A sensor having a monolithically integrated structure for detecting thermal radiation includes: a carrier substrate, a cavity, and at least one sensor element for detecting thermal radiation. Incident thermal radiation strikes the sensor element via the carrier substrate. The sensor element is suspended in the cavity by a suspension.
|
1. A sensor having a monolithically integrated structure for detecting thermal radiation, comprising:
a carrier substrate;
a cavity; and
at least one sensor element for detecting thermal radiation;
wherein incident thermal radiation strikes the sensor element via the carrier substrate, wherein the sensor element is suspended in the cavity by a suspension, and wherein only electrical contacts for electrical contacting of the sensor element are used as the suspension.
2. The sensor as recited in
3. The sensor as recited in
4. The sensor as recited in
|
1. Field of the Invention
The present invention relates to a sensor for detecting thermal radiation as well as a method for manufacturing such a sensor.
2. Description of Related Art
Published German patent document DE 103 15 964 A1 describes a device for detecting radiation signals in the infrared range, a sensor element and a filter element being monolithically integrated into this device.
An object of the present invention is to provide a sensor having a monolithically integrated design for detecting thermal radiation, for example, infrared radiation, including a carrier substrate (carrier wafer), a cavity and at least one sensor element for detecting thermal radiation, for example, infrared radiation, incident thermal radiation striking the sensor element via the carrier substrate and the sensor element being suspended in the cavity via a suspension.
A sensor having such a structure has the advantage that the incident radiation is sensed not via the cap but instead via the carrier substrate, i.e., from the back, so that interfering influences of capping processes, for example, grain boundaries in the cap layer, may be avoided. Heat loss by the sensor element to the environment may also be reduced through the suspension of the sensor element in the cavity.
Within the scope of one example embodiment of the present invention, the sensor element is suspended at a distance from the walls of the cavity.
Within the scope of another example embodiment of the present invention, electrical contacts are used for electrical contacting of the sensor element as a suspension. This has the advantage that no additional components are needed for implementing the suspension, the total space required thus being minimized and the manufacturing method simplified.
The sensor preferably includes a plurality of sensor elements (sensor element array).
Within the scope of another example embodiment of the present invention, the sensor element is selected from the group including temperature-sensitive diodes and resistive bolometers, in particular polycrystalline silicon resistors.
Within the scope of another example embodiment of the present invention, a pressure of a few mbar, for example, ≧0.01 mbar to ≦100 mbar, is enclosed in the cavity.
A sensor according to the present invention may be a sensor manufactured using a method according to the present invention, as explained below.
With regard to additional features and advantages of a sensor according to the present invention, reference is herewith explicitly made to the following explanations in conjunction with the method according to the present invention for manufacturing sensors having a monolithically integrated structure for detecting thermal radiation.
Another object of the present invention is to provide a method for manufacturing a sensor having a monolithically integrated structure for detecting thermal radiation, for example, infrared radiation, in particular for manufacturing a sensor according to the present invention as already explained above, including the following method steps:
A method according to the present invention may also have the advantage that sensors having a very low internal pressure in the cavity may be produced thereby.
The crystal structure of the carrier substrate is preferably preserved during a method according to the present invention.
Method step e) may fundamentally be performed either before or after or simultaneously with method step f).
Within the scope of another example embodiment of the present invention, the method also includes method step b′): depositing and structuring of an absorber layer on a sensor element. In method step c), the second sacrificial layer may be deposited and structured on the absorber layer, on the first sacrificial layer, and optionally on the sensor element.
Within the scope of a further example embodiment of the present invention, the electrical contacts are formed in method step e) as the suspension for suspending the sensor element in the cavity created in method step g). As already explained, this has the advantage that no additional components are required for implementing a sensor element suspension, and thus the entire space required may be minimized and the manufacturing method may be simplified. As already explained, a sensor element suspension as such again has the advantage that heat loss by the sensor element to the environment may be reduced.
Within the scope of a further example embodiment of the present invention, electrical contacts in the form of through-contacts from the sensor surface through the cap layer and through the second sacrificial layer to the sensor element are formed in method step e).
Within the scope of a further example embodiment of the present invention, the electrical contacts are formed in method step e) by forming contact openings, for example, with the aid of a trench process, then forming insulating contact opening walls, for example, with the aid of a thermal oxidation process, in particular the local contact opening through directed oxide etching on the bottom of the through-contact and then filling the contact openings with an electrically conductive material, for example, doped polycrystalline silicon with the aid of a deposition process, for example.
The carrier substrate may be formed from a material having a high resistance to ensure good permeability for infrared radiation. Within the scope of a further specific embodiment of the present invention, the carrier substrate includes a material having a specific electrical resistivity of more than 10 Ωcm, for example, ≧12 Ωcm to ≦18 Ωcm. The carrier substrate may in particular be made of a material having a specific electrical resistivity of more than 10 Ωcm, for example, ≧12 Ωcm to ≦18 Ωcm.
Within the scope of a further example embodiment of the present invention, the first sacrificial layer and the second sacrificial layer include silicon germanium (SiGe) and/or silicon oxide. The first sacrificial layer and the second sacrificial layer may be made of silicon germanium (SiGe) and/or silicon oxide in particular. The first sacrificial layer may be made in particular of epitaxial (single-crystal) silicon germanium. However, the second sacrificial layer need not necessarily be made of epitaxial silicon germanium.
Within the scope of a further example embodiment of the present invention, the sensor element includes silicon germanium (SiGe), in particular doped silicon germanium and/or doped polycrystalline silicon (polysilicon). The sensor element may be made of silicon germanium (SiGe), in particular doped silicon germanium and/or doped polycrystalline silicon (polysilicon).
Within the scope of a further example embodiment of the present invention, the absorber layer, in particular in the case of a sacrificial layer of silicon germanium, includes an oxide, in particular silicon oxide. The absorber layer may be made of an oxide in particular, for example, silicon oxide.
Within the scope of a further example embodiment of the present invention, the cap layer includes epitaxial silicon. The cap layer may be made of epitaxial silicon in particular. The cap layer may have a layer thickness of ≧10 μm to ≦30 μm. The cap layer preferably exhibits polycrystalline growth in the region above the sensor element(s) and monocrystalline growth on the carrier substrate in the region next to the sensor element(s). This may advantageously permit implementation of an ASIC next to the sensor (monolithic integration).
Within the scope of a further example embodiment of the present invention, the electrical contacts include doped polycrystalline silicon. The electrical contacts may be formed from doped polycrystalline silicon in particular.
In the case of a sacrificial layer of silicon germanium, ClF3 may be used as the etchant. In the case of a silicon oxide sacrificial layer, hydrogen fluoride may be used as the etchant.
The access opening may be closed in method step h) by nonconforming deposition, in which a process pressure of a few mbar may advantageously be enclosed in the cavity.
Within the scope of a further example embodiment, a pressure of a few mbar, for example, ≧0.01 mbar to ≦100 mbar, may be enclosed in the cavity in method step h) when closing the access opening.
With regard to additional features and advantages of methods according to the present invention for manufacturing sensors having a monolithically integrated structure for detecting thermal radiation, explicit reference is made to the explanations in conjunction with sensors according to the present invention having a monolithically integrated structure for detecting thermal radiation.
A further object of the present invention is to provide a sensor having a monolithically integrated structure for detecting thermal radiation, for example, infrared radiation, manufactured by a method according to the present invention.
On the basis of a sensor having sensor elements 3 designed in the form of resistive bolometers,
On the basis of a sensor having sensor elements 3 designed in the form of temperature-sensitive diodes,
On the basis of a sensor having sensor elements 3 designed in the form of resistive bolometers,
On the basis of a sensor having sensor elements 3 designed in the form of temperature-sensitive diodes,
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5659195, | Jun 08 1995 | The Regents of the University of California | CMOS integrated microsensor with a precision measurement circuit |
5808350, | Jan 03 1997 | Raytheon Company | Integrated IR, visible and NIR sensor and methods of fabricating same |
6252229, | Jul 10 1998 | DRS Network & Imaging Systems, LLC | Sealed-cavity microstructure and microbolometer and associated fabrication methods |
6329655, | Oct 07 1998 | HRL Laboratories, LLC | Architecture and method of coupling electromagnetic energy to thermal detectors |
20090102003, | |||
DE10315964, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 10 2010 | Robert Bosch GmbH | (assignment on the face of the patent) | / | |||
Oct 01 2010 | FEYH, ANDO | Robert Bosch GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025186 | /0312 | |
Oct 13 2010 | MUELLER, THORSTEN | Robert Bosch GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025186 | /0312 |
Date | Maintenance Fee Events |
Oct 04 2016 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 24 2020 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 09 2016 | 4 years fee payment window open |
Oct 09 2016 | 6 months grace period start (w surcharge) |
Apr 09 2017 | patent expiry (for year 4) |
Apr 09 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 09 2020 | 8 years fee payment window open |
Oct 09 2020 | 6 months grace period start (w surcharge) |
Apr 09 2021 | patent expiry (for year 8) |
Apr 09 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 09 2024 | 12 years fee payment window open |
Oct 09 2024 | 6 months grace period start (w surcharge) |
Apr 09 2025 | patent expiry (for year 12) |
Apr 09 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |