A piezoelectric debris sensor and associated signal processor responsive to debris strikes enable an autonomous or non-autonomous cleaning device to detect the presence of debris and in response, to select a behavioral mode, operational condition or pattern of movement, such as spot coverage or the like. Multiple sensor channels (e.g., left and right) can be used to enable the detection or generation of differential left/right debris signals and thereby enable an autonomous device to steer in the direction of debris.

Patent
   8476861
Priority
Jan 28 2004
Filed
Jun 14 2012
Issued
Jul 02 2013
Expiry
Jan 28 2024
Assg.orig
Entity
unknown
0
847
EXPIRED
1. An autonomous cleaning apparatus comprising:
a side brush;
a main brush;
a debris bin;
a chassis carrying the side brush, the main brush, and the debris bin, the side brush operative to direct particulates from a cleaning surface toward the main brush, and the main brush operative to direct the particulates toward the debris bin;
a piezoelectric sensor disposed between the main brush and the debris bin, wherein impact of the particulates moving from the side brush to the main brush toward the debris bin is detectable by the piezoelectric sensor;
a drive system carried by the chassis and operative to move the chassis; and
a control module coupled to the piezoelectric sensor and configured control the drive system based on the detected impact of the particulates moving from the side brush to the main brush toward the debris bin.
13. An autonomous cleaning apparatus comprising:
a drive system comprising a right wheel assembly and a left wheel assembly, each wheel assembly comprising a respective motor;
a side brush;
a main brush;
a debris bin;
a chassis carrying the drive system, the side brush, the main brush, and the debris bin, the side brush operative to direct particulates from a cleaning surface toward the main brush, and the main brush operative to direct the particulates toward the debris bin;
a control module configured control the drive system; and
a debris sensor disposed between the main brush and the debris bin, wherein the particulates directed by the side brush to the main brush toward the debris bin are detectable by the debris sensor, and the control module is configured to adjust movement of the cleaning apparatus based at least in part on a signal representative of the particulates detected by the debris sensor.
2. The autonomous cleaning apparatus of claim 1, wherein the chassis defines a perimeter and the side brush is arranged to entrain particulates outside the perimeter of the chassis.
3. The autonomous cleaning apparatus of claim 1, the drive system operative to move the chassis along a fore-aft axis dividing the chassis into substantially symmetrical right and left halves, wherein the side brush is disposed on the right half or the left half of the chassis, along a forward portion of the chassis.
4. The autonomous cleaning apparatus of claim 3, wherein the side brush is disposed on a dominant side of the cleaning apparatus.
5. The autonomous cleaning apparatus of claim 3, wherein the main brush is on the right half and the left half of the chassis and rearward of the sidebrush.
6. The autonomous cleaning apparatus of claim 3, wherein the chassis defines a vacuum inlet, and the main brush is disposed forward of the vacuum inlet.
7. The autonomous cleaning apparatus of claim 3, wherein the debris bin is disposed rearward of the main brush and the debris bin is removable from the chassis.
8. The autonomous cleaning apparatus of claim 3, wherein the drive system is configured to adjust movement of the cleaning apparatus based at least in part on a signal representative of debris impact on the piezoelectric sensor.
9. The autonomous cleaning apparatus of claim 1, further comprising a counter-rotating flapper carried by the chassis, the counter-rotating flapper meeting the main brush such that the counter-rotating flapper and the main brush direct the particulates toward the debris bin.
10. The autonomous cleaning apparatus of claim 1, wherein the main brush and the piezoelectric sensor define an axis therebetween and the main brush is operable to move the particulates along the axis in a direction toward the piezoelectric sensor.
11. The autonomous cleaning apparatus of claim 1, wherein the piezoelectric sensor is above the main brush as the cleaning apparatus moves along the cleaning surface.
12. The autonomous cleaning apparatus of claim 1, further comprising a processor operable to process a signal from the piezoelectric sensor indicative of a particulate strike to generate a signal representative of a quantity or volumetric parameter of the particulates.
14. The autonomous cleaning apparatus of claim 13, wherein a speed of one or both of the right and left wheel assemblies is changeable based at least in part on a signal representative of the particulates detected by the debris sensor.
15. The autonomous cleaning apparatus of claim 13, wherein the drive system is configured to steer the chassis based at least in part on a signal representative of the particulates detected by the debris sensor.
16. The autonomous cleaning apparatus of claim 13, further comprising a processor operable to process a signal from the debris sensor to generate a signal representative of a quantity or volumetric parameter of the particulates.

This application for patent is a continuation of, and claims priority from U.S. patent application Ser. No. 12/255,393, filed on Oct. 21, 2008, which is a continuation of and claims priority from U.S. patent application Ser. No. 11/860,272, filed on Sep. 24, 2007 (now U.S. Pat. No. 7,459,871), which is a continuation of and claims priority from U.S. patent application Ser. No. 11/533,294, filed Sep. 19, 2006 (now U.S. Pat. No. 7,288,912), which is a continuation of and claims priority from U.S. patent application Ser. No. 11/109,832 filed Apr. 19, 2005 (now abandoned), which is a continuation of and claims priority from U.S. patent application Ser. No. 10/766,303, filed Jan. 28, 2004 (now U.S. Pat. No. 6,956,348). This application is related to the following commonly-owned U.S. patent applications or patents, incorporated by reference as if fully set forth herein:

U.S. patent application Ser. No. 09/768,773 filed Jan. 24, 2001, now U.S. Pat. No. 6,594,844, entitled Robot Obstacle Detection System; U.S. Provisional Patent Application Ser. No. 60/345,764 filed Jan. 3, 2002, entitled Cleaning Mechanisms for Autonomous Robot; U.S. patent application Ser. No. 10/056,804, filed Jan. 24, 2002, entitled Method and System for Robot Localization and Confinement; U.S. patent application Ser. No. 10/167,851 filed Jun. 12, 2002, entitled Method and System for Multi-Mode Coverage for an Autonomous Robot; U.S. patent application Ser. No. 10/320,729 filed Dec. 16, 2002, entitled Autonomous Floor-Cleaning Robot; and U.S. patent application Ser. No. 10/661,835 filed Sep. 12, 2003, entitled Navigational Control System for Robotic Device.

The present invention relates generally to cleaning apparatus, and, more particularly, to a debris sensor for sensing instantaneous strikes by debris in a cleaning path of a cleaning apparatus, and for enabling control of an operational mode of the cleaning apparatus. The term “debris” is used herein to collectively denote dirt, dust, and/or other particulates or objects that might be collected by a vacuum cleaner or other cleaning apparatus, whether autonomous or non-autonomous.

Debris sensors, including some suitable for cleaning apparatus, are known in the art. Debris sensors can be useful in autonomous cleaning devices like those disclosed in the above-referenced patent applications, and can also be useful in non-autonomous cleaning devices, whether to indicate to the user that a particularly dirty area is being entered, to increase a power setting in response to detection of debris, or to modify some other operational setting.

Examples of debris sensors are disclosed in the following:

De Brey 3,674,316
De Brey 3,989,311
De Brey 4,175,892
Kurz 4,601,082
Westergren 4,733,430
Martin 4,733,431
Harkonen 4,829,626
Takashima 5,105,502
Takashima 5,136,750
Kawakami 5,163,202
Yang 5,319,827
Kim 5,440,216
Gordon 5,608,944
Imamura 5,815,884
Imamura 6,023,814
Kasper 6,446,302
Gordon 6,571,422

Among the examples disclosed therein, many such debris sensors are optical in nature, using a light emitter and detector. In typical designs used in, e.g., a vacuum cleaner, the light transmitter and the light receiver of the optical sensor are positioned such that they are exposed into the suction passage or cleaning pathway through which dust flows. During usage of the vacuum cleaner, therefore, dust particles tend to adhere to the exposed surfaces of the light transmitter and the light receiver, through which light is emitted and detected, eventually degrading the performance of the optical sensor.

Accordingly, it would be desirable to provide a debris sensor that is not subject to degradation by accretion of debris.

In addition, debris sensors typical of the prior art are sensitive to a level of built-up debris in a reservoir or cleaning pathway, but not particularly sensitive to instantaneous debris strikes or encounters.

It would therefore be desirable to provide a debris sensor that is capable of instantaneously sensing and responding to debris strikes, and which is immediately responsive to debris on a floor or other surface to be cleaned, with reduced sensitivity to variations in airflow, instantaneous power, or other operational conditions of the cleaning device.

It would be also be useful to provide an autonomous cleaning device having operational modes, patterns of movement or behaviors responsive to detected debris, for example, by steering the device toward “dirtier” areas based on signals generated by a debris sensor.

In addition, it would be desirable to provide a debris sensor that could be used to control, select or vary operational modes of either an autonomous or non-autonomous cleaning apparatus.

The present invention provides a debris sensor, and apparatus utilizing such a debris sensor, wherein the sensor is instantaneously responsive to debris strikes, and can be used to control, select or vary the operational mode of an autonomous or non-autonomous cleaning apparatus containing such a sensor.

One aspect of the invention is an autonomous cleaning apparatus including a drive system operable to enable movement of the cleaning apparatus; a controller in communication with the drive system, the controller including a processor operable to control the drive system to provide at least one pattern of movement of the cleaning apparatus; and a debris sensor for generating a debris signal indicating that the cleaning apparatus has encountered debris; wherein the processor is responsive to the debris signal to select an operative mode from among predetermined operative modes of the cleaning apparatus.

The selection of operative mode could include selecting a pattern of movement of the cleaning apparatus.

The pattern of movement can include spot coverage of an area containing debris, or steering the cleaning apparatus toward an area containing debris. The debris sensor could include spaced-apart first and second debris sensing elements respectively operable to generate first and second debris signals; and the processor can be responsive to the respective first and second debris signals to select a pattern of movement, such as steering toward a side (e.g., left or right side) with more debris.

The debris sensor can include a piezoelectric sensor element located proximate to a cleaning pathway of the cleaning apparatus and responsive to a debris strike to generate a signal indicative of such strike.

The debris sensor of the invention can also be incorporated into a non-autonomous cleaning apparatus. This aspect of the invention can include a piezoelectric sensor located proximate to a cleaning pathway and responsive to a debris strike to generate a debris signal indicative of such strike; and a processor responsive to the debris signal to change an operative mode of the cleaning apparatus. The change in operative mode could include illuminating a user-perceptible indicator light, changing a power setting (e.g., higher power setting when more debris is encountered), or slowing or reducing a movement speed of the apparatus.

A further aspect of the invention is a debris sensor, including a piezoelectric element located proximate to or within a cleaning pathway of the cleaning apparatus and responsive to a debris strike to generate a first signal indicative of such strike; and a processor operable to process the first signal to generate a second signal representative of a characteristic of debris being encountered by the cleaning apparatus. That characteristic could be, for example, a quantity or volumetric parameter of the debris, or a vector from a present location of the cleaning apparatus to an area containing debris.

Another aspect of the invention takes advantage of the motion of an autonomous cleaning device across a floor or other surface, processing the debris signal in conjunction with knowledge of the cleaning device's movement to calculate a debris gradient. The debris gradient is representative of changes in debris strikes count as the autonomous cleaning apparatus moves along a surface. By examining the sign of the gradient (positive or negative, associated with increasing or decreasing debris), an autonomous cleaning device controller can continuously adjust the path or pattern of movement of the device to clean a debris field most effectively.

These and other aspects, features and advantages of the invention will become more apparent from the following description, in conjunction with the accompanying drawings, in which embodiments of the invention are shown and described by way of illustrative example.

A more complete understanding of the present invention and the attendant features and advantages thereof may be had by reference to the following detailed description of the invention when considered in conjunction with the accompanying drawings wherein:

FIG. 1 is a top-view schematic of an exemplary autonomous cleaning device in which the debris sensor of the invention can be employed.

FIG. 2 is a block diagram of exemplary hardware elements of the robotic device of FIG. 1, including a debris sensor subsystem of the invention.

FIG. 3 is a side view of the robotic device of FIG. 1, showing a debris sensor according to the invention situated in a cleaning or vacuum pathway, where it will be struck by debris upswept by the main cleaning brush element.

FIG. 4 is an exploded diagram of a piezoelectric debris sensor in accordance with the invention.

FIG. 5 is a schematic diagram of a debris sensor signal processing architecture according to the present invention.

FIG. 6 is a schematic diagram of signal processing circuitry for the debris sensor architecture of FIG. 5.

FIG. 7 is a schematic diagram showing the debris sensor in a non-autonomous cleaning apparatus.

FIG. 8 is a flowchart of a method according to one practice of the invention.

While the debris sensor of the present invention can be incorporated into a wide range of autonomous cleaning devices (and indeed, into non-autonomous cleaning devices as shown by way of example in FIG. 7), it will first be described in the context of an exemplary autonomous cleaning device shown in FIGS. 1-3. Further details of the structure, function and behavioral modes of such an autonomous cleaning device are set forth in the patent applications cited above in the Cross-Reference section, each of which is incorporated herein by reference. Accordingly, the following detailed description is organized into the following sections:

Referring now to the drawings wherein like reference numerals identify corresponding or similar elements throughout the several views, FIG. 1 is a top-view schematic of an exemplary autonomous cleaning device 100 in which a debris sensor according to the present invention may be incorporated. FIG. 2 is a block diagram of the hardware of the robot device 100 of FIG. 1.

Examples of hardware and behavioral modes (coverage behaviors or patterns of movement for cleaning operations; escape behaviors for transitory movement patterns; and safety behaviors for emergency conditions) of an autonomous cleaning device 100 marketed by the iRobot Corporation of Burlington, Mass. under the ROOMBA trademark, will next be described to provide a more complete understanding of how the debris sensing system of the present invention may be employed. However, the invention can also be employed in non-autonomous cleaning devices, and an example is described below in connection with FIG. 7.

In the following description, the terms “forward” and “fore” are used to refer to the primary direction of motion (forward) of the robotic device (see arrow identified by reference character “FM” in FIG. 1). The fore/aft axis FAx of the robotic device 100 coincides with the medial diameter of the robotic device 100 that divides the robotic device 100 into generally symmetrical right and left halves, which are defined as the dominant and non-dominant sides, respectively.

An example of such a robotic cleaning device 100 has a generally disk-like housing infrastructure that includes a chassis 102 and an outer shell 104 secured to the chassis 102 that define a structural envelope of minimal height (to facilitate movement under furniture). The hardware comprising the robotic device 100 can be generally categorized as the functional elements of a power system, a motive power system (also referred to herein as a “drive system”), a sensor system, a control module, a side brush assembly, or a self-adjusting cleaning head system, respectively, all of which are integrated in combination with the housing infrastructure. In addition to such categorized hardware, the robotic device 100 further includes a forward bumper 106 having a generally arcuate configuration and a nose-wheel assembly 108.

The forward bumper 106 (illustrated as a single component; alternatively, a two-segment component) is integrated in movable combination with the chassis 102 (by means of displaceable support members pairs) to extend outwardly therefrom. Whenever the robotic device 100 impacts an obstacle (e.g., wall, furniture) during movement thereof, the bumper 106 is displaced (compressed) towards the chassis 102 and returns to its extended (operating) position when contact with the obstacle is terminated.

The nose-wheel assembly 108 is mounted in biased combination with the chassis 102 so that the nose-wheel subassembly 108 is in a retracted position (due to the weight of the robotic device 100) during cleaning operations wherein it rotates freely over the surface being cleaned. When the nose-wheel subassembly 108 encounters a drop-off during operation (e.g., descending stairs, split-level floors), the nose-wheel assembly 108 is biased to an extended position.

The hardware of the power system, which provides the energy to power the electrically-operated hardware of the robotic device 100, comprises a rechargeable battery pack 110 (and associated conduction lines, not shown) that is integrated in combination with the chassis 102.

As shown in FIG. 1, the motive power system provides the means that propels the robotic device 100 and operates the cleaning mechanisms, e.g., side brush assembly and the self-adjusting cleaning head system, during movement of the robotic device 100. The motive power system comprises left and right main drive wheel assemblies 112L, 112R, their associated independent electric motors 114L, 114R, and electric motors 116, 118 for operation of the side brush assembly and the self-adjusting cleaning head subsystem, respectively.

The electric motors 114L, 114R are mechanically coupled to the main drive wheel assemblies 112L, 112R, respectively, and independently operated by control signals generated by the control module as a response to the implementation of a behavioral mode, or, as discussed in greater detail below, in response to debris signals generated by left and right debris sensors 125L, 125R shown in FIG. 1.

Independent operation of the electric motors 114L, 114R allows the main wheel assemblies 112L, 112R to be: (1) rotated at the same speed in the same direction to propel the robotic device 100 in a straight line, forward or aft; (2) differentially rotated (including the condition wherein one wheel assembly is not rotated) to effect a variety of right and/or left turning patterns (over a spectrum of sharp to shallow turns) for the robotic device 100; and (3) rotated at the same speed in opposite directions to cause the robotic device 100 to turn in place, i.e., “spin on a dime”, to provide an extensive repertoire of movement capability for the robotic device 100.

As shown in FIG. 1, the sensor system comprises a variety of different sensor units that are operative to generate signals that control the behavioral mode operations of the robotic device 100. The described robotic device 100 includes obstacle detection units 120, cliff detection units 122, wheel drop sensors 124, an obstacle-following unit 126, a virtual wall omnidirectional detector 128, stall-sensor units 130, main wheel encoder units 132, and, in accordance with the present invention, left and right debris sensors 125L and 125R described in greater detail below.

In the illustrated embodiment, the obstacle (“bump”) detection units 120 can be IR break beam sensors mounted in combination with the displaceable support member pairs of the forward bumper 106. These detection units 120 are operative to generate one or more signals indicating relative displacement between one or more support member pairs whenever the robotic device 100 impacts an obstacle such that the forward bumper 106 is compressed. These signals are processed by the control module to determine an approximate point of contact with the obstacle relative to the fore-aft axis FAX of the robotic device 100 (and the behavioral mode(s) to be implemented).

The cliff detection units 122 are mounted in combination with the forward bumper 106. Each cliff detection unit 122 comprises an IR emitter-detector pair configured and operative to establish a focal point such that radiation emitted downwardly by the emitter is reflected from the surface being traversed and detected by the detector. If reflected radiation is not detected by the detector, i.e., a drop-off is encountered, the cliff detection unit 122 transmits a signal to the control module (which causes one or more behavioral modes to be implemented).

A wheel drop sensor 124 such as a contact switch is integrated in combination with each of the main drive wheel assemblies 112L, 112R and the nose wheel assembly 108 and is operative to generate a signal whenever any of the wheel assemblies is in an extended position, i.e., not in contact with the surface being traversed, (which causes the control module to implement one or more behavioral modes).

The obstacle-following unit 126 for the described embodiment is an IR emitter-detector pair mounted on the ‘dominant’ side (right hand side of FIG. 1) of the robotic device 100. The emitter-detector pair is similar in configuration to the cliff detection units 112, but is positioned so that the emitter emits radiation laterally from the dominant side of the robotic device 100. The unit 126 is operative to transmit a signal to the control module whenever an obstacle is detected as a result of radiation reflected from the obstacle and detected by the detector. The control module, in response to this signal, causes one or more behavioral modes to be implemented.

A virtual wall detection system for use in conjunction with the described embodiment of the robotic device 100 comprises an omnidirectional detector 128 mounted atop the outer shell 104 and a stand-alone transmitting unit (not shown) that transmits an axially-directed confinement beam. The stand-alone transmitting unit is positioned so that the emitted confinement beam blocks an accessway to a defined working area, thereby restricting the robotic device 100 to operations within the defined working area (e.g., in a doorway to confine the robotic device 100 within a specific room to be cleaned). Upon detection of the confinement beam, the omnidirectional detector 128 transmits a signal to the control module (which causes one or more behavioral modes to be implemented to move the robotic device 100 away from the confinement beam generated by the stand-alone transmitting unit).

A stall sensor unit 130 is integrated in combination with each electric motor 114L, 114R, 116, 118 and operative to transmit a signal to the control module when a change in current is detected in the associated electric motor (which is indicative of a dysfunctional condition in the corresponding driven hardware). The control module is operative in response to such a signal to implement one or more behavioral modes.

An IR encoder unit 132 (see FIG. 2) is integrated in combination with each main wheel assembly 112L, 112R and operative to detect the rotation of the corresponding wheel and transmit signals corresponding thereto the control module (wheel rotation can be used to provide an estimate of distance traveled for the robotic device 100).

Control Module:

Referring now to FIG. 2, the control module comprises the microprocessing unit 135 that includes I/O ports connected to the sensors and controllable hardware of the robotic device 100, a microcontroller (such as a Motorola MC9512E128CPV 16-bit controller), and ROM and RAM memory. The I/O ports function as the interface between the microcontroller and the sensor units (including left and right debris sensors 125 discussed in greater detail below) and controllable hardware, transferring signals generated by the sensor units to the microcontroller and transferring control (instruction) signals generated by the microcontroller to the controllable hardware to implement a specific behavioral mode.

The microcontroller is operative to execute instruction sets for processing sensor signals, implementing specific behavioral modes based upon such processed signals, and generating control (instruction) signals for the controllable hardware based upon implemented behavioral modes for the robotic device 100. The cleaning coverage and control programs for the robotic device 100 are stored in the ROM of the microprocessing unit 135, which includes the behavioral modes, sensor processing algorithms, control signal generation algorithms and a prioritization algorithm for determining which behavioral mode or modes are to be given control of the robotic device 100. The RAM of the microprocessing unit 135 is used to store the active state of the robotic device 100, including the ID of the behavioral mode(s) under which the robotic device 100 is currently being operated and the hardware commands associated therewith.

Referring again to FIG. 1, there is shown a brush assembly 140, configured and operative to entrain particulates outside the periphery of the housing infrastructure and to direct such particulates towards the self-adjusting cleaning head system. The side brush assembly 140 provides the robotic device 100 with the capability of cleaning surfaces adjacent to base-boards when the robotic device is operated in an Obstacle-Following behavioral mode. As shown in FIG. 1, the side brush assembly 140 is preferably mounted in combination with the chassis 102 in the forward quadrant on the dominant side of the robotic device 100.

The self-adjusting cleaning head system 145 for the described robotic device 100 comprises a dual-stage brush assembly and a vacuum assembly, each of which is independently powered by an electric motor (reference numeral 118 in FIG. 1 actually identifies two independent electric motors—one for the brush assembly and one for the vacuum assembly). The cleaning capability of the robotic device 100 is commonly characterized in terms of the width of the cleaning head system 145 (see reference character W in FIG. 1).

Referring now to FIG. 3, in one embodiment of a robotic cleaning device, the cleaning brush assembly comprises asymmetric, counter-rotating flapper and main brush elements 92 and 94, respectively, that are positioned forward of the vacuum assembly inlet 84, and operative to direct particulate debris 127 into a removable dust cartridge 86. As shown in FIG. 3, the autonomous cleaning apparatus can also include left and right debris sensor elements 125PS, which can be piezoelectric sensor elements, as described in detail below. The piezoelectric debris sensor elements 125PS can be situated in a cleaning pathway of the cleaning device, mounted, for example, in the roof of the cleaning head, so that when struck by particles 127 swept up by the brush elements and/or pulled up by vacuum, the debris sensor elements 125PS generate electrical pulses representative of debris impacts and thus, of the presence of debris in an area in which the autonomous cleaning device is operating.

More particularly, in the arrangement shown in FIG. 3, the sensor elements 125PS are located substantially at an axis AX along which main and flapper brushes 94, 92 meet, so that particles strike the sensor elements 125PS with maximum force.

As shown in FIG. 1, and described in greater detail below, the robotic cleaning device can be fitted with left and right side piezoelectric debris sensors, to generate separate left and right side debris signals that can be processed to signal the robotic device to turn in the direction of a “dirty” area.

The operation of the piezoelectric debris sensors, as well as signal processing and selection of behavioral modes based on the debris signals they generate, will be discussed below following a brief discussion of general aspects of behavioral modes for the cleaning device.

The robotic device 100 can employ a variety of behavioral modes to effectively clean a defined working area where behavioral modes are layers of control systems that can be operated in parallel. The microprocessor unit 135 is operative to execute a prioritized arbitration scheme to identify and implement one or more dominant behavioral modes for any given scenario based upon inputs from the sensor system.

The behavioral modes for the described robotic device 100 can be characterized as: (1) coverage behavioral modes; (2) escape behavioral modes; and (3) safety behavioral modes. Coverage behavioral modes are primarily designed to allow the robotic device 100 to perform its cleaning operations in an efficient and effective manner and the escape and safety behavioral modes are priority behavioral modes implemented when a signal from the sensor system indicates that normal operation of the robotic device 100 is impaired, e.g., obstacle encountered, or is likely to be impaired, e.g., drop-off detected.

Representative and illustrative coverage behavioral (cleaning) modes for the robotic device 100 include: (1) a Spot Coverage pattern; (2) an Obstacle-Following (or Edge-Cleaning) Coverage pattern, and (3) a Room Coverage pattern. The Spot Coverage pattern causes the robotic device 100 to clean a limited area within the defined working area, e.g., a high-traffic area. In a preferred embodiment the Spot Coverage pattern is implemented by means of a spiral algorithm (but other types of self-bounded area algorithms, e.g., polygonal, can be used). The spiral algorithm, which causes outward spiraling (preferred) or inward spiraling movement of the robotic device 100, is implemented by control signals from the microprocessing unit 135 to the main wheel assemblies 112L, 112R to change the turn radius/radii thereof as a function of time (thereby increasing/decreasing the spiral movement pattern of the robotic device 100).

The robotic device 100 is operated in the Spot Coverage pattern for a predetermined or random period of time, for a predetermined or random distance (e.g., a maximum spiral distance) and/or until the occurrence of a specified event, e.g., activation of one or more of the obstacle detection units 120 (collectively a transition condition). Once a transition condition occurs, the robotic device 100 can implement or transition to a different behavioral mode, e.g., a Straight Line behavioral mode (in a preferred embodiment of the robotic device 100, the Straight Line behavioral mode is a low priority, default behavior that propels the robot in an approximately straight line at a preset velocity of approximately 0.306 m/s) or a Bounce behavioral mode in combination with a Straight Line behavioral mode.

If the transition condition is the result of the robotic device 100 encountering an obstacle, the robotic device 100 can take other actions in lieu of transitioning to a different behavioral mode. The robotic device 100 can momentarily implement a behavioral mode to avoid or escape the obstacle and resume operation under control of the spiral algorithm (i.e., continue spiraling in the same direction). Alternatively, the robotic device 100 can momentarily implement a behavioral mode to avoid or escape the obstacle and resume operation under control of the spiral algorithm (but in the opposite direction—reflective spiraling).

The Obstacle-Following Coverage pattern causes the robotic device 100 to clean the perimeter of the defined working area, e.g., a room bounded by walls, and/or the perimeter of an obstacle (e.g., furniture) within the defined working area. Preferably the robotic device 100 of FIG. 1 utilizes obstacle-following unit 126 (see FIG. 1) to continuously maintain its position with respect to an obstacle, e.g., wall, furniture, so that the motion of the robotic device 100 causes it to travel adjacent to and concomitantly clean along the perimeter of the obstacle. Different embodiments of the obstacle-following unit 126 can be used to implement the Obstacle-Following behavioral pattern.

In a first embodiment, the obstacle-following unit 126 is operated to detect the presence or absence of the obstacle. In an alternative embodiment, the obstacle-following unit 126 is operated to detect an obstacle and then maintain a predetermined distance between the obstacle and the robotic device 100. In the first embodiment, the microprocessing unit 135 is operative, in response to signals from the obstacle-following unit, to implement small CW or CCW turns to maintain its position with respect to the obstacle. The robotic device 100 implements a small CW when the robotic device 100 transitions from obstacle detection to non-detection (reflection to non-reflection) or to implement a small CCW turn when the robotic device 100 transitions from non-detection to detection (non-reflection to reflection). Similar turning behaviors are implemented by the robotic device 100 to maintain the predetermined distance from the obstacle.

The robotic device 100 is operated in the Obstacle-Following behavioral mode for a predetermined or random period of time, for a predetermined or random distance (e.g., a maximum or minimum distance) and/or until the occurrence of a specified event, e.g., activation of one or more of the obstacle detection units 120 a predetermined number of times (collectively a transition condition). In certain embodiments, the microprocessor 135 will cause the robotic device to implement an Align behavioral mode upon activation of the obstacle-detection units 120 in the Obstacle-Following behavioral mode wherein the implements a minimum angle CCW turn to align the robotic device 100 with the obstacle.

The Room Coverage pattern can be used by the robotic device 100 to clean any defined working area that is bounded by walls, stairs, obstacles or other barriers (e.g., a virtual wall unit). A preferred embodiment for the Room Coverage pattern comprises the Random-Bounce behavioral mode in combination with the Straight Line behavioral mode. Initially, the robotic device 100 travels under control of the Straight-Line behavioral mode, i.e., straight-line algorithm (main drive wheel assemblies 112L, 112R operating at the same rotational speed in the same direction) until an obstacle is encountered. Upon activation of one or more of the obstacle detection units 120, the microprocessing unit 135 is operative to compute an acceptable range of new directions based upon the obstacle detection unit(s) 126 activated. The microprocessing unit 135 selects a new heading from within the acceptable range and implements a CW or CCW turn to achieve the new heading with minimal movement. In some embodiments, the new turn heading may be followed by forward movement to increase the cleaning efficiency of the robotic device 100. The new heading may be randomly selected across the acceptable range of headings, or based upon some statistical selection scheme, e.g., Gaussian distribution. In other embodiments of the Room Coverage behavioral mode, the microprocessing unit 135 can be programmed to change headings randomly or at predetermined times, without input from the sensor system.

The robotic device 100 is operated in the Room Coverage behavioral mode for a predetermined or random period of time, for a predetermined or random distance (e.g., a maximum or minimum distance) and/or until the occurrence of a specified event, e.g., activation of the obstacle-detection units 120 a predetermined number of times (collectively a transition condition).

By way of example, the robotic device 100 can include four escape behavioral modes: a Turn behavioral mode, an Edge behavioral mode, a Wheel Drop behavioral mode, and a Slow behavioral mode. One skilled in the art will appreciate that other behavioral modes can be utilized by the robotic device 100. One or more of these behavioral modes may be implemented, for example, in response to a current rise in one of the electric motors 116, 118 of the side brush assembly 140 or dual-stage brush assembly above a low or high stall threshold, forward bumper 106 in compressed position for determined time period, detection of a wheel-drop event.

In the Turn behavioral mode, the robotic device 100 turns in place in a random direction, starting at higher velocity (e.g., twice normal turning velocity) and decreasing to a lower velocity (one-half normal turning velocity), i.e., small panic turns and large panic turns, respectively. Low panic turns are preferably in the range of 45° to 90°, large panic turns are preferably in the range of 90° to 270°. The Turn behavioral mode prevents the robotic device 100 from becoming stuck on room impediments, e.g., high spot in carpet, ramped lamp base, from becoming stuck under room impediments, e.g., under a sofa, or from becoming trapped in a confined area.

In the Edge behavioral mode follows the edge of an obstacle unit it has turned through a predetermined number of degrees, e.g., 60°, without activation of any of the obstacle detection units 120, or until the robotic device has turned through a predetermined number of degrees, e.g., 170°, since initiation of the Edge behavioral mode. The Edge behavioral mode allows the robotic device 100 to move through the smallest possible openings to escape from confined areas.

In the Wheel Drop behavioral mode, the microprocessor 135 reverses the direction of the main wheel drive assemblies 112L, 112R momentarily, then stops them. If the activated wheel drop sensor 124 deactivates within a predetermined time, the microprocessor 135 then reimplements the behavioral mode that was being executed prior to the activation of the wheel drop sensor 124.

In response to certain events, e.g., activation of a wheel drop sensor 124 or a cliff detector 122, the Slow behavioral mode is implemented to slowed down the robotic device 100 for a predetermined distance and then ramped back up to its normal operating speed.

When a safety condition is detected by the sensor subsystem, e.g., a series of brush or wheel stalls that cause the corresponding electric motors to be temporarily cycled off, wheel drop sensor 124 or a cliff detection sensor 122 activated for greater that a predetermined period of time, the robotic device 100 is generally cycled to an off state. In addition, an audible alarm may be generated.

The foregoing description of behavioral modes for the robotic device 100 is merely representative of the types of operating modes that can be implemented by the robotic device 100. One skilled in the art will appreciate that the behavioral modes described above can be implemented in other combinations and/or circumstances, and other behavioral modes and patterns of movement are also possible.

As shown in FIGS. 1-3, in accordance with the present invention, an autonomous cleaning device (and similarly, a non-autonomous cleaning device as shown by way of example in FIG. 7) can be improved by incorporation of a debris sensor. In the embodiment illustrated in FIGS. 1 and 3, the debris sensor subsystem comprises left and right piezoelectric sensing elements 125L, 125R situated proximate to or within a cleaning pathway of a cleaning device, and electronics for processing the debris signal from the sensor for forwarding to a microprocessor 135 or other controller.

When employed in an autonomous, robot cleaning device, the debris signal from the debris sensor can be used to select a behavioral mode (such as entering into a spot cleaning mode), change an operational condition (such as speed, power or other), steer in the direction of debris (particularly when spaced-apart left and right debris sensors are used to create a differential signal), or take other actions.

A debris sensor according to the present invention can also be incorporated into a non-autonomous cleaning device. When employed in a non-autonomous cleaning device such as, for example, an otherwise relatively conventional vacuum cleaner 700 like that shown in FIG. 7, the debris signal 706 generated by a piezoelectric debris sensor 704PS situated within a cleaning or vacuum pathway of the device can be employed by a controlling microprocessor 708 in the body of the vacuum cleaner 702 to generate a user-perceptible signal (such as by lighting a light 710), to increase power from the power system 703, or take some combination of actions (such as lighting a “high power” light and simultaneously increasing power).

The algorithmic aspects of the operation of the debris sensor subsystem are summarized in FIG. 8. As shown therein, a method according to the invention can include detecting left and right debris signals representative of debris strikes, and thus, of the presence, quantity or volume, and direction of debris (802); selecting an operational mode or pattern of movement (such as Spot Coverage) based on the debris signal values (804); selecting a direction of movement based on differential left/right debris signals (e.g., steering toward the side with more debris) (806); generating a user-perceptible signal representative of the presence of debris or other characteristic (e.g., by illuminating a user-perceptible LED) (808); or otherwise varying or controlling an operational condition, such as power (810).

A further practice of the invention takes advantage of the motion of an autonomous cleaning device across a floor or other surface, processing the debris signal in conjunction with knowledge of the cleaning device's movement to calculate a debris gradient (812 in FIG. 8). The debris gradient is representative of changes in debris strikes count as the autonomous cleaning apparatus moves along a surface. By examining the sign of the gradient (positive or negative, associated with increasing or decreasing debris), an autonomous cleaning device controller can continuously adjust the path or pattern of movement of the device to clean a debris field most effectively (812).

Piezoelectric Sensor:

As noted above, a piezoelectric transducer element can be used in the debris sensor subsystem of the invention. Piezoelectric sensors provide instantaneous response to debris strikes and are relatively immune to accretion that would degrade the performance of an optical debris sensor typical of the prior art.

An example of a piezoelectric transducer 125PS is shown in FIG. 4. Referring now to FIG. 4, the piezoelectric sensor element 125PS can include one or more 0.20 millimeter thick, 20 millimeter diameter brass disks 402 with the piezoelectric material and electrodes bonded to the topside (with a total thickness of 0.51 mm), mounted to an elastomer pad 404, a plastic dirt sensor cap 406, a debris sensor PC board with associated electronics 408, grounded metal shield 410, and retained by mounting screws (or bolts or the like) 412 and elastomer grommets 414. The elastomer grommets provide a degree of vibration dampening or isolation between the piezoelectric sensor element 125PS and the cleaning device.

In the example shown in FIG. 4, a rigid piezoelectric disk, of the type typically used as inexpensive sounders, can be used. However, flexible piezoelectric film can also be advantageously employed. Since the film can be produced in arbitrary shapes, its use affords the possibility of sensitivity to debris across the entire cleaning width of the cleaning device, rather than sensitivity in selected areas where, for example, the disks may be located. Conversely, however, film is at present substantially more expensive and is subject to degradation over time. In contrast, brass disks have proven to be extremely robust.

The exemplary mounting configuration shown in FIG. 4 is substantially optimized for use within a platform that is mechanically quite noisy, such as an autonomous vacuum cleaner like that shown in FIG. 3. In such a device, vibration dampening or isolation of the sensor is extremely useful. However, in an application involving a non-autonomous cleaning device such as a canister-type vacuum cleaner like that shown in FIG. 7, the dampening aspects of the mounting system of FIG. 4 may not be necessary. In a non-autonomous cleaning apparatus, an alternative mounting system may involve heat staking the piezoelectric element directly to its housing. In either case, a key consideration for achieving enhanced performance is the reduction of the surface area required to clamp, bolt, or otherwise maintain the piezoelectric element in place. The smaller the footprint of this clamped “dead zone”, the more sensitive the piezoelectric element will be.

In operation, debris thrown up by the cleaning brush assembly (e.g., brush 94 of FIG. 3), or otherwise flowing through a cleaning pathway within the cleaning device (e.g., vacuum compartment 104 of FIG. 3) can strike the bottom, all-brass side of the sensor 125PS (see FIG. 3). In an autonomous cleaning device, as shown in FIG. 3, the debris sensor 125PS can be located substantially at an axis AX along which main brush 94 and flapper brush 92 meet, so that the particles 127 are thrown up and strike the sensor 125PS with maximum force.

As is well known, a piezoelectric sensor converts mechanical energy (e.g., the kinetic energy of a debris strike and vibration of the brass disk) into electrical energy—in this case, generating an electrical pulse each time it is struck by debris—and it is this electrical pulse that can be processed and transmitted to a system controller (e.g., controller 135 of FIGS. 1 and 2 or 708 of FIG. 8) to control or cause a change in operational mode, in accordance with the invention. Piezoelectric elements are typically designed for use as audio transducers, for example, to generate beep tones. When an AC voltage is applied, they vibrate mechanically in step with the AC waveform, and generate an audible output. Conversely, if they are mechanically vibrated, they produce an AC voltage output. This is the manner in which they are employed in the present invention. In particular, when an object first strikes the brass face of the sensor, it causes the disk to flex inward, which produces a voltage pulse.

Filtering:

However, since the sensor element 125PS is in direct or indirect contact with the cleaning device chassis or body through its mounting system (see FIGS. 3 and 4), it is subject to the mechanical vibrations normally produced by motors, brushes, fans and other moving parts when the cleaning device is functioning. This mechanical vibration can cause the sensor to output an undesirable noise signal that can be larger in amplitude than the signal created by small, low mass debris (such as crushed black pepper) striking the sensor. The end result is that the sensor would output a composite signal composed of lower frequency noise components (up to approximately 16 kHz) and higher frequency, possibly lower amplitude, debris-strike components (greater than 30 kHz, up to hundreds of kHz). Thus, it is useful to provide a way to filter out extraneous signals.

Accordingly, as described below, an electronic filter is used to greatly attenuate the lower frequency signal components to improve signal-to-noise performance. Examples of the architecture and circuitry of such filtering and signal processing elements will next be described in connection with FIGS. 5 and 6.

FIG. 5 is a schematic diagram of the signal processing elements of a debris sensor subsystem in one practice of the invention.

As noted above, one purpose of a debris sensor is to enable an autonomous cleaning apparatus to sense when it is picking up debris or otherwise encountering a debris field. This information can be used as an input to effect a change in the cleaning behavior or cause the apparatus to enter a selected operational or behavioral mode, such as, for example, the spot cleaning mode described above when debris is encountered. In an non-autonomous cleaning apparatus like that shown in FIG. 7, the debris signal 706 from the debris sensor 704PS can be used to cause a user-perceptible light 710 to be illuminated (e.g., to signal to the user that debris is being encountered), to raise power output from the power until 703 to the cleaning systems, or to cause some other operational change or combination of changes (e.g., lighting a user-perceptible “high power” light and simultaneously raising power).

Moreover, as noted above, two debris sensor circuit modules (i.e., left and right channels like 125L and 125R of FIG. 1) can be used to enable an autonomous cleaning device to sense the difference between the amounts of debris picked up on the right and left sides of the cleaning head assembly. For example, if the robot encounters a field of dirt off to its left side, the left side debris sensor may indicate debris hits, while the right side sensor indicates no (or a low rate of) debris hits. This differential output could be used by the microprocessor controller of an autonomous cleaning device (such as controller 135 of FIGS. 1 and 2) to steer the device in the direction of the debris (e.g., to steer left if the left-side debris sensor is generating higher signal values than the right-side debris sensor); to otherwise choose a vector in the direction of the debris; or to otherwise select a pattern of movement or behavior pattern such as spot coverage or other.

Thus, FIG. 5 illustrates one channel (for example, the left-side channel) of a debris sensor subsystem that can contain both left and right side channels. The right side channel is substantially identical, and its structure and operation will therefore be understood from the following discussion.

As shown in FIG. 5, the left channel consists of a sensor element (piezoelectric disk) 402, an acoustic vibration filter/RFI filter module 502, a signal amplifier 504, a reference level generator 506, an attenuator 508, a comparator 510 for comparing the outputs of the attenuator and reference level generator, and a pulse stretcher 512. The output of the pulse stretcher is a logic level output signal to a system controller like the processor 135 shown in FIG. 2; i.e., a controller suitable for use in selecting an operational behavior.

The Acoustic Vibration Filter/RFI Filter block 502 can be designed to provide significant attenuation (in one embodiment, better than −45 dB Volts), and to block most of the lower frequency, slow rate of change mechanical vibration signals, while permitting higher frequency, fast rate of change debris-strike signals to pass. However, even though these higher frequency signals get through the filter, they are attenuated, and thus require amplification by the Signal Amplifier block 504.

In addition to amplifying the desired higher frequency debris strike signals, the very small residual mechanical noise signals that do pass through the filter also get amplified, along with electrical noise generated by the amplifier itself, and any radio frequency interference (RFI) components generated by the motors and radiated through the air, or picked up by the sensor and its conducting wires. The signal amplifier's high frequency response is designed to minimize the amplification of very high frequency RFI. This constant background noise signal, which has much lower frequency components than the desired debris strike signals, is fed into the Reference Level Generator block 506. The purpose of module 506 is to create a reference signal that follows the instantaneous peak value, or envelope, of the noise signal. It can be seen in FIG. 5 that the signal of interest, i.e., the signal that results when debris strikes the sensor, is also fed into this block. Thus, the Reference Level Generator block circuitry is designed so that it does not respond quickly enough to high frequency, fast rate of change debris-strike signals to be able to track the instantaneous peak value of these signals. The resulting reference signal will be used to make a comparison as described below.

Referring again to FIG. 5, it will be seen that the signal from amplifier 504 is also fed into the Attenuator block. This is the same signal that goes to the Reference Level Generator 506, so it is a composite signal containing both the high frequency signal of interest (i.e., when debris strikes the sensor) and the lower frequency noise. The Attenuator 508 reduces the amplitude of this signal so that it normally is below the amplitude of the signal from the Reference Level Generator 506 when no debris is striking the sensor element.

The Comparator 510 compares the instantaneous voltage amplitude value of the signal from the Attenuator 508 to the signal from the Reference Level Generator 506. Normally, when the cleaning device operating is running and debris are not striking the sensor element, the instantaneous voltage coming out of the Reference Level Generator 506 will be higher than the voltage coming out of the Attenuator block 508. This causes the Comparator block 510 to output a high logic level signal (logic one), which is then inverted by the Pulse Stretcher block 512 to create a low logic level (logic zero).

However, when debris strikes the sensor, the voltage from the Attenuator 508 exceeds the voltage from the Reference Level Generator 506 (since this circuit cannot track the high frequency, fast rate of change signal component from the Amplifier 504) and the signal produced by a debris strike is higher in voltage amplitude than the constant background mechanical noise signal which is more severely attenuated by the Acoustic Vibration Filter 502. This causes the comparator to momentarily change state to a logic level zero. The Pulse Stretcher block 512 extends this very brief (typically under 10-microsecond) event to a constant 1 millisecond (+0.3 mS, −0 mS) event, so as to provide the system controller (e.g., controller 135 of FIG. 2) sufficient time to sample the signal.

When the system controller “sees” this 1-millisecond logic zero pulse, it interprets the event as a debris strike.

Referring now to the RFI Filter portion of the Acoustic Vibration Filter/RFI Filter block 502, this filter serves to attenuate the very high frequency radiated electrical noise (RFI), which is generated by the motors and motor driver circuits.

In summary, the illustrated circuitry connected to the sensor element uses both amplitude and frequency information to discriminate a debris strike (representative of the cleaning device picking up debris) from the normal background mechanical noise also picked up by the sensor element, and the radiated radio frequency electrical noise produced by the motors and motor driver circuits. The normal, though undesirable, constant background noise is used to establish a dynamic reference that prevents false debris-strike indications while maintaining a good signal-to-noise ratio.

In practice, the mechanical mounting system for the sensor element (see FIG. 4) is also designed to help minimize the mechanical acoustic noise vibration coupling that affects the sensor element.

Signal Processing Circuitry:

FIG. 6 is a detailed schematic diagram of exemplary debris sensor circuitry. Those skilled in the art will understand that in other embodiments, the signal processing can be partially or entirely contained and executed within the software of the microcontroller 135. With reference to FIG. 6, the illustrated example of suitable signal processing circuitry contains the following elements, operating in accordance with the following description:

The ground referenced, composite signal from the piezoelectric sensor disk (see piezoelectric disk 402 of FIG. 4) is fed into the capacitor C1, which is the input to the 5-pole, high pass, passive R-C filter designed to attenuate the low frequency, acoustic mechanical vibrations conducted into the sensor through the mounting system. This filter has a 21.5 kHz, −3 dB corner frequency rolling off at −100 dB/Decade. The output of this filter is fed to a signal pole, low pass, passive R-C filter designed to attenuate any very high frequency RFI. This filter has a 1.06 MHz, −3 dB corner frequency rolling off at −20 dB/Decade. The output of this filter is diode clamped by D1 and D2 in order to protect U1 from high voltage transients in the event the sensor element sustains a severe strike that generates a voltage pulse greater than the amplifier's supply rails. The DC biasing required for signal-supply operation for the amplifier chain and subsequent comparator circuitry is created by R5 and R6. These two resistor values are selected such that their thevenin impedance works with C5 to maintain the filter's fifth pole frequency response correctly.

U1A, U1B and their associated components form a two stage, ac-coupled, non-inverting amplifier with a theoretical AC gain of 441. C9 and C10 serve to minimize gain at low frequencies while C7 and C8 work to roll the gain off at RFI frequencies. The net theoretical frequency response from the filter input to the amplifier output is a single pole high pass response with −3 dB at 32.5 kHz, −100 dB/Decade, and a 2-pole low pass response with break frequencies at 100 kHz, −32 dB/Decade, and 5.4 MHz, −100 dB/Decade, together forming a band-pass filter.

The output from the amplifier is split, with one output going into R14, and the other to the non-inverting input of U1C. The signal going into R14 is attenuated by the R14-R15 voltage divider, and then fed into the inverting input of comparator U2A. The other signal branch from the output of U1B is fed into the non-inverting input of amplifier U1C. U1C along with U1D and the components therebetween (as shown in FIG. 2) form a half-wave, positive peak detector. The attack and decay times are set by R13 and R12, respectively. The output from this circuit is fed to the non-inverting input of U2A through R16. R16 along with R19 provide hysteresis to improve switching time and noise immunity. U2A functions to compare the instantaneous value between the output of the peak detector to the output of the R14-R15 attenuator.

Normally, when debris is not striking the sensor, the output of the peak detector will be greater in amplitude than the output of the attenuator network. When debris strikes the sensor, a high frequency pulse is created that has a higher amplitude coming out of the front-end high pass filter going into U1A than the lower frequency mechanical noise signal component. This signal will be larger in amplitude, even after coming out of the R14-R15 attenuator network, than the signal coming out of the peak detector, because the peak detector cannot track high-speed pulses due to the component values in the R13, C11, R12 network. The comparator then changes state from high to low for as long as the amplitude of the debris-strike pulse stays above the dynamic, noise generated, reference-level signal coming out of the peak detector. Since this comparator output pulse can be too short for the system controller to see, a pulse stretcher is used.

The pulse stretcher is a one-shot monostable design with a lockout mechanism to prevent re-triggering until the end of the timeout period. The output from U2A is fed into the junction of C13 and Q1. C13 couples the signal into the monostable formed by U2C and its associated components. Q1 functions as the lockout by holding the output of U2A low until the monostable times out. The timeout period is set by the time constant formed by R22, C12 and R18, and the reference level set by the R20-R21 voltage divider. This time can adjusted for 1 mS, −0.00 mS as dictated by the requirements of the software used by the controller/processor.

Power for the debris sensor circuit is provided by U3 and associated components. U3 is a low power linear regulator that provides a 5-volt output. The unregulated voltage from the robot's onboard battery provides the power input.

When required, circuit adjustments can be set by R14 and R12. These adjustments will allow the circuit response to be tuned in a short period of time

In a production device of this kind, it is expected that power into, and signal out of the debris sensor circuit printed circuit board (PCB) will be transferred to the main board via shielded cable. Alternatively, noise filters may be substituted for the use of shielded cable, reducing the cost of wiring. The cable shield drain wire can be grounded at the sensor circuit PCB side only. The shield is not to carry any ground current. A separate conductor inside the cable will carry power ground. To reduce noise, the production sensor PCB should have all components on the topside with solid ground plane on the bottom side. The sensor PCB should be housed in a mounting assembly that has a grounded metal shield that covers the topside of the board to shield the components from radiated noise pick up from the robot's motors. The piezoelectric sensor disk can be mounted under the sensor circuit PCB on a suitable mechanical mounting system, such as that shown in FIG. 4, in order to keep the connecting leads as short as possible for noise immunity.

The invention provides a debris sensor that is not subject to degradation by accretion of debris, but is capable of instantaneously sensing and responding to debris strikes, and thus immediately responsive to debris on a floor or other surface to be cleaned, with reduced sensitivity to variations in airflow, instantaneous power, or other operational conditions of the cleaning device.

When employed as described herein, the invention enables an autonomous cleaning device to control its operation or select from among operational modes, patterns of movement or behaviors responsive to detected debris, for example, by steering the device toward “dirtier” areas based on signals generated by the debris sensor.

The debris sensor can also be employed in non-autonomous cleaning devices to control, select or vary operational modes of either an autonomous or non-autonomous cleaning apparatus.

In addition, the disclosed signal processing architecture and circuitry is particularly useful in conjunction with a piezoelectric debris sensor to provide high signal to noise ratios.

Those skilled in the art will appreciate that a wide range of modifications and variations of the present invention are possible and within the scope of the invention. The debris sensor can also be employed for purposes, and in devices, other than those described herein. Accordingly, the foregoing is presented solely by way of example, and the scope of the invention is limited solely by the appended claims.

Ozick, Daniel N., Cohen, David A., Landry, Gregg W.

Patent Priority Assignee Title
Patent Priority Assignee Title
1755054,
1780221,
1970302,
2136324,
2302111,
2770825,
3166138,
3375375,
3569727,
3744586,
3756667,
3809004,
3845831,
3863285,
3888181,
3989931, May 19 1975 Rockwell International Corporation Pulse count generator for wide range digital phase detector
4004313, Sep 10 1974 Ceccato & C. S.p.A. Scrubbing unit for vehicle-washing station
4012681, Jan 03 1975 Curtis Instruments, Inc. Battery control system for battery operated vehicles
4198727, Jan 19 1978 Baseboard dusters for vacuum cleaners
4209254, Feb 03 1978 Thomson-CSF System for monitoring the movements of one or more point sources of luminous radiation
4309758, Aug 01 1978 Imperial Chemical Industries Limited Driverless vehicle autoguided by light signals and three non-directional detectors
4328545, Aug 01 1978 Imperial Chemical Industries Limited Driverless vehicle autoguide by light signals and two directional detectors
4367403, Jan 21 1980 RCA Corporation Array positioning system with out-of-focus solar cells
4445245, Aug 23 1982 Surface sweeper
4465370,
4477998, May 31 1983 Fantastic wall-climbing toy
4482960, Nov 20 1981 LMI TECHNOLOGIES INC Robot tractors
4492058, Feb 14 1980 Adolph E., Goldfarb Ultracompact miniature toy vehicle with four-wheel drive and unusual climbing capability
4518437, Jul 05 1982 Sommer, Schenk AG Method and apparatus for cleaning a water tank
4534637, Dec 12 1981 Canon Kabushiki Kaisha Camera with active optical range finder
4556313, Oct 18 1982 United States of America as represented by the Secretary of the Army Short range optical rangefinder
4575211, Apr 18 1983 Canon Kabushiki Kaisha Distance measuring device
4618213, Mar 17 1977 Applied Elastomerics, Incorporated Gelatinous elastomeric optical lens, light pipe, comprising a specific block copolymer and an oil plasticizer
4620285, Apr 24 1984 NEC Corporation Sonar ranging/light detection system for use in a robot
4624026, Sep 10 1982 Tennant Company Surface maintenance machine with rotary lip
4628454, Jul 13 1982 Kubota, Ltd. Automatic running work vehicle
4638445, Jun 08 1984 Autonomous mobile robot
4644156, Jan 18 1984 ALPS Electric Co., Ltd. Code wheel for reflective optical rotary encoders
4649504, May 22 1984 CAE Electronics, Ltd. Optical position and orientation measurement techniques
4652917, Oct 28 1981 Honeywell Inc. Remote attitude sensor using single camera and spiral patterns
4654492, Apr 12 1984 BBC Aktiengesellschaft Brown, Boveri & Cie Switch drive
4660969, Aug 08 1984 Canon Kabushiki Kaisha Device for searching objects within wide visual field
4662854, Jul 12 1985 Union Electric Corp. Self-propellable toy and arrangement for and method of controlling the movement thereof
4700301, Mar 12 1981 Method of automatically steering agricultural type vehicles
4703820, May 31 1984 Imperial Chemical Industries, PLC Vehicle guidance means
4710020, May 16 1986 E T M REALTY TRUST Beacon proximity detection system for a vehicle
4733343, Feb 18 1985 Toyoda Koki Kabushiki Kaisha Machine tool numerical controller with a trouble stop function
4735138, Mar 25 1986 Neopost Limited Electromechanical drives for franking machines
4748833, Oct 21 1980 501 Nagasawa Manufacturing Co., Ltd. Button operated combination lock
4769700, Nov 20 1981 LMI TECHNOLOGIES INC Robot tractors
4796198, Oct 17 1986 The United States of America as represented by the United States Method for laser-based two-dimensional navigation system in a structured environment
4806751, Sep 30 1985 ALPS Electric Co., Ltd. Code wheel for a reflective type optical rotary encoder
4811228, Sep 17 1985 NATIONSBANK OF NORTH CAROLINA, N A Method of navigating an automated guided vehicle
4813906, Oct 19 1985 Tomy Kogyo Co., Inc. Pivotable running toy
4817000, Mar 10 1986 SI Handling Systems, Inc. Automatic guided vehicle system
4829442, May 16 1986 E T M REALTY TRUST Beacon navigation system and method for guiding a vehicle
4832098, Apr 16 1984 MICHELIN RECHERCHE ET TECHNIQUE S A Non-pneumatic tire with supporting and cushioning members
4851661, Feb 26 1988 The United States of America as represented by the Secretary of the Navy Programmable near-infrared ranging system
4855915, Mar 13 1987 Autoguided vehicle using reflective materials
4857912, Jul 27 1988 The United States of America as represented by the Secretary of the Navy; UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE NAVY Intelligent security assessment system
4858132, Sep 11 1987 NATIONSBANK OF NORTH CAROLINA, N A Optical navigation system for an automatic guided vehicle, and method
4867570, Dec 10 1985 Canon Kabushiki Kaisha Three-dimensional information processing method and apparatus for obtaining three-dimensional information of object by projecting a plurality of pattern beams onto object
4891762, Feb 09 1988 Method and apparatus for tracking, mapping and recognition of spatial patterns
4893025, Dec 30 1988 University of Southern California Distributed proximity sensor system having embedded light emitters and detectors
4905151, Mar 07 1988 Transitions Research Corporation One dimensional image visual system for a moving vehicle
4912643, Oct 30 1986 Institute for Industrial Research and Standards Position sensing apparatus
4919489, Apr 20 1988 Grumman Aerospace Corporation Cog-augmented wheel for obstacle negotiation
4920060, Oct 14 1986 Hercules Incorporated Device and process for mixing a sample and a diluent
4954962, Sep 06 1988 Pyxis Corporation Visual navigation and obstacle avoidance structured light system
4955714, Jun 26 1986 STAR GAZE INTERNATIONAL, INC System for simulating the appearance of the night sky inside a room
4971591, Apr 25 1989 Vehicle with vacuum traction
4977618, Apr 21 1988 Photonics Corporation Infrared data communications
4977639, Aug 15 1988 MITSUBISHI DENKI KABUSHIKI KAISHA, A CORP OF JAPAN; MITSUBISHI ELECTRIC HOME APPLIANCE CO , LTD Floor detector for vacuum cleaners
4986663, Dec 21 1988 SOCIETA CAVI PIRELLI S P A , A CORP OF ITALY Method and apparatus for determining the position of a mobile body
5001635, Jan 08 1988 Sanyo Electric Co., Ltd. Vehicle
5012886, Dec 11 1986 Azurtec Self-guided mobile unit and cleaning apparatus such as a vacuum cleaner comprising such a unit
5018240, Apr 27 1990 Cimex Limited Carpet cleaner
5020186, Jan 24 1990 Black & Decker Inc. Vacuum cleaners
5022812, Sep 26 1988 Northrop Grumman Systems Corporation Small all terrain mobile robot
5024529, Jan 29 1988 Electro Scientific Industries, Inc Method and system for high-speed, high-resolution, 3-D imaging of an object at a vision station
5033291, Dec 11 1989 Tekscan, Inc. Flexible tactile sensor for measuring foot pressure distributions and for gaskets
5040116, Sep 06 1988 Transitions Research Corporation Visual navigation and obstacle avoidance structured light system
5045769, Nov 14 1989 UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE NAVY Intelligent battery charging system
5049802, Mar 01 1990 FMC Corporation Charging system for a vehicle
5051906, Jun 07 1989 CAREFUSION 303, INC Mobile robot navigation employing retroreflective ceiling features
5062819, Jan 28 1991 Toy vehicle apparatus
5070567, Dec 15 1989 DENTALINE LTD Electrically-driven brush
5084934, Jan 24 1990 Black & Decker Inc. Vacuum cleaners
5090321, Jun 28 1985 ICI Australia Ltd Detonator actuator
5094311, Feb 22 1991 FANUC ROBOTICS NORTH AMERICA, INC Limited mobility transporter
5105550, Mar 25 1991 Wilson Sporting Goods Co. Apparatus for measuring golf clubs
5109566, Jun 28 1990 Matsushita Electric Industrial Co., Ltd. Self-running cleaning apparatus
5127128, Jul 27 1989 Goldstar Co., Ltd. Cleaner head
5136675, Dec 20 1990 Lockheed Martin Corporation Slewable projection system with fiber-optic elements
5142985, Jun 04 1990 ALLIANT TECHSYSTEMS INC Optical detection device
5144471, Jun 27 1989 Victor Company of Japan, Ltd. Optical scanning system for scanning object with light beam and displaying apparatus
5152202, Jul 03 1991 CAMOZZI PNEUMATICS, INC ; INGERSOLL MACHINE TOOLS, INC Turning machine with pivoted armature
5155684, Oct 25 1988 Tennant Company Guiding an unmanned vehicle by reference to overhead features
5163320, Dec 13 1989 Bridgestone Corporation Tire inspection device
5164579, Apr 30 1979 DIFFRACTO LTD Method and apparatus for electro-optically determining the dimension, location and attitude of objects including light spot centroid determination
5165064, Mar 22 1991 Cyberotics, Inc.; CYBEROTICS, INC , A CORP OF MA Mobile robot guidance and navigation system
5170352, May 07 1990 FMC Corporation Multi-purpose autonomous vehicle with path plotting
5173881, Mar 19 1991 Vehicular proximity sensing system
5202742, Oct 03 1990 Aisin Seiki Kabushiki Kaisha Laser radar for a vehicle lateral guidance system
5206500, May 28 1992 AMERICAN CAPITAL FINANCIAL SERVICES, INC , AS SUCCESSOR ADMINISTRATIVE AGENT Pulsed-laser detection with pulse stretcher and noise averaging
5227985, Aug 19 1991 University of Maryland; UNIVERSITY OF MARYLAND A NON-PROFIT ORGANIZATION OF MD Computer vision system for position monitoring in three dimensions using non-coplanar light sources attached to a monitored object
5276618, Feb 26 1992 The United States of America as represented by the Secretary of the Navy; UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE NAVY Doorway transit navigational referencing system
5277064, Apr 08 1992 General Motors Corporation; Delco Electronics Corp. Thick film accelerometer
5284452, Jan 15 1993 Atlantic Richfield Company Mooring buoy with hawser tension indicator system
5310379, Feb 03 1993 Mattel, Inc Multiple configuration toy vehicle
5315227, Jan 29 1993 Solar recharge station for electric vehicles
5341186, Jan 13 1992 Olympus Optical Co., Ltd. Active autofocusing type rangefinder optical system
5341549, Sep 23 1991 W SCHLAFHORST AG & CO Apparatus for removing yarn remnants
5345649, Apr 21 1993 Fan brake for textile cleaning machine
5363305, Jul 02 1990 NEC Corporation Navigation system for a mobile robot
5363935, May 14 1993 Carnegie Mellon University Reconfigurable mobile vehicle with magnetic tracks
5369838, Nov 16 1992 Advance Machine Company Automatic floor scrubber
5386862, Oct 02 1992 The Goodyear Tire & Rubber Company Pneumatic tire having improved wet traction
5399951, May 12 1992 UNIVERSITE JOSEPH FOURIER Robot for guiding movements and control method thereof
5400244, Jun 25 1991 Kabushiki Kaisha Toshiba Running control system for mobile robot provided with multiple sensor information integration system
5435405, May 14 1993 Carnegie Mellon University Reconfigurable mobile vehicle with magnetic tracks
5442358, Aug 16 1991 Kaman Aerospace Corporation Imaging lidar transmitter downlink for command guidance of underwater vehicle
5446445, Jul 10 1991 BLOOMFIELD, JOHN W ; SAMSUNG ELECTRONICS CO , LTD Mobile detection system
5451135, Apr 02 1993 Carnegie Mellon University Collapsible mobile vehicle
5471560, Jan 09 1987 Honeywell Inc. Method of construction of hierarchically organized procedural node information structure including a method for extracting procedural knowledge from an expert, and procedural node information structure constructed thereby
5491670, Jan 21 1993 System and method for sonic positioning
5498948, Oct 14 1994 GM Global Technology Operations LLC Self-aligning inductive charger
5502638, Feb 10 1992 Honda Giken Kogyo Kabushiki Kaisha System for obstacle avoidance path planning for multiple-degree-of-freedom mechanism
5505072, Nov 15 1994 Tekscan, Inc. Scanning circuit for pressure responsive array
5510893, Aug 18 1993 Digital Stream Corporation Optical-type position and posture detecting device
5511147, Jan 12 1994 UTI Corporation Graphical interface for robot
5537711, May 05 1995 Electric board cleaner
5542148, Jan 26 1995 TYMCO, Inc. Broom assisted pick-up head
5551525, Aug 19 1994 Vanderbilt University Climber robot
5608306, Mar 15 1994 ERICSSON-GE MOBILE COMMUNICATIONS, INC Rechargeable battery pack with identification circuit, real time clock and authentication capability
5608894, Mar 18 1994 Fujitsu Limited Execution control system
5610488, Nov 05 1991 Seiko Epson Corporation Micro robot
5613261, Apr 14 1994 MONEUAL, INC Cleaner
5642299, Sep 01 1993 HARDIN, LARRY C Electro-optical range finding and speed detection system
5646494, Mar 29 1994 SAMSUNG KWANG-JU ELECTRONICS CO , LTD Charge induction apparatus of robot cleaner and method thereof
5647554, Jan 23 1990 Sanyo Electric Co., Ltd. Electric working apparatus supplied with electric power through power supply cord
5682839, Jul 15 1993 Perimeter Technologies Incorporated Electronic animal confinement system
5698861, Aug 01 1994 KONAMI DIGITAL ENTERTAINMENT CO , LTD System for detecting a position of a movable object without contact
5710506, Feb 07 1995 BENCHMARQ MICROELECTRONICS,INC Lead acid charger
5717169, Oct 13 1994 Schlumberger Technology Corporation Method and apparatus for inspecting well bore casing
5722109, Jul 28 1993 U.S. Philips Corporation Vacuum cleaner with floor type detection means and motor power control as a function of the detected floor type
5732401, Mar 29 1996 INTELLITECS INTERNATIONAL, INC BY MERGER INTO GLH DWC, INC AND CHANGE OF NAME Activity based cost tracking systems
5745235, Mar 26 1996 Egemin Naamloze Vennootschap Measuring system for testing the position of a vehicle and sensing device therefore
5752871, Nov 30 1995 Tomy Co., Ltd. Running body
5756904, Aug 30 1996 Tekscan, Inc Pressure responsive sensor having controlled scanning speed
5764888, Jul 19 1996 Dallas Semiconductor Corporation Electronic micro identification circuit that is inherently bonded to someone or something
5767437, Mar 20 1997 Digital remote pyrotactic firing mechanism
5767960, Jun 14 1996 Ascension Technology Corporation; ROPER ASCENSION ACQUISITION, INC Optical 6D measurement system with three fan-shaped beams rotating around one axis
5777596, Nov 13 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Touch sensitive flat panel display
5781697, Jun 02 1995 Samsung Electronics Co., Ltd. Method and apparatus for automatic running control of a robot
5786602, Apr 30 1979 DIFFRACTO LTD Method and apparatus for electro-optically determining the dimension, location and attitude of objects
5793900, Dec 29 1995 Stanford University Generating categorical depth maps using passive defocus sensing
5812267, Jul 10 1996 NAVY, THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY Optically based position location system for an autonomous guided vehicle
5814808, Aug 28 1995 PANASONIC ELECTRIC WORKS CO , LTD Optical displacement measuring system using a triangulation including a processing of position signals in a time sharing manner
5819008, Oct 18 1995 KENKYUSHO, RIKAGAKU Mobile robot sensor system
5819360, Sep 19 1995 Windshied washer apparatus with flow control coordinated with a wiper displacement range
5819936, May 31 1995 Eastman Kodak Company Film container having centering rib elements
5821730, Aug 18 1997 ICC-NEXERGY, INC Low cost battery sensing technique
5825981, Mar 11 1996 Komatsu Ltd. Robot system and robot control device
5828770, Feb 20 1996 BANK OF MONTREAL System for determining the spatial position and angular orientation of an object
5831597, May 24 1996 PROSISA OVERSEAS, INC Computer input device for use in conjunction with a mouse input device
5839532, Mar 22 1995 Honda Giken Kogyo Kabushiki Kaisha Vacuum wall walking apparatus
5896611, May 04 1996 Ing. Haaga Werkzeugbau KG Sweeping machine
5905209, Jul 22 1997 Tekscan, Inc. Output circuit for pressure sensor
5911260, May 17 1996 Amano Corporation Squeegee assembly for floor surface cleaning machine
5916008, Jun 20 1997 T. K. Wong & Associates, Ltd. Wall descending toy with retractable wheel and cover
5924167, Jun 07 1996 Royal Appliance Mfg. Co. Cordless wet mop and vacuum assembly
5933102, Sep 24 1997 TouchSensor Technologies, LLC Capacitive sensitive switch method and system
5933913, Jun 07 1996 Royal Appliance Mfg. Co. Cordless wet mop and vacuum assembly
5940346, Dec 13 1996 Arizona State University Modular robotic platform with acoustic navigation system
5968281, Jun 07 1996 Royal Appliance Mfg. Co. Method for mopping and drying a floor
5974348, Dec 13 1996 System and method for performing mobile robotic work operations
5974365, Oct 23 1997 The United States of America as represented by the Secretary of the Army System for measuring the location and orientation of an object
5983448, Jun 07 1996 ROYAL APPLIANCE MFG CO Cordless wet mop and vacuum assembly
5984880, Jan 20 1998 Tactile feedback controlled by various medium
5987383, Apr 28 1997 Trimble Navigation Form line following guidance system
5989700, Jan 05 1996 Tekscan Incorporated; Tekscan, Incorporated Pressure sensitive ink means, and methods of use
5995883, Jun 09 1996 MONEUAL, INC Autonomous vehicle and controlling method for autonomous vehicle
5995884, Mar 07 1997 Computer peripheral floor cleaning system and navigation method
5996167, Nov 16 1995 3M Innovative Properties Company Surface treating articles and method of making same
5998971, Dec 10 1997 NEC Corporation Apparatus and method for coulometric metering of battery state of charge
6000088, Jun 07 1996 Royal Appliance Mfg. Co. Cordless wet mop and vacuum assembly
6009358, Jun 25 1997 The Toro Company Programmable lawn mower
6021545, Apr 21 1995 VORWERK & CO , INTERHOLDING GMBH Vacuum cleaner attachment for the wet cleaning of surfaces
6023813, Apr 07 1998 Spectrum Industrial Products, Inc. Powered floor scrubber and buffer
6030464, Jan 28 1998 PACIFIC SPECIALTY CHEMICAL, INC Method for diagnosing, cleaning and preserving carpeting and other fabrics
6030465, Jun 26 1996 Panasonic Corporation of North America Extractor with twin, counterrotating agitators
6032542, Jul 07 1997 Tekscan, Inc. Prepressured force/pressure sensor and method for the fabrication thereof
6036572, Mar 04 1998 Drive for toy with suction cup feet
6041472, Nov 06 1995 BISSELL Homecare, Inc Upright water extraction cleaning machine
6046800, Jan 31 1997 Kabushiki Kaisha Topcon Position detection surveying device
6049620, Dec 15 1995 Apple Inc Capacitive fingerprint sensor with adjustable gain
6052821, Jun 26 1996 U S PHILIPS CORPORATION Trellis coded QAM using rate compatible, punctured, convolutional codes
6055042, Dec 16 1997 Caterpillar Inc.; Caterpillar Inc Method and apparatus for detecting obstacles using multiple sensors for range selective detection
6061868, Oct 26 1996 ALFRED KAERCHER GMBH & CO KG Traveling floor cleaning appliance
6065182, Jun 07 1996 ROYAL APPLIANCE MFG CO Cordless wet mop and vacuum assembly
6076026, Sep 30 1997 TEMIC AUTOMOTIVE OF NORTH AMERICA, INC Method and device for vehicle control events data recording and securing
6081257, Feb 15 1996 Airbus Helicopters Deutschland GmbH Control stick rotatably positionable in three axes
6088020, Aug 12 1998 HANGER SOLUTIONS, LLC Haptic device
6094775, Mar 05 1997 BSH Bosch und Siemens Hausgerate GmbH Multifunctional vacuum cleaning appliance
6099091, Jan 20 1998 Pentair Pool Products, INC Traction enhanced wheel apparatus
6101671, Jun 07 1996 ROYAL APPLIANCE MFG CO Wet mop and vacuum assembly
6108031, May 08 1997 Harris Corporation Virtual reality teleoperated remote control vehicle
6108067, Dec 27 1995 Sharp Kabushiki Kaisha; SECRETARY OF STATE FOR DEFENCE IN HER BRITANNIC MAJESTY S GOVERNMENT OF THE UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND, THE Liquid crystal display element having opposite signal voltage input directions
6108076, Dec 21 1998 Trimble Navigation Limited Method and apparatus for accurately positioning a tool on a mobile machine using on-board laser and positioning system
6108269, Oct 01 1998 Garmin Corporation Method for elimination of passive noise interference in sonar
6108597, Mar 06 1996 GMD-Forschungszentrum Informationstechnik GmbH Autonomous mobile robot system for sensor-based and map-based navigation in pipe networks
6112143, Aug 06 1998 Caterpillar Inc. Method and apparatus for establishing a perimeter defining an area to be traversed by a mobile machine
6122798, Aug 29 1997 Sanyo Electric Co., Ltd. Dust suction head for electric vacuum cleaner
6125498, Dec 05 1997 BISSELL Homecare, Inc Handheld extraction cleaner
6131237, Jul 09 1997 BISSELL Homecare, Inc Upright extraction cleaning machine
6146278, Jan 10 1997 KONAMI DIGITAL ENTERTAINMENT CO , LTD Shooting video game machine
6154279, Apr 09 1998 NEWMAN, JOHN W Method and apparatus for determining shapes of countersunk holes
6154694, May 11 1998 Kabushiki Kaisha Tokai Rika Denki Seisakusho Data carrier system
6160479, May 07 1996 Assa Abloy IP AB Method for the determination of the distance and the angular position of an object
6167587, Jul 09 1997 BISSELL Homecare, Inc Upright extraction cleaning machine
6192548, Jul 09 1997 BISSELL Homecare, Inc. Upright extraction cleaning machine with flow rate indicator
6216307, Sep 25 1998 CMA Manufacturing Co. Hand held cleaning device
6220865, Jan 22 1996 Vincent J., Macri Instruction for groups of users interactively controlling groups of images to make idiosyncratic, simulated, physical movements
6226830, Aug 20 1997 Philips Electronics North America Corporation Vacuum cleaner with obstacle avoidance
6230362, Jul 09 1997 BISSELL Homecare, Inc. Upright extraction cleaning machine
6237741, Mar 12 1998 Cavanna S.p.A. Process for controlling the operation of machines for processing articles, for example for packaging food products, and the machine thereof
6240342, Feb 03 1998 Siemens Aktiengesellschaft Path planning process for a mobile surface treatment unit
6243913, Oct 27 1997 ALFRED KAERCHER GMBH & CO KG Cleaning device
6255793, May 30 1995 F ROBOTICS ACQUISITIONS LTD Navigation method and system for autonomous machines with markers defining the working area
6259979, Oct 17 1997 KOLLMORGEN AUTOMATION AB Method and device for association of anonymous reflectors to detected angle positions
6261379, Jun 01 1999 Polar Light Limited Floating agitator housing for a vacuum cleaner head
6263539, Dec 23 1999 Carpet/floor cleaning wand and machine
6263989, Mar 27 1998 FLIR DETECTION, INC Robotic platform
6272936, Feb 20 1998 Tekscan, Inc Pressure sensor
6276478, Feb 16 2000 Kathleen Garrubba, Hopkins; KATHLEEN GARRUBGA HOPKINS Adherent robot
6282526, Jan 20 1999 The United States of America as represented by the Secretary of the Navy; NAVY, UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE Fuzzy logic based system and method for information processing with uncertain input data
6283034, Jul 30 1999 Remotely armed ammunition
6285778, Sep 19 1991 Yazaki Corporation Vehicle surroundings monitor with obstacle avoidance lighting
6300737, Sep 19 1997 HUSQVARNA AB Electronic bordering system
6321337,
6327741, Jan 27 1997 Robert J., Schaap Controlled self operated vacuum cleaning system
6332400, Jan 24 2000 The United States of America as represented by the Secretary of the Navy Initiating device for use with telemetry systems
6362875, Dec 10 1999 Cognex Technology and Investment Corporation Machine vision system and method for inspection, homing, guidance and docking with respect to remote objects
6370453, Jul 31 1998 TECHNISCHE FACHHOCHSCHULE BERLIN Service robot for the automatic suction of dust from floor surfaces
6374155, Nov 24 1999 Vision Robotics Corporation Autonomous multi-platform robot system
6374157, Nov 30 1998 Sony Corporation Robot device and control method thereof
6381802, Apr 24 2000 Samsung Kwangju Electronics Co., Ltd. Brush assembly of a vacuum cleaner
6388013, Jan 04 2001 Equistar Chemicals, LP Polyolefin fiber compositions
6389329, Nov 27 1997 Mobile robots and their control system
6401294, Jul 09 1997 BISSELL Homecare, Inc. Upright extracton cleaning machine with handle mounting
6408226, Apr 24 2001 National Technology & Engineering Solutions of Sandia, LLC Cooperative system and method using mobile robots for testing a cooperative search controller
6412141, Jul 09 1997 BISSELL Homecare, Inc. Upright extraction cleaning machine
6415203, May 10 1999 Sony Corporation Toboy device and method for controlling the same
6421870, Feb 04 2000 Tennant Company Stacked tools for overthrow sweeping
6427285, Oct 17 1996 Nilfisk-Advance, Inc. Floor surface cleaning machine
6431296, Mar 27 1998 FLIR DETECTION, INC Robotic platform
6437227, Oct 11 1999 Nokia Mobile Phones LTD Method for recognizing and selecting a tone sequence, particularly a piece of music
6438456, Apr 24 2001 Sandia Corporation Portable control device for networked mobile robots
6438793, Jul 09 1997 BISSELL Homecare, Inc. Upright extraction cleaning machine
6442476, Apr 15 1998 COMMONWEALTH SCIENTIFIC AND INSUSTRIAL RESEARCH ORGANISATION; Research Organisation Method of tracking and sensing position of objects
6454036, May 15 2000 'Bots, Inc. Autonomous vehicle navigation system and method
6457206, Oct 20 2000 GOOGLE LLC Remote-controlled vacuum cleaner
6463368, Aug 10 1998 Siemens Aktiengesellschaft Method and device for determining a path around a defined reference position
6465982, Jan 08 1998 HUSQVARNA AB Electronic search system
6473167, Jun 14 2001 Ascension Technology Corporation; ROPER ASCENSION ACQUISITION, INC Position and orientation determination using stationary fan beam sources and rotating mirrors to sweep fan beams
6480762, Sep 27 1999 Olympus Corporation Medical apparatus supporting system
6491127, Aug 14 1998 Nomadic Technologies Powered caster wheel module for use on omnidirectional drive systems
6493613, Dec 29 1998 MTD Products Inc Method for operating a robot
6502657, Sep 22 2000 The Charles Stark Draper Laboratory, Inc. Transformable vehicle
6504610, Jan 22 1997 Siemens Aktiengesellschaft Method and system for positioning an autonomous mobile unit for docking
6507773, Jun 14 2001 SHARPER IMAGE ACQUISITION LLC, A DELAWARE LIMITED LIABILITY COMPANY Multi-functional robot with remote and video system
6532404, Nov 27 1997 Mobile robots and their control system
6535793, May 01 2000 iRobot Corporation Method and system for remote control of mobile robot
6540607, Apr 26 2001 WARNER BROS ENTERTAINMENT INC Video game position and orientation detection system
6548982, Nov 19 1999 Regents of the University of Minnesota Miniature robotic vehicles and methods of controlling same
6553612, Dec 18 1998 Dyson Technology Limited Vacuum cleaner
6556722, May 30 1997 British Broadcasting Corporation Position determination
6556892, Apr 03 2000 Sony Corporation Control device and control method for robot
6557104, May 02 1997 KINGLITE HOLDINGS INC Method and apparatus for secure processing of cryptographic keys
6563130, Oct 21 1998 Canadian Space Agency Distance tracking control system for single pass topographical mapping
6572711, Dec 01 2000 Healthy Gain Investments Limited Multi-purpose position sensitive floor cleaning device
6584376, Aug 31 1999 Swisscom AG Mobile robot and method for controlling a mobile robot
6586908, Jan 08 1998 HUSQVARNA AB Docking system for a self-propelled working tool
6587573, Mar 20 2000 Gentex Corporation System for controlling exterior vehicle lights
6594551, Jun 14 2001 Sharper Image Corporation Robot for expressing moods
6594844, Jan 24 2000 iRobot Corporation Robot obstacle detection system
6604021, Jun 21 2001 ADVANCED TELECOMMUNICATIONS RESEARCH INSTITUTE INTERNATIONAL Communication robot
6611734, Jun 14 2001 SHARPER IMAGE ACQUISITION LLC, A DELAWARE LIMITED LIABILITY COMPANY Robot capable of gripping objects
6615885, Oct 31 2000 FLIR DETECTION, INC Resilient wheel structure
6624744, Oct 05 2001 WILSON, WILLIAM NEIL Golf cart keyless control system
6625843, Aug 02 2000 KOREA HYDRO & NUCLEAR POWER CO , LTD Remote-controlled mobile cleaning apparatus for removal and collection of high radioactive waste debris in hot-cell
6629028, Jun 29 2000 PAROMTCHIK, IGOR EVGUENYEVITCH Method and system of optical guidance of mobile body
6639659, Apr 24 2001 HEXAGON TECHNOLOGY CENTER GMBH Measuring method for determining the position and the orientation of a moving assembly, and apparatus for implementing said method
6658325, Jan 16 2001 Mobile robotic with web server and digital radio links
6658354, Mar 15 2002 American GNC Corporation Interruption free navigator
6658692, Jan 14 2000 BISSEL INC ; BISSELL INC Small area deep cleaner
6661239, Jan 02 2001 iRobot Corporation Capacitive sensor systems and methods with increased resolution and automatic calibration
6662889, Apr 04 2000 FLIR DETECTION, INC Wheeled platforms
6668951, Mar 27 1998 FLIR DETECTION, INC Robotic platform
6687571, Apr 24 2001 National Technology & Engineering Solutions of Sandia, LLC Cooperating mobile robots
6690993, Oct 12 2000 BROOKS AUTOMATION HOLDING, LLC; Brooks Automation US, LLC Reticle storage system
6697147, Jun 29 2002 Samsung Electronics Co., Ltd. Position measurement apparatus and method using laser
6711280, May 25 2001 STAFSUDD, OSCAR M ; KANELLAKOPOULOS, IOANNIS; NELSON, PHYLLIS R ; BAMBOS, NICHOLAS Method and apparatus for intelligent ranging via image subtraction
6732826, Apr 18 2001 Samsung Gwangju Electronics Co., Ltd. Robot cleaner, robot cleaning system and method for controlling same
6737591, May 25 1999 LIVESCRIBE INC Orientation sensing device
6741364, Aug 13 2002 Harris Corporation Apparatus for determining relative positioning of objects and related methods
6756703, Feb 27 2002 Trigger switch module
6760647, Jul 25 2000 Axxon Robotics, LLC Socially interactive autonomous robot
6764373, Oct 29 1999 Sony Corporation Charging system for mobile robot, method for searching charging station, mobile robot, connector, and electrical connection structure
6769004, Apr 27 2000 FLIR DETECTION, INC Method and system for incremental stack scanning
6801015, Feb 01 2002 Miele & Cie. KG. Method and circuit arrangement for preventing the stand-by discharge of a battery-powered signal evaluation circuit of a sensor
6832407, Aug 25 2000 Healthy Gain Investments Limited Moisture indicator for wet pick-up suction cleaner
6836701, May 10 2002 Royal Appliance Mfg. Co. Autonomous multi-platform robotic system
6845297, May 01 2000 iRobot Corporation Method and system for remote control of mobile robot
6856811, Feb 01 2002 Warren L., Burdue Autonomous portable communication network
6859010, Mar 14 2003 LG Electronics Inc. Automatic charging system and method of robot cleaner
6859682, Mar 28 2002 FUJIFILM Corporation Pet robot charging system
6860206, Dec 14 2001 FLIR DETECTION, INC Remote digital firing system
6870792, Aug 03 2000 iRobot Corporation Sonar Scanner
6871115, Oct 11 2002 Taiwan Semiconductor Manufacturing Co., Ltd Method and apparatus for monitoring the operation of a wafer handling robot
6886651, Jan 07 2002 Massachusetts Institute of Technology Material transportation system
6888333, Jul 02 2003 TELADOC HEALTH, INC Holonomic platform for a robot
6906702, Mar 19 1999 Canon Kabushiki Kaisha Coordinate input device and its control method, and computer readable memory
6914403, Mar 27 2002 Sony Corporation Electrical charging system, electrical charging controlling method, robot apparatus, electrical charging device, electrical charging controlling program and recording medium
6917854, Feb 21 2000 WITTENSTEIN GMBH & CO KG Method for recognition determination and localization of at least one arbitrary object or space
6925357, Jul 25 2002 TELADOC HEALTH, INC Medical tele-robotic system
6929548, Apr 23 2002 Apparatus and a method for more realistic shooting video games on computers or similar devices
6940291, Jan 02 2001 iRobot Corporation Capacitive sensor systems and methods with increased resolution and automatic calibration
6957712, Apr 18 2001 Samsung Gwangju Electronics Co., Ltd. Robot cleaner, system employing the same and method for re-connecting to external recharging device
6960986, May 10 2000 Riken Support system using data carrier system
6965211, Mar 27 2002 Sony Corporation Electrical charging system, electrical charging controlling method, robot apparatus, electrical charging device, electrical charging controlling program and recording medium
6975246, May 13 2003 Elbit Systems of America, LLC Collision avoidance using limited range gated video
6980229, Oct 16 2001 Information Decision Technologies, LLC System for precise rotational and positional tracking
6985556, Dec 27 2002 GE Medical Systems Global Technology Company, LLC Proximity detector and radiography system
6993954, Jul 27 2004 Tekscan, Inc Sensor equilibration and calibration system and method
7013527, Jun 08 1999 DIVERSEY, INC Floor cleaning apparatus with control circuitry
7027893, Aug 25 2003 ATI Industrial Automation, Inc. Robotic tool coupler rapid-connect bus
7030768, Sep 30 2003 Water softener monitoring device
7031805, Feb 06 2003 Samsung Gwangju Electronics Co., Ltd. Robot cleaner system having external recharging apparatus and method for docking robot cleaner with external recharging apparatus
7032469, Nov 12 2002 Raytheon Company Three axes line-of-sight transducer
7054716, Sep 06 2002 Royal Appliance Mfg. Co. Sentry robot system
7057120, Apr 09 2003 Malikie Innovations Limited Shock absorbent roller thumb wheel
7057643, May 30 2001 Minolta Co., Ltd. Image capturing system, image capturing apparatus, and manual operating apparatus
7065430, Mar 28 2002 FUJIFILM Corporation Receiving apparatus
7066291, Dec 04 2000 UNIBAP AB Robot system
7069124, Oct 28 2002 Workhorse Technologies, LLC Robotic modeling of voids
7085623, Aug 15 2002 ASM International NV Method and system for using short ranged wireless enabled computers as a service tool
7113847, May 07 2002 Royal Appliance Mfg. Co.; ROYAL APPLIANCE MFG CO Robotic vacuum with removable portable vacuum and semi-automated environment mapping
7142198, Dec 10 2001 SAMSUNG ELECTRONICS CO , LTD Method and apparatus for remote pointing
7148458, Mar 29 2004 iRobot Corporation Circuit for estimating position and orientation of a mobile object
7166983, Apr 25 2005 LG Electronics Inc. Position calculation system for mobile robot and charging-stand return system and method using the same
7171285, Apr 03 2003 LG Electronics Inc. Mobile robot using image sensor and method for measuring moving distance thereof
7173391, Jun 12 2001 iRobot Corporation Method and system for multi-mode coverage for an autonomous robot
7174238, Sep 02 2003 Mobile robotic system with web server and digital radio links
7193384, Jul 29 2003 Innovation First, Inc. System, apparatus and method for managing and controlling robot competitions
7196487, Aug 19 2004 iRobot Corporation Method and system for robot localization and confinement
7211980, Jul 05 2006 Humatics Corporation Robotic follow system and method
7233122, Apr 25 2005 LG Electronics Inc. Self-running robot having pressing sensing function and control method thereof
7251853, Jul 29 2003 Samsung Gwangju Electronics Co., Ltd. Robot cleaner having floor-disinfecting function
7275280, Feb 28 2001 Aktiebolaget Electrolux Wheel support arrangement for an autonomous cleaning apparatus
7283892, Apr 03 2006 SERVO-ROBOT INC Hybrid compact sensing apparatus for adaptive robotic processes
7328196, Dec 31 2003 Vanderbilt University Architecture for multiple interacting robot intelligences
7332890, Jan 21 2004 iRobot Corporation Autonomous robot auto-docking and energy management systems and methods
7360277, Mar 24 2004 Techtronic Floor Care Technology Limited Vacuum cleaner fan unit and access aperture
7363108, Feb 05 2003 Sony Corporation Robot and control method for controlling robot expressions
7388879, Aug 28 2000 Sony Corporation Communication device and communication method network system and robot apparatus
7389166, Jun 28 2005 S C JOHNSON & SON, INC Methods to prevent wheel slip in an autonomous floor cleaner
7430462, Oct 20 2004 Infinite Electronics Inc. Automatic charging station for autonomous mobile machine
7441298, Dec 02 2005 iRobot Corporation Coverage robot mobility
7444206, Sep 26 2001 MTD Products Inc Robotic vacuum cleaner
7448113, Jan 03 2002 IRobert Autonomous floor cleaning robot
7467026, Sep 22 2003 Honda Motor Co. Ltd. Autonomously moving robot management system
7474941, Jul 24 2003 Samsung Gwangju Electronics Co., Ltd. Robot cleaner
7503096, Dec 27 2005 E-Supply International Co., Ltd. Dust-collectable mobile robotic vacuum cleaner
7555363, Sep 02 2005 VORWERK & CO INTERHOLDING GMBH Multi-function robotic device
7557703, Jul 11 2005 Honda Motor Co., Ltd. Position management system and position management program
7571511, Jan 03 2002 iRobot Corporation Autonomous floor-cleaning robot
7578020, Jun 28 2005 S C JOHNSON & SON, INC Surface treating device with top load cartridge-based cleaning system
7603744, Apr 02 2004 Royal Appliance Mfg. Co. Robotic appliance with on-board joystick sensor and associated methods of operation
7617557, Apr 02 2004 Royal Appliance Mfg. Co. Powered cleaning appliance
7620476, Feb 18 2005 iRobot Corporation Autonomous surface cleaning robot for dry cleaning
7636982, Jan 03 2002 iRobot Corporation Autonomous floor cleaning robot
7663333, Jun 12 2001 iRobot Corporation Method and system for multi-mode coverage for an autonomous robot
7706917, Jul 07 2004 iRobot Corporation Celestial navigation system for an autonomous robot
7765635, Sep 05 2006 LG Electronics Inc. Cleaning robot
7809944, May 02 2001 Sony Corporation Method and apparatus for providing information for decrypting content, and program executed on information processor
7849555, Apr 24 2006 Samsung Electronics Co., Ltd. Robot cleaning system and dust removing method of the same
7853645, Oct 07 1997 AUTOMATION MIDDLEWARE SOLUTIONS, INC Remote generation and distribution of command programs for programmable devices
20010013929,
20010020200,
20010025183,
20010037163,
20010043509,
20010045883,
20010047895,
20020011367,
20020021219,
20020027652,
20020036779,
20020081937,
20020095239,
20020097400,
20020104963,
20020108209,
20020112742,
20020113973,
20020120364,
20020124343,
20020153185,
20020159051,
20020166193,
20020169521,
20020189871,
20030009259,
20030024986,
20030025472,
20030026472,
20030028286,
20030030399,
20030058262,
20030067451,
20030124312,
20030126352,
20030146384,
20030146739,
20030193657,
20030221114,
20030229421,
20030229474,
20030233171,
20030233870,
20030233930,
20040016077,
20040030451,
20040030570,
20040045117,
20040049877,
20040055163,
20040074038,
20040083570,
20040085037,
20040093122,
20040098167,
20040113777,
20040117064,
20040117846,
20040118998,
20040128028,
20040133316,
20040148419,
20040148731,
20040153212,
20040181706,
20040187249,
20040196451,
20040204792,
20040210345,
20040210347,
20040221790,
20040255425,
20050010330,
20050021181,
20050022330,
20050067994,
20050137749,
20050138764,
20050144751,
20050154795,
20050165508,
20050166354,
20050166355,
20050171644,
20050192707,
20050204505,
20050211880,
20050212478,
20050212680,
20050212929,
20050213082,
20050213109,
20050217042,
20050222933,
20050229340,
20050234595,
20050251292,
20050255425,
20050258154,
20050288819,
20060000050,
20060010638,
20060025134,
20060037170,
20060042042,
20060044546,
20060056677,
20060060216,
20060064828,
20060087273,
20060089765,
20060119839,
20060143295,
20060146776,
20060190133,
20060196003,
20060220900,
20060238157,
20060238159,
20060241814,
20060253224,
20060259212,
20060259494,
20060293787,
20070006404,
20070032904,
20070042716,
20070043459,
20070061041,
20070096676,
20070114975,
20070150096,
20070157415,
20070157420,
20070179670,
20070226949,
20070234492,
20070244610,
20070250212,
20070266508,
20080007203,
20080039974,
20080052846,
20080091304,
20080184518,
20080281470,
20080282494,
20080294288,
20080307590,
20090007366,
20090049640,
20090055022,
20090102296,
20090292393,
20100011529,
20100107355,
20100257690,
20100257691,
20100263158,
20100268384,
20100312429,
AU2003275566,
D258901, Oct 16 1978 Wheeled figure toy
D278732, Aug 25 1981 TOMY KOGYO CO , INC , A JAPAN CORP Animal-like figure toy
D292223, May 17 1985 Showscan Film Corporation Toy robot or the like
D298766, Apr 11 1986 Playtime Products, Inc. Toy robot
D318500, Aug 08 1988 Monster Robots Inc.; MONSTER ROBOTS INC Monster toy robot
D375592, Aug 29 1995 Aktiebolaget Electrolux Vacuum cleaner
D464091, Oct 10 2000 Sharper Image Corporation Robot with two trays
D471243, Feb 09 2001 iRobot Corporation Robot
D474312, Jan 11 2002 Healthy Gain Investments Limited Robotic vacuum cleaner
D478884, Aug 23 2002 Motorola, Inc. Base for a cordless telephone
DE102004041021,
DE102005046813,
DE10357636,
DE19849978,
DE199311014,
DE2128842,
DE3317376,
DE3404202,
DE3536907,
DE4338841,
DE4414683,
DK198803389,
EP1018315,
EP1172719,
EP1228734,
EP1380246,
EP1553472,
EP1642522,
EP265542,
EP281085,
EP294101,
EP307381,
EP358628,
EP433697,
EP437024,
EP479273,
EP554978,
EP615719,
EP792726,
EP845237,
EP861629,
EP930040,
ES2238196,
FR2601443,
GB2128842,
GB2213047,
GB2225221,
GB2267360,
GB2284957,
GB2300082,
GB2404330,
GB2417354,
GB702426,
JP10055215,
JP10117973,
JP10118963,
JP10165738,
JP10177414,
JP1020043088,
JP10214114,
JP10228316,
JP10240342,
JP10240343,
JP10260727,
JP10295595,
JP11015941,
JP11065655,
JP11085269,
JP11102219,
JP11102220,
JP11162454,
JP11174145,
JP11175149,
JP11178764,
JP11178765,
JP11212642,
JP11213154,
JP11248806,
JP11282532,
JP11282533,
JP11295412,
JP11346964,
JP1162454,
JP20000275321,
JP20000353014,
JP2000047728,
JP2000056006,
JP2000056831,
JP2000066722,
JP2000075925,
JP2000353014,
JP2001022443,
JP2001067588,
JP2001087182,
JP2001121455,
JP2001125641,
JP2001216482,
JP2001265439,
JP2001289939,
JP2001306170,
JP2001320781,
JP2002204769,
JP2002247510,
JP2002333920,
JP2002360479,
JP2002366227,
JP2002369778,
JP2003010076,
JP2003010088,
JP2003015740,
JP2003028528,
JP2003047579,
JP2003052596,
JP2003084994,
JP2003167628,
JP2003180587,
JP2003186539,
JP2003190064,
JP2003241836,
JP2003262520,
JP2003285288,
JP2003304992,
JP2003310509,
JP2003330543,
JP2004123040,
JP2004148021,
JP2004160102,
JP2004166968,
JP2004174228,
JP2004198330,
JP2004219185,
JP2005118354,
JP2005135400,
JP2005211360,
JP2005224265,
JP2005230032,
JP2005245916,
JP2005296511,
JP2005346700,
JP2005352707,
JP2006043071,
JP2006155274,
JP2006164223,
JP2006227673,
JP2006247467,
JP2006260161,
JP2006293662,
JP2006296697,
JP2006312,
JP2007034866,
JP2007213180,
JP2009015611,
JP2010198552,
JP2026312,
JP2283343,
JP2520732,
JP2555263,
JP3051023,
JP3197758,
JP3201903,
JP3375843,
JP4019586,
JP4074285,
JP4084921,
JP4300516,
JP5023269,
JP5040519,
JP5042076,
JP5046239,
JP5046246,
JP5054620,
JP5091604,
JP5095879,
JP5150827,
JP5150829,
JP5257527,
JP5257533,
JP5285861,
JP53021869,
JP53110257,
JP57014726,
JP57064217,
JP59005315,
JP59033511,
JP59094005,
JP59099308,
JP59112311,
JP59120124,
JP59124917,
JP59131668,
JP59164973,
JP59212924,
JP59226909,
JP6003251,
JP60089213,
JP60211510,
JP60259895,
JP6026312,
JP61023221,
JP6105781,
JP61079912,
JP6137828,
JP62070709,
JP62074018,
JP62164431,
JP62189057,
JP62263507,
JP62263508,
JP6293095,
JP63079623,
JP63158032,
JP7059702,
JP7129239,
JP7222705,
JP7270518,
JP7281742,
JP7281752,
JP7311041,
JP7313417,
JP7319542,
JP8000393,
JP8016241,
JP8016776,
JP8063229,
JP8083125,
JP8089449,
JP8123548,
JP8152916,
JP8256960,
JP8263137,
JP8286741,
JP8286744,
JP8322774,
JP8335112,
JP9043901,
JP9044240,
JP9047413,
JP9066855,
JP9145309,
JP9160644,
JP9179625,
JP9179685,
JP9192069,
JP9204223,
JP9206258,
JP9233712,
JP9251318,
JP9265319,
JP9269807,
JP9269810,
JP9319431,
JP9319432,
JP9319434,
JP9325812,
JP943901,
KR1020010032583,
WO38029,
WO2069775,
WO2004025947,
WO2005083541,
WO9853456,
WO9916078,
WO9959042,
WO38028,
WO180703,
WO191623,
WO2067752,
WO2069774,
WO2075350,
WO2081074,
WO3015220,
WO3024292,
WO3040546,
WO3062850,
WO3062852,
WO2004004534,
WO2004005956,
WO2004043215,
WO2004058028,
WO2005006935,
WO2005036292,
WO2005055796,
WO2005076545,
WO2005077243,
WO2005081074,
WO2005082223,
WO2005098475,
WO2005098476,
WO2006046400,
WO2006073248,
WO2007036490,
WO2007065033,
WO2007137234,
WO9530887,
WO9617258,
WO9905580,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 14 2012iRobot Corporation(assignment on the face of the patent)
Date Maintenance Fee Events


Date Maintenance Schedule
Jul 02 20164 years fee payment window open
Jan 02 20176 months grace period start (w surcharge)
Jul 02 2017patent expiry (for year 4)
Jul 02 20192 years to revive unintentionally abandoned end. (for year 4)
Jul 02 20208 years fee payment window open
Jan 02 20216 months grace period start (w surcharge)
Jul 02 2021patent expiry (for year 8)
Jul 02 20232 years to revive unintentionally abandoned end. (for year 8)
Jul 02 202412 years fee payment window open
Jan 02 20256 months grace period start (w surcharge)
Jul 02 2025patent expiry (for year 12)
Jul 02 20272 years to revive unintentionally abandoned end. (for year 12)