A test circuit includes a signal level modifying circuit. The signal level modifying circuit modifies at least one of signal levels of an inverting input signal and a noninverting input signal supplied to a differential input circuit in response to a test signal outputted from a signal output circuit to make a difference between signal levels of the inverting input signal and the noninverting input signal smaller than that in a normal operation. Here, the test signal indicates a test mode in which input/output characteristics of the differential input circuit is tested.
|
1. A test circuit comprising:
a signal level modifying circuit configured to modify at least one of signal levels of an inverting input signal and a noninverting input signal supplied to a differential input circuit in response to a test signal outputted from a signal output circuit to make a difference between signal levels of said inverting input signal and said noninverting input signal smaller than that in a normal operation,
wherein said test signal indicates a test mode in which input/output characteristics of said differential input circuit is tested.
9. A test method comprising:
changing a normal operation mode to a test mode in which input/output characteristics of a differential input circuit is tested;
modifying at least one of signal levels of an inverting input signal and a noninverting input signal supplied to said differential input circuit in said test mode to make a difference between signal levels of said inverting input signal and said noninverting input signal smaller than that in said normal operation mode; and
comparing an output signal of said differential input circuit with an expected value.
2. The test circuit according to
a pull down circuit configured to pull down a signal level, which is a high level, of said inverting input signal and said noninverting input signal in said test mode.
3. The test circuit according to
a pull up circuit configured to pull up a signal level, which is a low level, of said inverting input signal and said noninverting input signal in said test mode.
4. The test circuit according to
a switching circuit configured to control a connection between a first signal line supplied with said inverting input signal and a second signal line supplied with said noninverting input signal,
wherein said switching circuit electrically connects said first signal line and said second signal through a resistor in said test mode.
5. The test circuit according to
a current control circuit configured to make currents of said inverting input signal and said noninverting input signal smaller than those of a normal operation in said test mode.
6. The test circuit according to
a level generating circuit configured to supply a first voltage and a second voltage different from said first voltage,
wherein said current control circuit includes:
a pair of transistors configured to be connected between a pair of signal lines supplied with said inverting input signal and said noninverting input signal and load circuits respectively, and
a voltage selecting circuit configured to select one of said first voltage and said second voltage based on said test signal and supply said selected voltage to gates of said pair of transistors.
7. The test circuit according to
8. The test circuit according to
10. The test method according to
pulling down a signal level, which is a high level, of said inverting input signal and said noninverting input signal.
11. The test method according to
pulling up a signal level, which is a low level, of said inverting input signal and said noninverting input signal.
12. The test method according to
connecting electrically a first signal line supplied with said inverting input signal and a second signal line supplied with said noninverting input signal through a resistor.
13. The test method according to
making currents of said inverting input signal and said noninverting input signal smaller than those of said normal operation mode.
14. The test circuit according to
wherein said modifying step includes:
making a difference between input voltages of said inverting input signal and said noninverting input signal smaller than that in said normal operation mode.
15. The test circuit according to
wherein said modifying step includes:
making a difference between input currents of said inverting input signal and said noninverting input signal smaller than that in said normal operation mode.
|
This application is based upon and claims the benefit of priority from Japanese patent application No. 2009-028031 filed on Feb. 10, 2009, the disclosure of which is incorporated herein in its entirety by reference.
1. Field of the Invention
The present invention relates to a test circuit for a differential input circuit, and a test method for a differential input circuit.
2. Description of Related Art
To achieve the increases in operational speed and stability (to ensure an operational margin) in a semiconductor device, a differential input circuit 10 is utilized in which an output is determined by a difference between two input voltages (input differential voltage) or a difference between two input currents (input differential current).
Referring to
Referring to
Referring to
Referring to
In general, in the differential input circuit 10, an input offset due to a variation in element or the like may occur. For example, in the voltage comparator circuit 11, an input voltage offset Voff in the range of ±Voff occurs. Given that the absolute value of the input voltage offset is denoted by Voff, an effective input differential voltage in the voltage comparator circuit 11 takes a value (Vd1−Voff) obtained by subtracting the input voltage offset Voff from the input differential voltage Vd1. For this reason, the voltage comparator circuit 11 in which the input voltage offset Voff occurs determines a signal level (voltage) of the output signal OUT based on the effective input differential voltage (Vd1−Voff).
Specifically, the voltage comparator circuit 11 outputs the high level output signal OUT when the voltage level of the noninverting input signal INT is higher than that of the inverting input signal INB, and the effective input differential voltage is (Vd1−Voff), and outputs the low level output signal OUT when the voltage level of the noninverting input signal INT is lower than that of the inverting input signal INB, and the effective input differential voltage is (Vd1−Voff).
Similarly in the current comparator circuit 12, an input current offset Ioff in the range of ±Ioff as illustrated in
The differential input circuit as described above is, for example, as described in Japanese Patent Publication No. Heisei 01-263997A1, preferably used as an amplifier that drives a bit line pair connected to a memory (Patent document 1). In a differential amplifier described in Patent document 1, one of differential inputs is pulled up by a memory cell in a non-writing state, and then data is read from the other one of the differential inputs. As described, the one of the differential inputs is pulled up, and therefore a criterion for level comparison of a potential of the data upon verification is strict.
We have now discovered the following facts. In the case of occurrence of the input voltage offset Voff, even if the input differential voltage Vd1 between the differential input signals INT and INB has a normal value, the effective input differential voltage is decreased to (Vd1−Voff), and therefore an operational margin of the voltage comparator circuit 11 is decreased, resulting in instability. Specifically, if the effective input differential voltage is positive (Vd1−Voff>0), the effective signal levels of the differential input signals determining the signal level of the output signal OUT are not inverted. In this case, the output signal OUT exhibits a same signal level as that for the case of absence of the input voltage offset Voff. On the other hand, if the effective input differential voltage is negative (Vd1−Voff<0), the effective signal levels of the differential input signals determining the signal level of the output signal OUT are inverted. In this case, the output signal OUT transits to a level corresponding to the inverted signal level for the case of absence of the input voltage offset Voff. For example, the high-level output signal OUT should have been outputted based on the inputted differential input signals INT and INB; however, if the input voltage offset Voff is larger than the input differential voltage Vd1, the voltage comparator circuit 11 outputs the inverted low level output signal OUT.
Also, if there is no disturbance such as noise to the differential input signals INT and INB, the voltage comparator circuit 11 exhibits the input/output characteristics as illustrated in
Referring to
As illustrated in
On the other hand, referring to
Also, due to a malfunction or the like of a circuit that generates the differential input signals INT and INB, the input differential voltage Vd1 may be decreased.
On the other hand, as illustrated in
An input/output characteristics test of the differential input circuit 10 is performed under a noise-free environment. For this reason, even in the case of performing the test of the differential input circuit in which the input offset occurs, if the input differential voltage Vd1 between the differential input signals INT and INB is larger than the input voltage offset Voff, the differential input circuit will not be detected as a defective circuit. However, in an actual operating environment, a disturbance due to noise, variation in differential input signal, or the like occurs, and therefore a circuit having a small operational margin often gives rise to a malfunction. Therefore, there are required a test circuit and a test method that can detect a differential input circuit having a small margin, which is likely to malfunction due to an input offset.
The present invention seeks to solve one or more of the above problems, or to improve upon those problems at least in part. In one embodiment, a test circuit includes a signal level modifying circuit configured to modify at least one of signal levels of an inverting input signal and a noninverting input signal supplied to a differential input circuit in response to a test signal outputted from a signal output circuit to make a difference between signal levels of the inverting input signal and the noninverting input signal smaller than that in a normal operation, wherein the test signal indicates a test mode in which input/output characteristics of the differential input circuit is tested.
In another embodiment, a test method includes: changing a normal operation mode to a test mode in which input/output characteristics of a differential input circuit is tested; modifying at least one of signal levels of an inverting input signal and a noninverting input signal supplied to the differential input circuit in the test mode to make a difference between signal levels of the inverting input signal and the noninverting input signal smaller than that in the normal operation mode; and comparing an output signal of the differential input circuit with an expected value.
According to the present invention, an operationally unstable differential input circuit having a small operational margin can be detected.
The above and other objects, advantages and features of the present invention will be more apparent from the following description of certain preferred embodiments taken in conjunction with the accompanying drawings, in which:
The invention will be now described herein with reference to illustrative embodiments. Those skilled in the art will recognize that many alternative embodiments can be accomplished using the teachings of the present invention and that the invention is not limited to the embodiments illustrated for explanatory purposed.
Embodiments of the present invention will hereinafter be described referring to the accompanying drawings. In the drawings, the same or similar reference symbols indicate the same, similar, or equivalent components.
1. First Embodiment
Referring to
(Configuration)
First, referring to
The differential input circuit 10 outputs an output signal OUT having a signal level corresponding to a difference in signal level (voltage or current) between a noninverting input signal INT and an inverting input signal INB that are in a complementary (reverse phase) relationship with each other. In the following, when the noninverting input signal INT and the inverting input signal INB are collectively referred to, they are referred to as differential input signals INT and INB. Also, a voltage difference between them, and a current difference between them are respectively referred to as an input differential voltage and an input differential current. The differential input circuit 10 is exemplified by the voltage comparator circuit 11 illustrated in
The pull down B circuit 31 is connected to an input terminal supplied with the inverting input signal INB, and changes the signal level of the inverting input signal INB based on the test signal TEST_B from the test signal generating circuit 20. The pull down T circuit 32 is connected to an input terminal supplied with the noninverting input signal INT, and changes the signal level of the noninverting input signal INT based on the test signal TEST_T from the test signal generating circuit 20.
Referring to
Referring to
The test circuit 100 in the present embodiment pulls down one of voltage levels of the inverting input signal INB and the noninverting input signal INT to a predetermined value (Vdw in this case) through the pull down B circuit 31 and the pull down T circuit 32 to thereby intentionally reduce an operational margin of the differential input circuit 10. This enables a differential input circuit having a small operational margin to be detected, which could not be conventionally detected as a defective circuit.
(Operation)
Referring to
Referring to
Next, an operation in the test mode (time T3 to T7 in this case) is described. In the present embodiment, any one of the signal levels of the inverting input signal INB and the noninverting input signal INT is controlled. In this example, during a time period T3 to T5, the signal level of the inverting input signal INB is controlled, and during a time period T5 to T7, the signal level of the noninverting input signal INT is controlled.
During the time period T3 to T5, the test signal generating circuit 20 outputs the high level test signal TEST_B and low level test signal TEST_T. The NMOS transistor N11 is turned on in response to the high level test signal TEST_B, and therefore the pull down B circuit 31 pulls down the signal level (voltage) of the inverting input signal INB by the voltage Vdw determined by the resistor R11. Based on this, the high level voltage of the inverting input signal INB is pulled down from VH by Vdw (time T3 to T4), and the low level voltage is pulled down from VL by Vdw (time T4 to T5). On the other hand, the NMOS transistor N12 is turned off based on the low level test signal TEST_T, and therefore the signal level (voltage) of the noninverting input signal INT is brought to the same signal level as that in the normal mode.
From the above, the input differential voltage Vd2 (absolute value) between the differential input signals INT and INB during the time period T3 to T4 becomes smaller than the input differential voltage Vd1 in the normal mode by Vdw.
Similarly, during the time period T5 to T7, the test signal generating circuit 20 outputs the low level test signal TEST_B and the high level test signal TEST_T. The NMOS transistor N11 is turned off based on the low level test signal TEST_B, and therefore the signal level (voltage) of the inverting input signal INB is brought to the same signal level as that in the normal mode. On the other hand, the NMOS transistor N12 is turned on in response to the high level test signal TEST_T, and therefore the pull down T circuit 32 pulls down the signal level (voltage) of the noninverting input signal INT by the voltage Vdw determined by the resistor R12. Based on this, the high level voltage of the noninverting input signal INT is pulled down from VH by Vdw (time T5 to T6), and the low level voltage is pulled down from VL by Vdw (time T6 to T7).
From the above, the input differential voltage Vd2 between the differential input signals INT and INB during the time period T5 to T6 becomes smaller than the input differential voltage Vd1 in the normal mode by Vdw.
In the present embodiment, the input differential voltage Vd2 between the differential input signals INT and INB in the test mode is made smaller than the input differential voltage Vd1 in the normal operation mode by the voltage Vdw to thereby forcedly reduce the operational margin. This enables a differential input circuit having a small operational margin to be detected as a defective circuit.
Referring to
Referring to
Referring to
In the present invention, the test is performed under the condition that the input differential voltage Vd2 between the differential input signals INT and INB is made smaller than the input differential voltage Vd1 in the normal operation mode through the pull down B circuit 31 and the pull down T circuit 32 to thereby forcedly reduce the operational margin of the differential input circuit 10. That is, in the present invention, the test is performed with the effective signal levels of the inverting input signal and the noninverting input signal being made more easily invertible than in the normal operation mode. This enables the operationally unstable differential input circuit having the reduced operational margin due to the input voltage offset to be detected as a defective circuit.
Referring to
Referring to
The differential input circuit in which the input voltage offset Voff smaller than the input differential voltage Vd1 occurs has not been conventionally detected as a defective circuit. However, in the case of the input voltage offset Voff close to the input differential voltage Vd1, a malfunction may have occurred due to a small noise or a variation in differential input signal. On the other hand, in the present invention, the test is performed with the input differential voltage Vd2 smaller than the input differential voltage Vd1 in the normal operation mode. By setting the input differential voltage Vd2 smaller than the detection target input voltage offset Voff, a differential input circuit in which the input voltage offset Voff larger than the input differential voltage Vd2 occurs can be detected as a defective circuit. Also, by setting the input differential voltage Vd2 depending on an allowable range of a variation in the differential input signal (allowable range of the input differential voltage), a differential input circuit that malfunctions due to the differential input signal varying within the allowable range can be detected as a defective circuit.
As described above, the test circuit 100 in the first embodiment decreases a signal level of one of the inverting input signal INB and the noninverting input signal INT in the test mode to thereby make the input differential voltage between the differential input signals INT and INB smaller than that in the normal mode. This enables the operational margin of the differential input circuit 10 to be reduced to perform the test. In the present invention, the operational margin of the differential input circuit 10 is reduced to perform the test of the input/output characteristics. Therefore the operationally unstable differential input circuit in which the input voltage offset Voff is smaller than the input differential voltage Vd1 in the normal operation mode and close to a value of Vd1 can be detected as a defective circuit. Also, in the present invention, by changing driving forces of the pull down B circuit 31 and the pull down T circuit 32, the input differential voltage Vd2 can be set to an arbitrary value. This enables a level of the input voltage offset Voff in a detectable defective circuit to be arbitrarily set.
The above example describes the configuration in which the test is performed with the test signals TEST_B and TEST_T being brought to the high and low levels to pull up the inverting input signal INB; however, the test may be performed with the test signals TEST_B and TEST_T being brought to the low and high levels respectively to pull up the noninverting input signal INT.
Also, in the present embodiment, as the differential input circuit 10, the voltage comparator circuit is described as an example; however, even in the case of the current comparator circuit, the operationally unstable differential input circuit 10 can be similarly detected as a defective circuit by changing the input differential current to reduce the operational margin. That is, by replacing the input voltage with the input current to apply the above-described operation to the current comparator circuit, the same operation and effect can be obtained.
2. Second Embodiment
Referring to
(Configuration)
First, referring to
The pull up B circuit 41 is connected to an input terminal supplied with an inverting input signal INB, and changes a signal level of the inverting input signal INB based on the test signal TEST_B from the test signal generating circuit 21. The pull up T circuit 42 is connected to an input terminal supplied with a noninverting input signal INT, and changes a signal level of the noninverting input signal INT based on the test signal TEST_T from the test signal generating circuit 21.
Referring to
Referring to
The test circuit 101 in the present embodiment pulls up one of voltage levels of the inverting input signal INB and the noninverting input signal INT to a predetermined value (Vup in this embodiment) through the pull up B circuit 41 and the pull up T circuit 42 to thereby intentionally reduce an operational margin of the differential input circuit 10. This enables a differential input circuit having a small operational margin to be detected, which could not be conventionally detected as a defective circuit.
(Operation)
Referring to
Referring to
Next, an operation in the test mode (time T3 to T7 in this case) is described. In the present embodiment, any one of the signal levels of the inverting input signal INB and the noninverting input signal INT is controlled. In this example, during a time period T3 to T5, the signal level of the inverting input signal INB is controlled, and during a time period T5 to T7, the signal level of the noninverting input signal INT is controlled.
During the time period T3 to T5, the test signal generating circuit 21 outputs the low level test signal TEST_B and the high level test signal TEST_T. The PMOS transistor P21 is turned in response to the low level test signal TEST_B, and therefore the pull up B circuit 41 pulls up the signal level (voltage) of the inverting input signal INB by a voltage Vup determined by the resistor R21. Based on this, the high level voltage of the inverting input signal INB is pulled up from VH by Vup (time T3 to T4), and the low level voltage is pulled up from VL by Vup (time T4 to T5). On the other hand, the PMOS transistor P22 is turned off based on the high level test signal TEST_T, and therefore the signal level (voltage) of the noninverting input signal INT is brought to a same level as that in the normal mode.
From the above, the input differential voltage Vd3 (absolute value) between the differential input signals INT and INB during the time period T4 to T5 becomes smaller than the input differential voltage Vd1 in the normal mode by Vup.
Similarly, during the time period T5 to T7, the test signal generating circuit 21 outputs the high level test signal TEST_B and the low level test signal TEST_T. The PMOS transistor P21 is turned off based on the high level test signal TEST_B, and therefore the signal level (voltage) of the inverting input signal INB is brought to a same signal level as that in the normal mode. On the other hand, the PMOS transistor P22 is turned on in response to the low level test signal TEST_T, and therefore the pull up T circuit 42 pulls up the signal level (voltage) of the noninverting input signal INT by the voltage Vup determined by the resistor R22. Based on this, the high level voltage of the noninverting input signal INT is pulled up from VH by Vup (time T5 to T6), and the low level voltage is pulled up from VL by Vup (time T6 to T7).
From the above, the input differential voltage Vd3 between the differential input signals INT and INB during the time period T6 to T7 becomes smaller than the input differential voltage Vd1 in the normal mode by Vup.
In the present embodiment, the input differential voltage Vd3 between the differential input signals INT and INB in the test mode is made smaller than that Vd1 in the normal operation mode by the voltage Vup to thereby forcedly reduce the operational margin. This enables a differential input circuit having a small operational margin to be detected as a defective circuit.
Referring to
Referring to
Referring to
In the present invention, the test is performed under the condition that the input differential voltage Vd3 between the differential input signals INT and INB is made smaller than the input differential voltage Vd1 in the normal operation mode through the pull up B circuit 41 and the pull up T circuit 42 to thereby forcedly reduce the operational margin of the differential input circuit 10. That is, in the present invention, the test is performed with the effective signal levels of the inverting input signal and the noninverting input signal being made more easily invertible than in the normal operation mode. This enables the operationally unstable differential input circuit having the reduced operational margin due to the input voltage offset to be detected as a defective circuit.
Referring to
Referring to
The differential input circuit in which the input voltage offset Voff smaller than the input differential voltage Vd1 occurs has not been conventionally detected as a defective circuit. However, in the case of the input voltage offset Voff close to the input differential voltage Vd1, a malfunction may have occurred due to small noise or a variation in differential input signal. On the other hand, in the present invention, the test is performed with the input differential voltage Vd3 smaller than the input differential voltage Vd1 in the normal operation mode. By setting the input differential voltage Vd3 smaller than the detection target input voltage offset Voff, the differential input circuit in which the input voltage offset Voff larger than the input differential voltage Vd3 occurs can be detected as a defective circuit. Also, by setting the input differential voltage Vd3 depending on an allowable range of a variation in differential input signal (allowable range of the input differential voltage), a differential input circuit that malfunctions due to the differential input signal varying within the allowable range can be detected as a defective circuit.
As described above, the test circuit 101 in the second embodiment increases a signal level of one of the inverting input signal INB and the noninverting input signal INT in the test mode to thereby make the input differential voltage between the differential input signals INT and INB smaller than that in the normal mode. This enables the operational margin of the differential input circuit 10 to be reduced to perform the test. According to the present invention, the operational margin of the differential input circuit 10 is reduced to perform the test of the input/output characteristics, and therefore the operationally unstable differential input circuit in which the input voltage offset Voff is smaller than the input differential voltage Vd1 in the normal operation mode, and close to a value of Vd1 can be detected as a defective circuit. Also, in the present invention, by changing driving forces of the pull up B circuit 41 and the pull up T circuit 42, the input differential voltage Vd3 can be set to an arbitrary value. This enables a level of the input voltage offset Voff in a detectable defective circuit to be arbitrarily set.
The above example describes the configuration in which the test is performed with the test signals TEST_B and TEST_T being brought to the low level and the high level respectively to pull up the inverting input signal INB; however, the test may be performed with the test signals TEST_B and TEST_T being brought to the high level and the low level respectively to pull up the noninverting input signal INT.
Also, in the present embodiment, as the differential input circuit 10, the voltage comparator circuit is described as an example; however, even in the case of the current comparator circuit, the operationally unstable differential input circuit 10 can be similarly detected as a defective circuit by changing the input differential current to reduce the operational margin. That is, by replacing the input voltage with the input current to apply the above-described operation to the current comparator circuit, the same operation and effect can be obtained.
3. Third Embodiment
Referring to
(Configuration)
First, referring to
The pull down B circuit 51 is connected to an input terminal supplied with the inverting input signal INB, and decreases a signal level of the inverting input signal INB based on the test signal TEST_D from the test signal generating circuit 22. The pull up B circuit 52 is connected to the input terminal supplied with the inverting input signal INB, and increases the signal level of the inverting input signal INB based on the test signal TEST_U from the test signal generating circuit 22.
Referring to
Referring to
The test circuit 102 in the present embodiment pulls up and down a voltage level of the inverting input signal INB to a predetermined value (Vup and Vdw in this case) through the pull down B circuit 51 and the pull up B circuit 52 respectively to thereby intentionally reduce an operational margin of the differential input circuit 10. This enables a differential input circuit having a small operational margin to be detected, which could not be conventionally detected as a defective circuit.
(Operation)
Referring to
Referring to
Next, an operation in the test mode (time T3 to T7 in this case) is described. In the present embodiment, any one of the signal levels of the inverting input signal INB and the noninverting input signal INT is controlled. In this example, during a time period T3 to T5, the signal level of the inverting input signal INB is pulled down (pull down period), and during a time period T5 to T7, the signal level of the inverting input signal INB is pulled up (pull up period).
During the time period T3 to T5, the test signal generating circuit 22 outputs the test signals TEST_D and TEST_U both having the high level. The NMOS transistor N31 is turned on in response to the high level test signal TEST_D, and the PMOS transistor P31 is brought into the off state based on the high level test signal TEST_U. Based on this, the pull down B circuit 51 pulls down the signal level (voltage) of the inverting input signal INB by a voltage Vdw determined by an on-resistance. That is, the high level voltage of the inverting input signal INB is pulled down from VH by Vdw (time T3 to T4), and the low level voltage is pulled down from VL by Vdw (time T4 to T5). On the other hand, the signal level (voltage) of the noninverting input signal INT keeps the same signal level as that in the normal mode.
From the above, the input differential voltage Vd4 (absolute value) between the differential input signals INT and INB during the time period T3 to T4 becomes smaller than the input differential voltage Vd1 in the normal mode by Vdw.
Similarly, during a time period T5 to T7, the test signal generating circuit 22 outputs the test signals TEST_D and TEST_U both having the low level. The NMOS transistor N31 is brought into the off state based on the low level test signal TEST_D, and the PMOS transistor P31 is turned on in response to the low level test signal TEST_U. Based on this, the pull up B circuit 52 pulls up the signal level (voltage) of the inverting input signal INB by a voltage Vup determined by an on-resistance. That is, the low level voltage of the inverting input signal INB is pulled up from VL by Vup (time T5 to T6), and the high level voltage is pulled up from VH by Vup (time T6 to T7). On the other hand, the signal level (voltage) of the noninverting input signal INT keeps the same signal level as that in the normal mode.
From the above, the input differential voltage Vd4 between the differential input signals INT and INB during the time period T5 to T6 becomes smaller than the input differential voltage Vd1 in the normal mode by Vup.
In the present embodiment, the input differential voltage Vd4 between the differential input signals INT and INB in the test mode is made smaller than that Vd1 in the normal operation mode by the voltage Vdw or Vup to thereby forcedly reduce the operational margin. This enables a differential input circuit having a small operational margin to be detected as a defective circuit.
Details of the test operation for the differential input circuit in the third embodiment correspond to the operation combining the operations in the first and second embodiments, and therefore description thereof is omitted.
The test circuit 102 in the present embodiment performs the test with the input differential voltage Vd4 smaller than the input differential voltage Vd1 in the normal operation mode. By setting the input differential voltage Vd4 smaller than the detection target input voltage offset Voff, a differential input circuit in which the input voltage offset Voff larger than the input differential voltage Vd4 occurs can be detected as a defective circuit. Also, by setting the input differential voltage Vd4 depending on an allowable range of a variation in differential input signal (allowable range of the input differential voltage), a differential input circuit that malfunctions due to the differential input signal varying within the allowable range can be detected as a defective circuit.
As described above, the test circuit 102 in the third embodiment increases or decreases a signal level of only one of the inverting input signal INB and the noninverting input signal INT in the test mode to thereby make the input differential voltage between the differential input signals INT and INB smaller than that in the normal mode. This enables the operational margin of the differential input circuit 10 to be reduced to perform the test. According to the present invention, the operational margin of the differential input circuit 10 is reduced to perform the test of the input/output characteristics, and therefore the operationally unstable differential input circuit in which the input voltage offset Voff is smaller than the input differential voltage Vd1 in the normal operation mode and close to a value of Vd1 can be detected as a defective circuit. Also, in the present invention, by changing driving forces of the pull down B circuit 51 and the pull up B circuit 52, the input differential voltage Vd4 can be set to an arbitrary value. This enables a level of the input voltage offset Voff in a detectable defective circuit to be arbitrarily set.
The above describes the example in which the test is performed with only the inverting input signal INB being varied; however, the test may be performed with only the noninverting input signal INT being varied up or down.
Also, in the present embodiment, as the differential input circuit 10, the voltage comparator circuit is described as an example; however, even in the case of the current comparator circuit, the operationally unstable differential input circuit 10 can be similarly detected as a defective circuit by changing the input differential current to reduce the operational margin. That is, by replacing the input voltage with the input current to apply the above-described operation to the current comparator circuit, the same operation and effect can be obtained.
4. Fourth Embodiment
Referring to
(Configuration)
First, referring to
The switching circuit 60 is connected between a signal line supplied with the inverting input signal INB (hereinafter referred to as a signal line INB) and a signal line supplied with the noninverting input signal INT (hereinafter referred to as a signal line INT). The switching circuit 60 controls a connection between the signal lines INB and INT based on the test signal TEST_S from the test signal generating circuit 23.
Referring to
Referring to
The test circuit 103 in the present embodiment decreases the input differential voltage to thereby intentionally reduce an operational margin of the differential input circuit 10 by making the connection between the signal lines INB and INT through the switching circuit 60. This enables a differential input circuit having a small operational margin to be detected, which could not be conventionally detected as a defective circuit.
(Operation)
Referring to
Referring to
Next, an operation in the test mode (time T3 to T5 in this case) is described. During the time period T3 to T5, the test signal generating circuit 23 outputs the test signal TEST_S having a high level. The NMOS transistor N41 is turned on in response to the high level test signal TEST_S, and the signal lines INB and INT are electrically connected to each other through an on-resistance of the NMOS transistor N41. During a time period T3 to T4, the signal level of the noninverting input signal INT having the high level VH is pulled down by Vdw by the signal line INB having the low level VL, and the signal level of the inverting input signal INB having the low level VL is pulled up by Vup by the signal line INT having the high level VH. Based on this, the input differential voltage between the differential input signals INT and INB becomes Vd5 smaller than Vd1. Similarly, during a time period T4 to T5, the signal level of the inverting input signal INB having the high level VH is pulled down by Vdw by the signal line INT having the low level VL, and the signal level of the noninverting input signal INT having the low level VL is pulled up by Vup by the signal line INB having the high level VH. Based on this, the input differential voltage between the differential input signals INT and INB becomes Vd5 smaller than Vd1.
From the above, the input differential voltage Vd5 (absolute value) between the differential input signals INT and INB during the test mode period (time T3 to T5) becomes smaller than the input differential voltage Vd1 in the normal mode by (Vup+Vdw).
In the present embodiment, the input differential voltage Vd5 between the differential input signals INT and INB in the test mode is made smaller than that Vd1 in the normal operation mode by the voltage (Vup+Vdw) to thereby forcedly reduce the operational margin. This enables a differential input circuit having a small operational margin to be detected as a defective circuit.
Referring to
Referring to
In the present invention, the test is performed under the condition that the signal lines INT and INB are electrically connected to each other through the switching circuit 60, and thereby the input differential voltage Vd5 between the differential input signals INT and INB is made smaller than the input differential voltage Vd1 in the normal operation mode to forcedly reduce the operational margin of the differential input circuit 10. That is, in the present invention, the test is performed with the effective signal levels of the inverting input signal and the noninverting input signal being made more easily invertible than in the normal operation mode. This enables the operationally unstable differential input circuit having the reduced operational margin due to the input voltage offset to be detected as a defective circuit.
According to the present invention, the operational margin of the differential input circuit 10 is reduced to perform the test of the input/output characteristics, and therefore the operationally unstable differential input circuit in which the input voltage offset Voff is smaller than the input differential voltage Vd1 in the normal operation mode and close to a value of Vd1 can be detected as a defective circuit. Also, in the present invention, by changing the on-resistance in the switching circuit 60, the input differential voltage Vd5 can be set to an arbitrary value. This enables a level of the input voltage offset Voff in a detectable defective circuit to be arbitrarily set.
The above describes the example in which the NMOS transistor is used as the switching circuit 60; however, even with use of the PMOS transistor illustrated in
Also, in the present embodiment, as the differential input circuit 10, the voltage comparator circuit is described as an example; however, even in the case of the current comparator circuit, the operationally unstable differential input circuit 10 can be similarly detected as a defective circuit by changing the input differential current to reduce the operational margin. That is, by replacing the input voltage by the input current to apply the above-described operation to the current comparator circuit, the same operation and effect can be obtained.
5. Fifth Embodiment
Referring to
(Configuration)
First, referring to
The level generating circuit 25 outputs the two level signals HV and LV respectively having different signal levels (voltage) to the current control circuit 70. The level signal HV exhibits a constant voltage HV, and the level signal LV exhibits a constant voltage LV. The level generating circuit is configured to be HV>LV.
The current control circuit 70 varies the signal level (current value in this case) of the differential input signal INT or INB in response to a test signal selected by the test signal TEST_LV or TEST_LVB.
The NMOS transistor N53 controls electrical connections between a terminal supplied with the level signal LV (hereinafter referred to as a terminal LV) and the gates of the NMOS transistors 51 and 52 based on the test signal TEST_LV. The NMOS transistor N54 controls electrical connections between a terminal supplied with the level signal HV (hereinafter referred to as a terminal HV) and the gates of the NMOS transistors 51 and 52 based on the test signal TEST_LVB.
Here, the NMOS transistors N53 and N54 are deemed as a voltage selecting circuit selecting one of the level signals HV and LV based on the test signals and supplying the selected level signal to the gates of the pair of transistors N51 and N52.
Note that the test signals TEST_LV and TEST_LVB are in a complementary (reverse phase) relationship with each other. For this reason, each of the NMOS transistors N51 and N52 that control the signal levels of the differential input signals INT and INB is supplied with any one of the level signals LV and HV, which is selected by the test signal TEST_LV or LVB.
The test circuit 104 in the present embodiment controls resistance values between the input terminals 71 and 72 and the load circuits (resistors 51 and 52) to vary the signal levels (current values) of the differential input signals INT and INB through the current control circuit 70. This enables the input currents of the differential input signals INT and INB to be decreased to intentionally reduce the operational margin of the differential input circuit 10, and thereby a differential input circuit having a small operational margin to be detected, which could not be conventionally detected as a defective circuit.
(Operation)
Referring to
Referring to
We here assume that high level signal levels (current values) of the differential input signals INT and INB in the normal operation mode are denoted by IH, and low level signal levels (current values) by IL. During a time period T1 to T2, if the inverting input signal INB is at the high level IH, and the noninverting input signal INT is at the low level IL, i.e., R51<R52, an input differential current Id1 between the differential input signals INT and INB is represented by [(VH−VTN)/R51−(VH−VTN)/R52]. Also, during a time period T2 to T3, if the inverting input signal INB is at the low level IL, and the noninverting input signal INT is at the high level IH, i.e., R52<R51, the input differential current Id1 between the differential input signals INT and INB is represented by [(VH−VTN)/R52−(VH−VTN)/R51].
Next, an operation in the test mode (time T3 to T5 in this case) is described. During the time period T3 to T5, the test signal generating circuit 23 outputs the high level test signal TEST_LV (low level test signal TEST_LVB). Based on this, the NMOS transistors N53 and N54 are turned on and off, respectively, and the gates of the NMOS transistors N51 and N52 are supplied with the level signal LV having the low level. The gates of the NMOS transistors N51 and N52 are biased to LV, and thereby the resistors R51 and R52 are respectively applied with a voltage of (VL−VTN). For this reason, a current of (LL−VTN)/R51 flows through the resistor R51, and a current of (LL−VTN)/R52 flows through the resistor R52. That is, the current of the inverting input signal INB is (LL−VTN)/R51, and that of the noninverting input signal INT is (LL−VTN)/R52.
During a time period T3 to T4, if the inverting input signal INB is at the low level IL, and the noninverting input signal INT is at the High level IH, i.e., during a time period where R52<R51, the input differential current Id2 is [(VL−VTN)/R52−(VL−VTN)/R51]. If we here compare the input differential current Id1 in the normal mode with the input differential current Id2 in the test mode during the time period where R52<R51, a difference between them (Id1−Id2) is [(VH−VL)×(1/R52−1/R51)]. Note that VH>VL, and (1/R52)>(1/R51), and therefore (Id1−Id2)>0. That is, the input differential current Id2 in the test mode is smaller than that Id1 in the normal mode by [(VH−VL)×(1/R52−1/R51)].
If the test mode is set when, during a time period T4 to T5, the inverting input signal INB is at the high level IH, and the noninverting input signal is at the low level IL, i.e., during a time period where R51<R52, the input differential current Id1 is [(VL−VTN)/R51−(VL−VTN)/R52]. Even during the time period, the input differential current Id2 in the test mode is, similarly to the above, smaller than the input differential current Id1 in the normal mode by [(VH−VL)×(1/R51−1/R52)].
From the above, the input differential current between the differential input signals INT and INB in the test mode period (time T3 to T5) is Id2 that is smaller than the input differential current Id1 in the normal mode.
In the present embodiment, the input differential current Id2 between the differential input signals INT and INB in the test mode is made smaller than that Id1 in the normal operation mode to thereby forcedly reduce the operational margin. This enables a differential input circuit having a small operational margin to be detected as a defective circuit.
Referring to
Referring to
In the present invention, the test is performed under the condition that amounts of the currents flowing between the input terminals 71 and 72 and the load circuits (resistors R51 and R52) respectively are controlled through the current control circuit 70, and thereby the input differential current between the differential input signals INT and INB is brought to the smaller input differential current Id2 than the input differential current Id1 in the normal operation mode to forcedly reduce the operational margin of the differential input circuit 10. That is, in the present invention, the test is performed with the effective signal levels of the inverting input signal and the noninverting input signal being made more easily invertible than in the normal operation mode. This enables the operationally unstable differential input circuit having the reduced operational margin due to the input current offset to be detected as a defective circuit.
According to the present invention, the operational margin of the differential input circuit 10 is reduced to perform the test of the input/output characteristics, and therefore the operationally unstable differential input circuit in which the input current offset Ioff is smaller than the input differential current Id1 in the normal operation mode and close to a value of Id1 can be detected as a defective circuit. Also, in the present invention, by changing on-resistances in the current control circuit 70, the input differential current Id2 can be set to an arbitrary value. This enables a level of the input current offset Ioff in a detectable defective circuit to be arbitrarily set.
The above describes the example in which the NMOS transistors are used as the current control circuit 70; however, even with use of PMOS transistors, the test can be similarly performed with the input differential current being made smaller. In such a case, it should be appreciated that the signal levels of the test signals TEST_LV and TEST_LVB are inverted to perform the switching operation.
Also, in the present embodiment, as the differential input circuit 10, the current comparator circuit is described as an example; however, even in the case of the voltage comparator circuit, the operationally unstable differential input circuit 10 can be similarly detected as a defective circuit by changing the input differential voltage to reduce the operational margin. That is, by replacing the input current with an input voltage to apply the above-described operation to the voltage comparator circuit, the same operation and effect can be obtained.
It is apparent that the present invention is not limited to the above embodiment, but may be modified and changed without departing from the scope and spirit of the invention.
Although the present invention has been described above in connection with several exemplary embodiments thereof, it would be apparent to those skilled in the art that those exemplary embodiments are provided solely for illustrating the present invention, and should not be relied upon to construe the appended claims in a limiting sense.
Patent | Priority | Assignee | Title |
9448571, | Dec 12 2014 | Filipower Integrated Technology, Inc. | Voltage converting circuit having voltage feedback terminal |
Patent | Priority | Assignee | Title |
4795964, | Aug 01 1986 | Texas Instruments Incorporated | Method and apparatus for measuring the capacitance of complementary field-effect transistor devices |
5657330, | Nov 15 1994 | Mitsubishi Denki Kabushiki Kaisha; Mitsubishi Electric Semiconductor Software Co., Ltd. | Single-chip microprocessor with built-in self-testing function |
6211689, | Jan 14 1998 | NEC Corporation | Method for testing semiconductor device and semiconductor device with transistor circuit for marking |
6281699, | Mar 15 2000 | Teradyne, Inc. | Detector with common mode comparator for automatic test equipment |
6498508, | Jul 30 1997 | NEC Electronics Corporation | Semiconductor integrated circuit device and testing method therefor |
7154291, | Aug 24 2004 | Delphi Technologies, Inc. | Measuring bi-directional current through a field-effect transistor by virtue of drain-to-source voltage measurement |
7395475, | Dec 01 2003 | Hynix Semiconductor, Inc. | Circuit and method for fuse disposing in a semiconductor memory device |
7439754, | Jun 02 2005 | Renesas Electronics Corporation | Semiconductor integrated circuit and device and method for testing the circuit |
7518394, | Feb 07 2007 | XILINX, Inc. | Process monitor vehicle |
7521937, | May 19 2006 | Advantest Corporation | Measurement circuit and test apparatus |
7589549, | Nov 16 2007 | Advantest Corporation | Driver circuit and test apparatus |
7649373, | Sep 15 2006 | OKI SEMICONDUCTOR CO , LTD | Semiconductor integrated circuit with voltage drop detector |
7750659, | Oct 29 2007 | Longitude Licensing Limited | Voltage detecting circuit and semiconductor device including the same |
7849373, | Jun 11 2004 | Samsung Electronics Co., Ltd. | Method of testing a memory module and hub of the memory module |
20010011905, | |||
20020030505, | |||
20030016044, | |||
20030071648, | |||
20040046575, | |||
20060044003, | |||
20060220669, | |||
20060223201, | |||
20060250153, | |||
20060267618, | |||
20060279310, | |||
20070118784, | |||
20070170946, | |||
20070205755, | |||
20070252583, | |||
20070257353, | |||
20070268022, | |||
20080059102, | |||
20080093597, | |||
20080143371, | |||
20090096476, | |||
20090128181, | |||
20100253382, | |||
JP1263997, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 03 2010 | Renesas Electronics Corporation | (assignment on the face of the patent) | / | |||
Mar 01 2010 | KOBATAKE, HIROYUKI | NEC Electronics Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024147 | /0443 | |
Apr 01 2010 | NEC Electronics Corporation | Renesas Electronics Corporation | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 025194 | /0905 |
Date | Maintenance Fee Events |
Dec 30 2016 | REM: Maintenance Fee Reminder Mailed. |
May 21 2017 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
May 21 2016 | 4 years fee payment window open |
Nov 21 2016 | 6 months grace period start (w surcharge) |
May 21 2017 | patent expiry (for year 4) |
May 21 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 21 2020 | 8 years fee payment window open |
Nov 21 2020 | 6 months grace period start (w surcharge) |
May 21 2021 | patent expiry (for year 8) |
May 21 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 21 2024 | 12 years fee payment window open |
Nov 21 2024 | 6 months grace period start (w surcharge) |
May 21 2025 | patent expiry (for year 12) |
May 21 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |