A light emitting device including a light emitting structure having a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer; a first electrode on the light emitting structure; and a photon escape layer on the light emitting structure. Further, the photon escape layer has a refractive index that is between a refractive index of the light emitting structure and a refractive index of an encapsulating material with respect to the light emitting structure such that an escape probability for photons emitted by the light emitting structure is increased.
|
17. A light emitting device, comprising:
a light emitting structure, wherein the light emitting structure includes a first conductive semiconductor layer, a second conductive semiconductor layer and an active layer between the first conductive semiconductor layer and the second conductive semiconductor layer;
a first electrode on the first conductive semiconductor layer; and
a photon escape layer on a portion of the first electrode and the light emitting structure,
wherein the photon escape layer has a refractive index that is between a refractive index of the light emitting structure and a refractive index of an encapsulating material with respect to the light emitting structure, and
wherein the first electrode comprises a portion of protruding into the photon escape layer.
1. A light emitting device, comprising:
a light emitting structure, wherein the light emitting structure includes a first conductive semiconductor layer, a second conductive semiconductor layer and an active layer between the first conductive semiconductor layer and the second conductive semiconductor layer;
a first electrode on the first conductive semiconductor layer;
a photon escape layer on a portion of the first electrode and the light emitting structure; and
a pad on the first electrode,
wherein the photon escape layer has a refractive index that is between a refractive index of the light emitting structure and a refractive index of an encapsulating material with respect to the light emitting structure, and
wherein a top surface of the photon escape layer is higher than a top surface of the pad.
2. The light emitting device according to
3. The light emitting device according to
4. The light emitting device according to
5. The light emitting device according to
6. The light emitting device according to
7. The light emitting device according to
8. The light emitting device according to
9. The light emitting device according to
10. The light emitting device according to
11. The light emitting device according to
12. The light emitting device according to
13. The light emitting device according to
14. The light emitting device according to
15. The light emitting device according to
16. The light emitting device according to
18. The light emitting device according to
19. The light emitting device according to
20. The light emitting device according to
|
This application is a continuation of U.S. application Ser. No. 12/693,239 filed on Jan. 25, 2010 now U.S. Pat. No. 8,193,536 claiming the benefit of Korean Patent Application No. 10-2009-0021441 filed Mar. 13, 2009, both of which are hereby incorporated by reference for all purpose as if fully set forth herein.
1. Field of the Invention
The present disclosure relates to a light emitting device.
2. Discussion of the Background
Light Emitting Devices include P-N junction diodes that convert electrical energy into light energy. The diodes are formed by combining group III and V elements on the periodic table. Light Emitting Devices also emit various colors of light by controlling the composition ratio of compound semiconductors.
In more detail, when a forward voltage is applied, an electron of an n-layer is combined with a hole of a p-layer to emit energy corresponding to an energy gap between the conduction band and the valance band. The energy is then emitted as light. Also, nitride semiconductors, for example, are used in optical devices and high-power electronic devices, because of their high thermal stability and wide band gap energy. In particular, blue LEDs, green LEDs, and UV LEDs that use nitride semiconductors are available. However, the light emitting devices only output a small amount of light.
Accordingly, one object of the present invention is to address the above-noted and other objects of the present invention.
Another object of the present invention is to provide a light emitting device with an improved extraction efficiency.
To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described herein, the present invention provides in one aspect a light emitting device including a light emitting structure having a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer; a first electrode on the light emitting structure; and a photon escape layer on the light emitting structure. Further, the photon escape layer has a refractive index that is between a refractive index of the light emitting structure and a refractive index of an encapsulating material with respect to the light emitting structure such that an escape probability for photons emitted by the light emitting structure is increased.
In another aspect, the present invention provides a light emitting device including a photon escape layer on a light emitting structure; a first electrode on the light emitting structure; a pad on the first electrode; and a second electrode under the light emitting structure. Further, the photon escape layer has a refractive index that is between a refractive index of the light emitting structure and a refractive index of an encapsulating material with respect to the light emitting structure such that an escape probability for photons emitted by the light emitting structure is increased.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings, which are given by illustration only, and thus are not limitative of the present invention, and wherein:
Reference will now be made in detail to the embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings.
The embodiments of the present invention improve the light emitting efficiency of the light emitting device. In more detail, the embodiments of the present invention improve an extraction efficiency (which is an external quantum efficiency). That is, the embodiments of the present invention increase the probability that light generated from an active layer is emitted outside of the device. The embodiments will now be described in more detail with respect to the figures.
In particular,
In
The light emitting device according to the embodiment of the present invention improves the extraction efficiency of the device by depositing or re-growing the photon escape layer 150 on the light emitting structure 110 so as to expand an escape path of photons. In more detail, the light emitting device according to the present embodiment does not interrupt the path of photons without an internal scattering factor by employing a photon escape layer, and does not bios the escape path of photons to provide a wider-angle escape path. That is, the escape path of photons according to refraction or reflection, which are internal scattering factors, enables an escape of photons due to a wide escape angle.
The light emitting device according to the present embodiment can form the photon escape layer 150 through a deposition or a re-growth process and by selectively applying the physical properties related to refractive index. Also, an escape path of photons is ensured by a difference of refractive index, when a surface junction unit is formed according to a package molding material. Thus, the escape path of photons is broadened by forming a material considering the difference of refraction index between a light emitting structure and a background material. Accordingly, the escape paths of photons generated from an active layer are increased to improve the extraction efficiency.
Hereinafter, a method of manufacturing a light emitting device according to the first embodiment will be described with reference to
First, as shown in
As illustrated in
Next, a process for forming the light emitting structure 110 and the second electrode layer 120 will be described in more detail. The first conductive semiconductor layer 112 may include an N-type GaN layer through a Chemical Vapor Deposition (CVD) process, a Molecular Beam Epitaxy (MBE) process, a sputtering process, or a Hydride Vapor Phase Epitaxy (HYPE) process. The first conductive semiconductor layer 112 may also be formed by implanting a trimethyl gallium gas (TMGa), an ammonium gas (NH3), a nitrogen gas (N2), and a silane gas (SiH4) including an n-type impurity such as silicon (Si) into a chamber.
Further, the active layer 114 is a layer emitting light having energy determined by an intrinsic energy band of an active layer (light emitting layer) material when electrons injected from the first conductive semiconductor layer 112 meet holes injected from the second conductive semiconductor layer 116. The active layer 114 can also have a quantum well structure that is formed by alternate or successive lamination of nitride semiconductor thin layers having different energy bands. For example, the active layer 114 may be formed in a multi quantum well structure having an InGaN/GaN structure by being injected with a trimethyl gallium gas (TMGa), an ammonium gas (NH3), a nitrogen gas (N2), and a Trimethyl indium gas (TMIn).
Further, the second conductive semiconductor layer 116 may, for example, include a p-type GaN layer formed by implanting a trimethyl gallium gas (TMGa), an ammonium gas (NH3), a nitrogen gas (N2), and bis-ethylcyclopentadienyl magnesium EtCp2Mg {Mg(C2H5C5H4)2} including a p-type impurity such as magnesium (Mg) into a chamber.
Next, as shown in
In addition, the reflection layer 124 may be formed of a metal layer including Al, Ag or an alloy thereof, etc. Also, when the embodiment includes the adhesive layer 126, the reflection layer 124 may perform the function of the adhesive layer 126, or the adhesive layer 126 may be formed using Ni or Au. Further, the second electrode layer 120 may include a second substrate. If the first conductive semiconductor layer 112 has an enough thickness of about 50 μm or more, a process of forming the second substrate may be omitted. The second substrate may also be formed of a material having an excellent conductivity such as a metal, a metal alloy or a conductive semiconductor for an efficient hole injection. For example, the second substrate may be formed of at least one of Cu, Cu alloy, Si, Mo and SiGe. The second substrate may also be formed by an electrochemical metal vapor deposition process or a bonding process using a eutectic metal.
In addition, the first substrate is removed to expose the first conductive semiconductor layer 112. The first substrate may be removed using a high-power laser or a chemical etching method or be removed by a physical polishing method.
As shown in
As shown in
As shown in
The first embodiment illustrates a method of forming the photon escape layer 150 using a deposition method. However, a growth method as described in the following second embodiment also may be used.
Also, because the photon escape layer 150 is formed by a deposition method according to the first embodiment, the photon escape layer 150 may also be formed on the first electrode 142 and the insulating layer 130. The photon escape layer 150 may also be formed of a dielectric film or a conductive film, which have a refractive index between a refractive index of the light emitting structure 110 and a refractive index of the background (e.g., an encapsulating material, air, etc).
Further, the photon escape layer 150 may be formed at least one of TiO2, Al2O3, ZnO, MgF2, In2O3, SnO2, TiNx, Ga2O3, ITO, In—Zn—O, and ZnO:Al to prevent a loss of the amount of photons. Also, because the photon escape layer 150 has a refractive index between the light emitting structure 110 and the background material, the photon escape layer 150 provides an escape path of the amount of photons generated from the active layer 114.
In addition, a material that may serve as the photon escape layer 150 may be a transmitting layer complying with the Lambertian Law, and may be disposed on the upper part of the light emitting surface of the light emitting structure 110 to provide a photon escape path. Further, the photon escape layer 150 may include a conductive film besides a dielectric film. The conductive film may be an oxide, a fluoride or a nitride film, and may have a refractive index between the light emitting structure 110 and the background material as a material forming the photon escape layer 150.
As shown in
As shown in
As shown in
As shown in
Next,
As shown in
Thus, in the light emitting device according to the above-embodiments of the present invention, an escape path of photons is broadened by forming a material considering a difference of refraction index between a light emitting structure and a background material. Accordingly, the escape paths of photons generated from the active layer are increased to improve the extraction efficiency of the device.
Next,
In more detail, the first embodiment relates to a method of manufacturing the photon escape layer 150 using a deposition process. As shown in
Also, a reference in this specification to “one embodiment,” “an embodiment,” “example embodiment,” etc., means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of such phrases in various places in the specification are not necessarily all referring to the same embodiment. Further, when a particular feature, structure or characteristic is described in connection with any embodiment, it is submitted that it is within the purview of one skilled in the art to affect such feature, structure, or characteristic in connection with other ones of the embodiments.
In addition, in the above-description of the embodiments, when a layer (or film) is referred to as being ‘on/over’ another layer or substrate, it can be directly on/over another layer or substrate, or intervening layers may also be present. Further, when a layer is referred to as being ‘under/below’ another layer, it can be directly under/below another layer, and one or more intervening layers may also be present. In addition, when a layer is referred to as being ‘between’ two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present.
Although embodiments have been described with reference to a number of illustrative embodiments thereof, numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
7118438, | Jan 27 2003 | 3M Innovative Properties Company | Methods of making phosphor based light sources having an interference reflector |
7223998, | Sep 10 2004 | The Regents of the University of California | White, single or multi-color light emitting diodes by recycling guided modes |
20010013605, | |||
20020008241, | |||
20040144986, | |||
20050265404, | |||
20070080352, | |||
20070170448, | |||
CN101271940, | |||
CN1838439, | |||
JP2008235319, | |||
KR100643471, | |||
KR1020060112872, | |||
KR1020060114920, | |||
KR1020060125079, | |||
KR1020070042214, | |||
KR1020080000884, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 04 2012 | LG Innotek Co., Ltd. | (assignment on the face of the patent) | / | |||
May 20 2021 | LG INNOTEK CO , LTD | SUZHOU LEKIN SEMICONDUCTOR CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 056366 | /0335 |
Date | Maintenance Fee Events |
Mar 10 2015 | ASPN: Payor Number Assigned. |
Dec 22 2016 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 06 2021 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 09 2016 | 4 years fee payment window open |
Jan 09 2017 | 6 months grace period start (w surcharge) |
Jul 09 2017 | patent expiry (for year 4) |
Jul 09 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 09 2020 | 8 years fee payment window open |
Jan 09 2021 | 6 months grace period start (w surcharge) |
Jul 09 2021 | patent expiry (for year 8) |
Jul 09 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 09 2024 | 12 years fee payment window open |
Jan 09 2025 | 6 months grace period start (w surcharge) |
Jul 09 2025 | patent expiry (for year 12) |
Jul 09 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |