-ELECTRIC-MARINE, INC | Electric motor cooling system |
6504260, | Jul 22 1999 | AREVA NP | Wind turbine with counter rotating rotors |
6515390, | Jul 23 1999 | Advanced Rotary Systems, LLC | Electric drive apparatus with a rotor having two magnetizied disks |
6520737, | May 07 1999 | MHI VESTAS OFFSHORE WIND A S | Offshore wind turbine with liquid-cooling |
6548932, | Oct 31 2001 | Electric Boat Corporation | Nonmagnetic magnet retention channel arrangement for high speed rotors |
6590312, | Nov 18 1999 | Denso Corporation | Rotary electric machine having a permanent magnet stator and permanent magnet rotor |
6603232, | Nov 02 2001 | Electric Boat Corporation | Permanent magnet retaining arrangement for high speed rotors |
6617747, | Jul 02 2002 | Petersen Technology Corporation | PM motor and generator with a vertical stator core assembly formed of pressure shaped processed ferromagnetic particles |
6629358, | Feb 12 1996 | ThyssenKrupp Transrapid GmbH | Process for the production of laminated cores |
6664692, | May 25 1999 | Smart Motor AS | Electrical machine |
6676122, | Jul 14 1999 | Wind energy facility with a closed cooling circuit | |
6683397, | Apr 17 2001 | Moteurs Leroy-Somer | Electric machine having at least one magnetic field detector |
6700260, | Jul 20 2000 | Delta Electronics, Inc. | Rotor structure of motor |
6700288, | Aug 15 2001 | DRS NAVAL POWER SYSTEMS, INC | High speed rotor |
6707224, | Jul 02 2002 | Petersen Technology Corporation | PM motor and generator with a vertical stator core assembly formed of pressure shaped processed ferromagnetic particles |
6720688, | Feb 12 1999 | Electric machine | |
6727624, | Jun 21 2001 | Sumitomo Heavy Industries, LTD | Embedded permanent magnet type induction motor which allows coil embedding work to be easily performed |
6746217, | Feb 24 2001 | LG Electronics Inc. | Reciprocating compressor |
6759758, | Jun 13 2002 | M TORRES OLVEGA INDUSTRIAL, S L | Wind turbines for electrical power generation |
6762525, | Apr 30 2002 | BluWav Systems LLC | Cascaded rotary electric motors having axial and radial air gaps |
6781276, | Mar 31 1999 | Siemens Aktiengesellschaft | Generator for a windmill, stator module for use in such a generator and use of such a generator |
6784564, | Dec 19 1997 | Method of operating a wind power installation and a wind power installation | |
6794781, | Apr 13 2002 | Rolls-Royce plc | Compact electrical machine |
6828710, | Feb 19 2002 | REVOLUTION ELECTRIC MOTOR COMPANY, INC | Airgap armature |
6856042, | Oct 09 2003 | Wind turbine generator | |
6879075, | Jan 31 2003 | Curtiss-Wright Electro-Mechanical Corporation | Trapezoidal shaped magnet flux intensifier motor pole arrangement for improved motor torque density |
6888262, | Feb 03 2003 | General Electric Company | Method and apparatus for wind turbine rotor load control |
6891299, | May 03 2000 | Moteurs Leroy-Somer | Rotary electric machine having a flux-concentrating rotor and a stator with windings on teeth |
6903466, | Sep 01 1999 | Alstom | Wind-power generator pod constituted by the body of an electricity generator |
6903475, | Feb 23 2001 | Black & Decker Inc | Stator assembly with an overmolding that secures magnets to a flux ring and the flux ring to a stator housing |
6906444, | Jul 10 2001 | Teijin Seiki Co., Ltd. | Permanent magnet motor |
6911741, | Oct 19 2000 | SCAN WIND GROUP AS | Windmill |
6921243, | Jun 19 2000 | AREVA NP | Device for producing electric current from wind energy |
6931834, | May 01 2002 | Rolls-Royce plc | Cooling systems |
6933645, | Apr 05 2004 | Elliott Company | Permanent magnet rotor and magnet cradle |
6933646, | Aug 30 2001 | Electric rotating machine and electromagnetic machine and apparatus | |
6942454, | Dec 02 2002 | Vertical axis wind turbine | |
6945747, | Mar 26 2004 | Dual rotor wind turbine | |
6949860, | Mar 26 2003 | Showa Corporation | Electric motor |
6951443, | Sep 08 2000 | General Electric Company | Wind turbine ring/shroud drive system |
6972498, | May 28 2002 | General Electric Company | Variable diameter wind turbine rotor blades |
6983529, | Feb 23 2001 | Black & Decker Inc. | Stator assembly with an overmolding that secures magnets to a flux ring and the flux ring to a stator housing |
6984908, | Aug 26 2003 | Deere & Company | Permanent magnet motor |
6987342, | Apr 24 2003 | MINEBEA MITSUMI INC | Rotor for an electric motor |
6998729, | Mar 17 2000 | Wind energy plant having an observation platform | |
7004724, | Feb 03 2003 | General Electric Company | Method and apparatus for wind turbine rotor load control based on shaft radial displacement |
7008172, | Jun 14 2001 | Side-furling co-axial multi-rotor wind turbine | |
7008348, | Feb 18 2003 | ZF WIND POWER ANTWERPEN; ZF Wind Power Antwerpen NV | Gearbox for wind turbine |
7016006, | Dec 07 2001 | TCL CHINA STAR OPTOELECTRONICS TECHNOLOGY CO , LTD | Liquid crystal display |
7021905, | Jun 25 2003 | Advanced Energy Conversion, LLC | Fluid pump/generator with integrated motor and related stator and rotor and method of pumping fluid |
7028386, | Apr 01 2002 | NISSAN MOTOR CO , LTD | Rotor body and production method thereof |
7033139, | May 18 2001 | Cooling device for a wind turbine generator | |
7038343, | Feb 22 2002 | Black & Decker Inc | Field assembly for a motor and method of making same |
7042109, | Aug 30 2002 | MARIAH POWER, INC | Wind turbine |
7057305, | Jul 25 2002 | Siemens Aktiengesellschaft | Wind power installation with separate primary and secondary cooling circuits |
7075192, | Apr 19 2004 | NORTHERN POWER SYSTEMS, INC | Direct drive wind turbine |
7081696, | Aug 12 2004 | DPM TECHNOLOGIES INC | Polyphasic multi-coil generator |
7088024, | Feb 23 2001 | Black & Decker Inc. | Field assembly for a motor and method of making same |
7091642, | Feb 23 2001 | Black & Decker Inc. | Field assembly for a motor and method of making same |
7095128, | Feb 23 2001 | AREVA NP | Method and device for regulating a wind machine |
7098552, | Feb 20 2003 | WECS, Inc. | Wind energy conversion system |
7109600, | Apr 19 2004 | NORTHERN POWER SYSTEMS, INC | Direct drive wind turbine |
7111668, | May 28 2003 | RITTAL GMBH & CO KG | Cooling arrangement for an offshore wind energy installation |
7116006, | Feb 20 2003 | WECS, Inc. | Wind energy conversion system |
7119469, | Feb 23 2001 | Black & Decker Inc. | Stator assembly with an overmolding that secures magnets to a flux ring and the flux ring to a stator housing |
7154191, | Jun 30 2004 | General Electric Company | Electrical machine with double-sided rotor |
7161260, | Jul 25 2002 | Siemens Aktiengesellschaft | Wind power installation with separate primary and secondary cooling circuits |
7166942, | Nov 12 2004 | Mitsubishi Denki Kabushiki Kaisha | Magneto-generator |
7168248, | Jul 22 2003 | Sharp Kabushiki Kaisha | Stirling engine |
7168251, | Dec 14 2005 | GE INFRASTRUCTURE TECHNOLOGY LLC | Wind energy turbine |
7179056, | Sep 13 2002 | Aerodyn Engineering GmbH | Wind energy installation comprising a concentric gearbox generator arrangement |
7180204, | Jan 07 2005 | General Electric Company | Method and apparatus for wind turbine air gap control |
7183665, | Apr 19 2004 | NORTHERN POWER SYSTEMS, INC | Direct drive wind turbine |
7196446, | Apr 24 2003 | Minebea Co., Ltd. | Rotor for an electric motor |
7205678, | Sep 13 2001 | WINDFIN B V | Wind power generator |
7217091, | Jul 20 2004 | General Electric Company | Methods and apparatus for deicing airfoils or rotor blades |
7259472, | Dec 28 2004 | MITSUBISHI HEAVY INDUSTRIES, LTD | Wind turbine generator |
7281501, | Jul 28 2004 | Andreas Stihl AG & Co. KG | Magnet wheel of an internal combustion engine |
7285890, | Mar 30 2005 | MOOG INC | Magnet retention on rotors |
7323792, | May 09 2005 | Wind turbine | |
7345376, | Nov 28 2005 | WEG Electric Corp | Passively cooled direct drive wind turbine |
7358637, | Nov 04 2005 | Elliott Company | Method of compressing lamination stacks for permanent magnet rotor |
7377163, | Mar 16 2004 | Denso Corporation | Liquid level detector |
7385305, | Sep 13 2001 | WINDFIN B V | Wind power generator and bearing structure therefor |
7385306, | Sep 13 2001 | WINDFIN B V | wind power generator including blade arrangement |
7392988, | Jun 29 2006 | CITIBANK, N A , AS ADMINISTRATIVE AGENT AND COLLATERAL AGENT | Rotary seal |
7427814, | Mar 22 2006 | GE INFRASTRUCTURE TECHNOLOGY LLC | Wind turbine generators having wind assisted cooling systems and cooling methods |
7431567, | May 30 2003 | WEG Electric Corp | Wind turbine having a direct-drive drivetrain |
7443066, | Jul 29 2005 | General Electric Company | Methods and apparatus for cooling wind turbine generators |
7458261, | Mar 16 2004 | Denso Corporation | Liquid level detector |
7482720, | Jun 06 2001 | GOLIATH WIND | Rotor and electrical generator |
7548008, | Sep 27 2004 | General Electric Company | Electrical machine with double-sided lamination stack |
7550863, | Apr 27 2007 | XEMC VWEC B V I O | Wind turbine |
7687932, | Sep 13 2001 | WINDFIN B V | Wind power generator and bearing structure therefor |
7960850, | Jun 28 2007 | Vestas Wind Systems A/S | Priority system for communication in a system of at least two distributed wind turbines |
20020047418, | |||
20020047425, | |||
20020056822, | |||
20020063485, | |||
20020089251, | |||
20020148453, | |||
20030011266, | |||
20030102677, | |||
20030137149, | |||
20030230899, | |||
20040086373, | |||
20040094965, | |||
20040119292, | |||
20040150283, | |||
20040151575, | |||
20040151577, | |||
20040189136, | |||
20050002783, | |||
20050002787, | |||
20050082839, | |||
20050230979, | |||
20050280264, | |||
20060000269, | |||
20060001269, | |||
20060006658, | |||
20060012182, | |||
20060028025, | |||
20060066110, | |||
20060071575, | |||
20060091735, | |||
20060125243, | |||
20060131985, | |||
20060152012, | |||
20060152015, | |||
20060152016, | |||
20070020109, | |||
20070116567, | |||
20070187954, | |||
20070187956, | |||
20070222223, | |||
20070222226, | |||
20070222227, | |||
20080003105, | |||
20080025847, | |||
20080050234, | |||
20080107526, | |||
20080118342, | |||
20080197636, | |||
20080197638, | |||
20080246224, | |||
20080290664, | |||
20080303281, | |||
20080309189, | |||
20080315594, | |||
20090045628, | |||
20090060748, | |||
20090094981, | |||
20090096309, | |||
20090302702, | |||
20100019502, | |||
20100026010, | |||
20100117362, | |||
20100123318, | |||
20100260603, | |||
CA2404939, | |||
CA2518742, | |||
CN1554867, | |||
DE10000370, | |||
DE102004018524, | |||
DE102004028746, | |||
DE10219190, | |||
DE10246690, | |||
DE1130913, | |||
DE19636591, | |||
DE19644355, | |||
DE19652673, | |||
DE19711869, | |||
DE19748716, | |||
DE19801803, | |||
DE19932394, | |||
DE19947915, | |||
DE19951594, | |||
DE20102029, | |||
DE2164135, | |||
DE2322458, | |||
DE2506160, | |||
DE2922885, | |||
DE29706980, | |||
DE29819391, | |||
DE3638129, | |||
DE3718954, | |||
DE3844505, | |||
DE3903399, | |||
DE4304577, | |||
DE4402184, | |||
DE4415570, | |||
DE4444757, | |||
EP13157, | |||
EP232963, | |||
EP313392, | |||
EP627805, | |||
EP1108888, | |||
EP1167754, | |||
EP1289097, | |||
EP1291521, | |||
EP1309067, | |||
EP1363019, | |||
EP1375913, | |||
EP1394406, | |||
EP1394451, | |||
EP1589222, | |||
EP1612415, | |||
EP1641102, | |||
EP1677002, | |||
EP1772624, | |||
EP1780409, | |||
EP1829762, | |||
EP1921311, | |||
EP2060786, | |||
ES2140301, | |||
FR1348765, | |||
FR2401091, | |||
FR2445053, | |||
FR2519483, | |||
FR2594272, | |||
FR2760492, | |||
FR2796671, | |||
FR2798168, | |||
FR2810374, | |||
FR2882404, | |||
FR806292, | |||
FR859844, | |||
GB1524477, | |||
GB1537729, | |||
GB191317268, | |||
GB2041111, | |||
GB2050525, | |||
GB2075274, | |||
GB2131630, | |||
GB2144587, | |||
GB2208243, | |||
GB2266937, | |||
GB2372783, | |||
GB859176, | |||
JP10070858, | |||
JP11236977, | |||
JP11299197, | |||
JP2000134885, | |||
JP2001057750, | |||
JP2003453072, | |||
JP2004153913, | |||
JP2004297947, | |||
JP2005006375, | |||
JP2005020906, | |||
JP2005312150, | |||
JP3145945, | |||
JP5122912, | |||
JP57059462, | |||
JP6002970, | |||
JP6269141, | |||
NL8902534, | |||
NZ528743, | |||
RU2000466, | |||
RU2229621, | |||
WO1056, | |||
WO106121, | |||
WO106623, | |||
WO107784, | |||
WO121956, | |||
WO125631, | |||
WO129413, | |||
WO134973, | |||
WO135517, | |||
WO169754, | |||
WO2057624, | |||
WO2083523, | |||
WO233254, | |||
WO3036084, | |||
WO3067081, | |||
WO3076801, | |||
WO2004017497, | |||
WO2005103489, | |||
WO2006013722, | |||
WO2006032515, | |||
WO2007063370, | |||
WO2007110718, | |||
WO2008052562, | |||
WO2008078342, | |||
WO2008086608, | |||
WO2008098573, | |||
WO2008102184, | |||
WO2008116463, | |||
WO2008131766, | |||
WO8402382, | |||
WO9105953, | |||
WO9212343, | |||
WO9730504, | |||
WO9733357, | |||
WO9840627, | |||
WO9930031, | |||
WO9933165, | |||
WO9937912, | |||
WO9939426, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 08 2010 | Wilic S. AR. L. | (assignment on the face of the patent) | / | |||
Jul 02 2010 | STOCKNER, GUNTHER | WILIC S AR L | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024725 | /0104 |
Date | Maintenance Fee Events |
Nov 10 2016 | REM: Maintenance Fee Reminder Mailed. |
Apr 02 2017 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Apr 02 2016 | 4 years fee payment window open |
Oct 02 2016 | 6 months grace period start (w surcharge) |
Apr 02 2017 | patent expiry (for year 4) |
Apr 02 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 02 2020 | 8 years fee payment window open |
Oct 02 2020 | 6 months grace period start (w surcharge) |
Apr 02 2021 | patent expiry (for year 8) |
Apr 02 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 02 2024 | 12 years fee payment window open |
Oct 02 2024 | 6 months grace period start (w surcharge) |
Apr 02 2025 | patent expiry (for year 12) |
Apr 02 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |