A blood storage system. The system has a collection bag for red blood cells; an oxygen/carbon dioxide depletion device; a storage bag for red blood cells; and tubing connecting the collection bag to the depletion device and the depletion device to the storage bag. The depletion device includes a receptacle of a solid material having an inlet and an outlet adapted to receiving and expelling a flushing gas; a plurality of hollow fibers or gas-permeable films extending within the receptacle from an entrance to an exit thereof. The hollow fibers or gas-permeable films are adapted to receiving and conveying red blood cells.
|
19. A blood storage system comprising:
a collection bag for red blood cells;
a unitary device for depleting oxygen and carbon dioxide and reducing leukocytes from red blood cells;
a storage bag for red blood cells; and
tubing connecting the collection bag to said unitary device and tubing connecting said unitary device to said storage bag.
1. A blood storage device for storing oxygen and carbon dioxide depleted blood comprising:
an outer receptacle substantially impermeable to carbon dioxide;
an inner receptacle situated within said outer receptacle;
an amount of a carbon dioxide scavenger situated within said outer receptacle wherein said blood storage device maintains the blood in a carbon dioxide depleted state.
11. An oxygen and carbon dioxide depletion device comprising:
a receptacle of a solid material having an inlet and an outlet adapted to receiving and expelling a flushing gas and
a plurality of gas-permeable films or membranes extending within said receptacle from an entrance to an exit thereof, wherein said plurality of gas-permeable films or membranes are formed of a material permeable to both oxygen and carbon dioxide and are adapted to receiving and conveying red blood cells.
18. A blood storage device comprising: a receptacle adapted to retain and store red blood cells, said receptacle being formed from a laminate, said laminate including (a) an outer layer of a material substantially impermeable to both oxygen and carbon dioxide, (b) an inner layer of a material compatible with red blood cells, and (c) an interstitial layer between the outer layer and the inner layer wherein said interstitial layer is of a material having admixed therein an amount of both an oxygen scavenger and a carbon dioxide scavenger.
9. An oxygen and carbon dioxide depletion device comprising:
a cartridge;
a plurality of gas-permeable films or membranes extending within the cartridge from an entrance to an exit thereof, wherein said plurality of gas permeable films or membranes are formed of a material that is permeable to both oxygen and carbon dioxide and are adapted to receiving and conveying red blood cells; and
an amount of both an oxygen scavenger and a carbon dioxide scavenger packed within said cartridge and contiguous to and in between said plurality of gas-permeable films or membranes.
15. A method for removing oxygen and carbon dioxide from red blood cells, comprising: passing red blood cells through an oxygen and carbon dioxide depletion device, wherein said device comprises:
a receptacle of a solid material having an inlet and an outlet adapted to receiving and expelling a flushing gas; and
a plurality of gas-permeable films or membranes extending within said receptacle from an entrance to an exit thereof, wherein said plurality of gas-permeable films or membranes are formed of a material permeable to both oxygen and carbon dioxide and are adapted to receiving and conveying said red blood cells.
14. A method for removing oxygen and carbon dioxide from red blood cells, comprising: passing the red blood cells through an oxygen and carbon depletion device, wherein the device includes
a cartridge;
a plurality of gas-permeable films or membranes extending within said cartridge from an entrance to an exit thereof, wherein said plurality of gas-permeable films or membranes are formed of a material permeable to both oxygen and carbon dioxide and are adapted to receiving and conveying said red blood cells; and
an amount of an oxygen scavenger and a carbon dioxide scavenger packed within said cartridge and contiguous to and in between said plurality of gas-permeable films or membranes.
17. A blood storage system comprising:
a collection bag for red blood cells;
a oxygen and carbon dioxide depletion device;
a storage bag for red blood cells; and
tubing connecting said collection bag to said depletion device and tubing connecting said depletion device to said storage bag,
wherein said depletion device includes
a receptacle of a solid material having an inlet and an outlet adapted to receiving and expelling a flushing gas; and
a plurality of gas-permeable films or membranes extending within said receptacle from an entrance to an exit thereof, wherein said plurality of gas-permeable films or membranes are formed of a material permeable to both oxygen and carbon dioxide and are adapted to receiving and conveying red blood cells.
16. A blood storage system comprising:
a collection bag for red blood cells;
an oxygen and carbon dioxide depletion device;
a storage bag for red blood cells; and
tubing connecting said collection bag to said oxygen and carbon dioxide depletion device and tubing connecting said oxygen and carbon dioxide depletion device to said storage bag,
wherein said oxygen and carbon dioxide depletion device includes
a cartridge;
a plurality of gas-permeable films or membranes extending within said cartridge from an entrance to an exit thereof, wherein said plurality of gas-permeable films or membranes are formed of a material permeable to both oxygen and carbon dioxide and are adapted to receiving and conveying red blood cells; and
an amount of both an oxygen scavenger and a carbon dioxide scavenger packed within said cartridge and contiguous to and in between said plurality of gas-permeable films or membranes.
2. The device of
3. The device of
5. The device of
6. The device of
7. The device of
8. The device of
10. The device of
12. The device of
13. The device of
20. The blood storage system of
21. The blood storage device of
22. The device of
23. The device of
24. The device of
|
The present application claims priority based on U.S. Provisional Application Nos. 61/331,693, filed May 5, 2010, and 61/250,661, filed Oct. 12, 2009, both of which are incorporated herein by reference in their entireties.
This invention was made with government support under grants awarded by the National Institutes of Health (NIH) and the National Heart Lung and Blood Institute (NHLBI). The government has certain rights in the invention.
1. Field
The present disclosure relates to a storage blood system having an oxygen/carbon dioxide depletion device and a blood storage bag for the long-term storage of blood. More particularly, the present disclosure relates to a blood storage system that is capable of removing oxygen and carbon dioxide from the red blood prior to storage and during storage, as well as maintaining oxygen and/or carbon dioxide depleted states during storage, thereby prolonging the storage life and minimizing deterioration of the deoxygenated red blood.
2. Background of the Art
Adequate blood supply and the storage thereof is a problem facing every major hospital and health organization around the world. Often, the amount of blood supply in storage is considerably smaller than the need therefor. This is especially true during crisis periods such as natural catastrophes, war and the like, when the blood supply is often perilously close to running out. It is at critical times such as these that the cry for more donations of fresh blood is often heard. However, unfortunately, even when there is no crisis period, the blood supply and that kept in storage must be constantly monitored and replenished, because stored blood does not maintain its viability for long.
Stored blood undergoes steady deterioration which is, in part, caused by hemoglobin oxidation and degradation and adenosine triphosphate (ATP) and 2-3,biphosphoglycerate (DPG) depletion. Oxygen causes hemoglobin (Hb) carried by the red blood cells (RBCs) to convert to met-Hb, the breakdown of which produces toxic products such as hemichrome, hemin and free Fe3+. Together with the oxygen, these products catalyze the formation of hydroxyl radicals (OH.cndot.), and both the OH.cndot. and the met-Hb breakdown products damage the red blood cell lipid membrane, the membrane skeleton, and the cell contents. As such, stored blood is considered unusable after 6 weeks, as determined by the relative inability of the red blood cells to survive in the circulation of the transfusion recipient. The depletion of DPG prevents adequate transport of oxygen to tissue thereby lowering the efficacy of transfusion immediately after administration (levels of DPG recover once in recipient after 8-48 hrs). In addition, these deleterious effects also result in reduced overall efficacy and increased side effects of transfusion therapy with stored blood before expiration date, but possibly older than two weeks are used. Reduction in carbon dioxide content in stored blood has the beneficial effect of elevating DPG levels in red blood cells.
There is, therefore, a need to be able to deplete oxygen and carbon dioxide levels in red blood cells prior to storage on a long-term basis without the stored blood undergoing the harmful effects caused by the oxygen and hemoglobin interaction. Furthermore, there is a need to store oxygen and carbon dioxide depleted red blood cells in bags containing or bag surrounded by a barrier film with oxygen and carbon dioxide depletion materials. Furthermore, there is a need to optimize ATP and DPG levels in stored red blood cells by varying the depletion or scavenging constituents prior to and/or during storage depending upon the needs of the recipient upon transfusion. Furthermore, the blood storage devices and methods must be simple, inexpensive and capable of long-term storage of the blood supply.
A disposable device for blood storage that is able to deplete of oxygen and anaerobically store of red blood cells for transfusion.
The present disclosure also provides for a device and method of removing carbon dioxide (CO2) in addition to oxygen (O2) prior to or at the onset of anaerobic storage.
The present disclosure further provides for mixing O2 and CO2 scavenging materials that are placed in a depletion device to obtain optimal ATP and DPG levels.
The present disclosure also provides for a depletion device that has the ability to scavenge CO2 prior to or at the onset of anaerobic storage.
The present disclosure further provides for the anaerobic storage bag that is capable of storing red blood cells anaerobically and in a CO2 depleted state.
The present disclosure provides for mixing of O2 and CO2 scavenging materials to be placed in a sachet or incorporated into the storage bag materials of construction within an anaerobic storage bag.
Accordingly, the present disclosure provides for a disposable device for blood storage that is able to deplete oxygen and carbon dioxide as well as anaerobically store red blood cells for transfusion.
The present disclosure also provides for a system the anaerobic storage of RBCs with pre-storage oxygen and carbon dioxide depletion and continued maintenance of the anaerobic and carbon dioxide depleted state during storage.
The present disclosure further provides for the anaerobic storage of standard storage bags by storing them in a controlled-atmosphere container or chamber such as in an inert gas within a refrigerator.
The present disclosure provides for a blood collection system that incorporates an oxygen/carbon dioxide depletion device having an oxygen and carbon dioxide sorbent in combination with a filter or membrane to strip oxygen and carbon dioxide from the blood during transport to the storage bag.
The present disclosure provides for a blood collection system the incorporates an oxygen/carbon dioxide depletion device that contains a gas permeable film or membrane providing sufficient surface area to facilitate diffusion of oxygen and carbon dioxide from the blood into the interior of the device.
The present disclosure provides for a blood collection system that incorporates an oxygen/carbon dioxide depletion device having an oxygen and carbon dioxide sorbent enclosed in gas permeable membrane with a filter or membrane to strip oxygen and carbon dioxide from the blood during transport to the storage bag.
The present disclosure also provides for a laminated storage bag for storing red blood cells (RBCs). The storage bag may be a laminated bag having an oxygen and carbon dioxide sorbent or a secondary bag containing an oxygen and carbon dioxide sorbent.
The present disclosure further provides for a system to deplete the oxygen and carbon dioxide from collected red blood cells that includes an additive solution, an oxygen and carbon dioxide depletion device, and a blood storage bag that maintains the red blood cells in an oxygen and carbon dioxide depleted state.
The present disclosure provides for a system and methodology that permits reduction in carbon dioxide levels prior to storage and an increase in DPG levels. By keeping carbon dioxide levels low, and, thus, DPG levels high, the affinity of oxygen to hemoglobin to bind oxygen is reduced. By having a lower affinity to hemoglobin, greater transmission of oxygen to tissue is permitted.
The present disclosure provides for a method of optimizing ATP and DPG in red blood cells for storage by obtaining a sample of red blood cells from a donor; depleting oxygen and carbon dioxide levels in the sample to produce an oxygen and carbon dioxide depleted sample; storing the oxygen and carbon dioxide depleted sample in a container that maintains oxygen and carbon dioxide depleted state of the sample. The range of depletion is variable.
The present disclosure also provides for optimizing stored blood by treating the stored blood subject to a depletion device having the appropriate levels of oxygen and carbon dioxide gas passed therethrough or with the appropriate blend of oxygen and carbon dioxide depleting scavengers to obtain a desired level of constituents. The blood is also stored under oxygen and or carbon dioxide depleted conditions. Immediately prior to transfusion, re-oxygenating of the stored blood as needed based on the needs of the recipient prior to transfusion.
The present disclosure also provides another embodiment of a blood storage device. The device is a sealed receptacle adapted to retain and store red blood cells. The receptacle has walls formed from a laminate. The laminate has (a) an outer layer of a material substantially impermeable to oxygen and carbon dioxide, (b) an inner layer of a material compatible with red blood cells, and (c) an interstitial layer between the outer layer and the inner layer. The interstitial layer is of a material having admixed therein an amount of either or both of an oxygen scavenger and a carbon dioxide scavenger. Alternately, the interstitial layer can be deleted and the scavenger(s) admixed into the inner and/or outer layer.
The present disclosure also provides another embodiment of a blood storage system. The system has a collection bag for red blood cells; a unitary device for depleting oxygen and carbon dioxide and reducing leukocytes and/or platelets from red blood cells; a storage bag for red blood cells; and tubing connecting the collection bag to the unitary device and the unitary device to the storage bag.
The present disclosure and its features and advantages will become more apparent from the following detailed description with reference to the accompanying drawings.
Referring to the drawings and in particular to
Oxygen/carbon dioxide depletion device 100 removes the oxygen from collected RBCs prior to the RBCs being stored in blood storage bag 200. The oxygen content in RBCs must be depleted from oxy-hemoglobin because more than 99% of such oxygen is hemoglobin-bound in venous blood. Preferably, the degree of oxygen saturation is to be reduced to less than 4% within 48 hours of blood collection. The oxygen depletion is preferably accomplished at room temperature. The affinity of oxygen to hemoglobin is highly dependent on the temperature, with a p50 of 26 mmHg at 37° C. dropping to ˜4 mmHg at 4° C. Furthermore, this increase in O2 affinity (Ka) is mainly due to reduction in O2 release rate (k-off), resulting in an impractically low rate of oxygen removal once RBC is cooled to 4° C. Thus, it places a constraint on oxygen stripping such that it may be preferable to accomplish it before RBC are cooled to storage temperatures of 1° C. to 6° C.
As an alternative or in addition to oxygen depletion, carbon dioxide depletion has the beneficial effect of elevating DPG levels in red blood cells. Carbon dioxide exists inside RBCs and in plasma in equilibrium with HCO3− ion (carbonic acid). Carbon dioxide is mainly dissolved in RBC/plasma mixture as carbonic acid and rapid equilibrium between CO2 and carbonic acid is maintained by carbonic anhydrase inside RBC. Carbon dioxide is freely permeable through RBC membrane, while HCO3− inside RBC and plasma is rapidly equilibrated by anion exchanger (band 3) protein. When CO2 is removed from RBC suspension, it results in the known alkalization of RBC interior and suspending medium. This results from removal of HCO3− inside and outside RBC; cytosolic HCO3− is converted to CO2 by carbonic anhydrase and removed, while plasma HCO3− is removed via anion exchange inside RBC. Higher pH inside RBC is known to enhance the rate of glycolysis and thereby increasing ATP and DPG levels. ATP levels are higher in Ar/CO2 (p<0.0001). DPG was maintained beyond 2 weeks in the Argon purged arm only (p<0.0001). Enhanced glycolysis rate is also predicted by dis-inhibition of key glycolytic enzymes via metabolic modulation and sequesterization of cytosolic-free DPG upon deoxygenation of hemoglobin as a result of anaerobic condition. DPG was lost at the same rate in both control and Ar/CO2 arms (p=0.6) despite thorough deoxygenation of hemoglobin, while very high levels of ATP were achieved with OFAS3 additive (
Referring to the drawings and in particular to
Referring to
After oxygen and carbon dioxide have been stripped from RBCs in the OCDD of
RBCs pass through an oxygen permeable film or membrane 115. The membrane or films may be constructed in a flat sheet or hollow fiber form. Films can be non porous materials that are capable of high oxygen permeability rates (polyolefins, silicones, epoxies, polyesters etc) and membrane are hydrophobic porous structures. These may be constructed of polymers (polyolefins, Teflon, PVDF, polysulfone) or inorganic materials (ceramics). Oxygen depletion takes place as RBCs pass through membrane 115. Hollow fibers may be used as a substitute for oxygen permeable films or membrane. OCDD provides a simple structure having a large surface area to remove oxygen and maintain constant flow of blood therethrough. The oxygen depletion or removal is accomplished by irreversible reaction of ferrous ion in oxygen sorbent 110 with ambient oxygen to form ferric oxide. OCDD 101 does not need agitation for oxygen removal and can be manufactured easily to withstand centrifugation as part of a blood collection system as necessary.
Referring to
Referring to
TABLE 1
Prototype
Eternal Gas
External Gas
Specification
Pathways
Pathways
Prototype Serial #:
Device 20
Fiber Type:
Celgard
Celgard
200/150-66FPI
200/150-66FPI
Number of Fibers:
5000
5000
Active Length of
13
28
Fibers (cm):
Fiber OD (microns):
200
200
Fiber ID (microns):
150
150
Total Length of Fibers
15
30
Active Fiber Surface
0.4084
0.8796
Area (m2):
Referring to
TABLE 2
Prototype
Eternal Gas
External Gas
Specification
Pathways
Pathways
Prototype Serial #:
Device 45
Fiber Type:
Celgard
Celgard
200/150-66FPI
200/150-66FPI
Number of Fibers:
5000
5000
Active Length of
13
28
Fibers (cm):
Fiber OD (microns):
200
200
Fiber ID (microns):
150
150
Total Length of Fibers
15
30
Active Fiber Surface
0.4084
0.8796
Area (m2):
TABLE 3
Prototype
Center Core
10 individual Bundles
Specification
125 grams Sorbent
200 grams Sorbent
Prototype Serial #:
Device 70
Fiber Type:
Celgard
Celgard
200/150-66FPI
200/150-66FPI
Number of Fibers:
5000
5000
Active Length of
13
28
Fibers (cm):
Fiber OD (microns):
200
200
Fiber ID (microns):
150
150
Total Length of Fibers
15
30
Active Fiber Surface
0.8796
0.8796
Area (m2):
TABLE 4
Prototype
Center Core
10 individual Bundles
Specification
125 grams Sorbent
200 grams Sorbent
Prototype Serial #:
Device 85
Fiber Type:
Celgard
Celgard
200/150-66FPI
200/150-66FPI
Number of Fibers:
5000
5000
Active Length of
13
28
Fibers (cm):
Fiber OD (microns):
200
200
Fiber ID (microns):
150
150
Total Length of Fibers
15
30
Active Fiber Surface
0.8796
0.8796
Area (m2):
In the oxygen/carbon dioxide depletion devices disclosed herein, a plurality of gas permeable films/membranes may be substituted for the plurality of hollow fibers. The films and fibers may be packed in any suitable configuration within the cartridge, such as linear or longitudinal, spiral, or coil, so long as they can receive and convey red blood cells.
A further use of the depletion devices is to add back oxygen and or carbon dioxide prior to transfusion by flushing with pure oxygen or air. This use is for special cases, such as massive transfusions, where the capacity of the lung to re-oxygenate transfused blood is not adequate, or sickle cell anemia.
Similarly, depletion devices can be used to obtain intermediate levels or states of depletion of oxygen and carbon dioxide depending needs of the patient to obtain optimal levels in the transfused blood depending upon the patients needs.
Referring to
Referring to
In
Referring to
Referring to the embodiments of
Referring to
Referring to
The embodiments of
In
For each of the several embodiments addressed above, an additive solution from bag 300 is provided prior to stripping oxygen and carbon dioxide from the RBCs is used. The additive solution 300 preferably contains the following composition adenine 2 mmol/L; glucose 110 mmol/L; mannitol 55 mmol/L; NaCl 26 mmol/L; Na2HPO4 12 mmol/L citric acid and a pH of 6.5. Additive solution 300 is preferably an acidic additive solution OFAS3, although other similar additive solutions could also be used that are shown to enhance oxygen/carbon dioxide-depleted storage. OFAS3 has shown enhanced ATP levels and good in vivo recovery as disclosed herein. While OFAS3 is a preferred additive solution, other solutions that offer similar functionality could also be used. Alternatively, additive solutions used currently in the field, such as AS1, AS3, AS5, SAGM, and MAPS can also be used. Additive solutions help to prevent rapid deterioration of RBCs during storage and are typically added prior to RBCs being made anaerobic.
Additionally, we envision that the OCDD and storage bags 100 and 200 can be manufactured independent of other components of the disposable, anaerobic blood storage system (i.e., every item upstream of and including leukoreduction filter 400 in
It is within the scope of the present disclosure to remove oxygen from the RBCs or to strip oxygen and carbon dioxide from the blood prior to storage in the storage bags. An oxygen scavenger can be used to remove the oxygen from the RBCs prior to storage in the blood bags. As used herein, “oxygen scavenger” is a material that irreversibly binds to or combines with oxygen under the conditions of use. For example, the oxygen can chemically react with some component of the material and be converted into another compound. Any material where the off-rate of bound oxygen is zero can serve as an oxygen scavenger. Examples of oxygen scavengers include iron powders and organic compounds. The term “oxygen sorbent” may be used interchangeably herein with oxygen scavenger. As used herein, “carbon dioxide scavenger” is a material that irreversibly binds to or combines with carbon dioxide under the conditions of use. For example, the carbon dioxide can chemically react with some component of the material and be converted into another compound. Any material where the off-rate of bound carbon dioxide is zero can serve as a carbon dioxide scavenger. The term “carbon dioxide sorbent” may be used interchangeably herein with carbon dioxide scavenger. For example, oxygen scavengers and carbon dioxide scavengers are provided by Multisorb Technologies (Buffalo, N.Y.). Oxygen scavengers may exhibit a secondary functionality of carbon dioxide scavenging. Such materials can be blended to a desired ratio to achieve desired results.
Carbon dioxide scavengers include metal oxides and metal hydroxides. Metal oxides react with water to produce metal hydroxides. The metal hydroxide reacts with carbon dioxide to form water and a metal carbonate. For example, if calcium oxide is used, the calcium oxide will react with water that is added to the sorbent to produce calcium hydroxide
CaO+H2O→Ca(OH)2
The calcium hydroxide will react with carbon dioxide to form calcium carbonate and water.
Ca(OH)2+CO2→CaCO3+H2O
It will be appreciated that scavengers can be incorporated into storage receptacles and bags in any known form, such as in sachets, patches, coatings, pockets, and packets.
If oxygen removal is completed prior to introduction of the RBCs to the blood storage device, then it can be accomplished by any method known in the art. For example, a suspension of RBCs can be repeatedly flushed with an inert gas (with or without a defined concentration of carbon dioxide), with or without gentle mixing, until the desired oxygen and or carbon dioxide content is reached or until substantially all of the oxygen and carbon dioxide has been removed. The inert gas can be argon, helium, nitrogen, mixtures thereof, or any other gas that does not bind to the hememoiety of hemoglobin.
The OCDDs and various storage bags of the present disclosure can be used in varying combinations. For example, OCDD 101 of
The present disclosure also provides another embodiment of a blood storage device. The device is a sealed receptacle adapted to retain and store red blood cells. The receptacle has walls formed from a laminate. The laminate has (a) an outer layer of a material substantially impermeable to oxygen and carbon dioxide, (b) an inner layer of a material compatible with red blood cells, and (c) an interstitial layer between the outer layer and the inner layer. The interstitial layer is of a material having admixed therein an amount of either or both of an oxygen scavenger and a carbon dioxide scavenger. The layers preferably take the form of polymers. A preferred polymer for the outer layer is nylon. A preferred polymer for inner layer is PVC. The polymer of the interstitial layer should provide effective adhesion between the inner and outer layers and provide effective admixture of oxygen scavengers and/or carbon dioxide scavengers therein. Useful polymers for the interstitial layer include, for example, olefin polymers, such as ethylene and propylene homopolymers and copolymers, and acrylic polymers.
The present disclosure also provides another embodiment of a blood storage system. The system has a collection bag for red blood cells; a unitary device for depleting oxygen and carbon dioxide and reducing leukocytes and/or platelets from red blood cells; a storage bag for red blood cells; and tubing connecting the collection bag to the unitary device and the unitary device to the storage bag. A feature of this embodiment is that the functions of depleting oxygen and carbon dioxide and reducing leukocytes and/or platelets from red blood cells are combined into a single, unitary device rather than require separate devices. For instance, unitary device can take the form of a single cartridge. Leukocyte and/or platelet reduction is typically carried out by passing red blood cells through a mesh. In this embodiment, a mesh can be incorporated into either the flushing or the scavenging oxygen/carbon dioxide depletion device disclosed herein. The mesh is preferably located within the device so that leukocyte and/or platelet reduction takes place prior to the onset of flushing or scavenging.
The following are examples of the present disclosure and are not to be construed as limiting.
The eight graphs below show the results of a 3-arm study showing: a control (aerobic OFAS3 with no O2 or CO2 depletion), anaerobic OFAS3 (both O2 and CO2 depleted with pure Ar), and O2 only depleted with 95% Ar and 5% CO2 (CO2 is not depleted).
Whole blood was collected into CP2D (Pall), centrifuged 2K×G for 3 minutes, plasma removed, and additive solution AS-3 (Nutricel, Pall), or experimental OFAS3 added. The unit was evenly divided into 3 600 mL bags. 2 bags were gas exchanged ×7 with Ar or Ar/CO2, transferred to 150 mL PVC bags and stored 1° C. to 6° C. in anaerobic cylinders with Ar/H2 or Ar/H2/CO2. One control bag was treated in the same manner without a gas exchange and stored 1° C. to 6° C. in ambient air. Bags were sampled weekly for up to 9 weeks.
The plots of
Although the present disclosure describes in detail certain embodiments, it is understood that variations and modifications exist known to those skilled in the art that are within the disclosure. Accordingly, the present disclosure is intended to encompass all such alternatives, modifications and variations that are within the scope of the disclosure as set forth in the disclosure.
Yoshida, Tatsuro, Vernucci, Paul J.
Patent | Priority | Assignee | Title |
10058091, | Mar 10 2015 | HEMANEXT INC | Oxygen reduction disposable kits, devices and methods of use thereof |
10065134, | May 05 2010 | New Health Sciences, Inc. | Integrated leukocyte, oxygen and/or CO2 depletion, and plasma separation filter device |
10136635, | May 05 2010 | HEMANEXT INC | Irradiation of red blood cells and anaerobic storage |
10251387, | Aug 25 2010 | HEMANEXT INC | Method for enhancing red blood cell quality and survival during storage |
10583192, | May 27 2016 | HEMANEXT INC | Anaerobic blood storage and pathogen inactivation method |
10603417, | Oct 12 2009 | HEMANEXT INC | System for extended storage of red blood cells and methods of use |
10687526, | Feb 28 2013 | HEMANEXT INC | Gas depletion and gas addition devices for blood treatment |
10849824, | Apr 23 2015 | HEMANEXT INC | Anaerobic blood storage containers |
11013771, | May 18 2015 | HEMANEXT INC | Methods for the storage of whole blood, and compositions thereof |
11147876, | May 27 2016 | HEMANEXT INC | Anaerobic blood storage and pathogen inactivation method |
11284616, | May 05 2010 | HEMANEXT INC | Irradiation of red blood cells and anaerobic storage |
11350626, | Mar 10 2015 | HEMANEXT INC | Oxygen reduction disposable kits, devices and methods of use thereof (ORDKit) |
11375709, | Mar 10 2015 | HEMANEXT INC | Oxygen reduction disposable kits, devices and methods of use thereof |
11433164, | Oct 12 2009 | Hemanext Inc. | System for extended storage of red blood cells and methods of use |
11638421, | Mar 10 2015 | Hemanext Inc. | Oxygen reduction disposable kits, devices and methods of use thereof |
11911471, | May 27 2016 | Hemanext Inc. | Anaerobic blood storage and pathogen inactivation method |
12089589, | Oct 12 2009 | Hemanext Inc. | Irradiation of red blood cells and anaerobic storage |
8883409, | Dec 08 2013 | DBL TECHNOLOGIES, LLC | Method of reducing pathogens in whole blood by illuminating with ultraviolet light under low oxygen conditions |
9095662, | Oct 12 2009 | New Health Sciences, Inc. | Blood storage bag system and depletion devices with oxygen and carbon dioxide depletion capabilities |
9801784, | Apr 23 2015 | HEMANEXT INC | Anaerobic blood storage containers |
9844615, | Oct 12 2009 | HEMANEXT INC | System for extended storage of red blood cells and methods of use |
9877476, | Feb 28 2013 | HEMANEXT INC | Gas depletion and gas addition devices for blood treatment |
9968718, | Mar 28 2011 | New Health Sciences, Inc. | Method and system for removing oxygen and carbon dioxide during red cell blood processing using an inert carrier gas and manifold assembly |
Patent | Priority | Assignee | Title |
4086924, | Oct 06 1976 | HAEMONETICS CORPORATION, A MASSACHUSETTS CORP | Plasmapheresis apparatus |
4228032, | Aug 04 1977 | Dow Corning Corporation | Method of storing blood and a blood storage bag therefore |
4300559, | Nov 26 1978 | Baxter Travenol Laboratories, Inc. | Blood compatible polymers and medical devices made therefrom |
4370160, | Jun 27 1978 | Dow Corning Corporation | Process for preparing silicone microparticles |
4381775, | Feb 05 1980 | ASAHI MEDICAL CO , LTD ; ASAHI MEDICAL CO , LTD , A CORP OF JAPAN | Method for low pressure filtration of plasma from blood |
4540416, | Dec 20 1982 | Huntsman Packaging Corporation | Heat-sterilizable polyolefin compositions and articles manufactured therefrom |
4572899, | Jul 07 1982 | NPBI NEDERLANDS PRODUKTIELABORATORIUM VOOR BLOEDTRANSFUSIEAPPARATUUR EN INFUSIEVLOEISTOFFEN B V , A DUTCH CORPORATION | Aqueous solution for suspending and storing cells, especially erthrocytes |
4585735, | Jul 19 1984 | AMERICAN NATIONAL RED CROSS, A CORP OF U S | Prolonged storage of red blood cells |
4654053, | Jul 27 1984 | University of Colorado Foundation | Oxygen sorbent |
4670013, | Dec 27 1982 | Pall Corporation | Container for blood and blood components |
4701267, | Mar 15 1984 | Asahi Medical Co., Ltd. | Method for removing leukocytes |
4713176, | Apr 12 1985 | BAXTER TRAVENOL LABORATORIES, INC | Plasmapheresis system and method |
4748121, | Nov 30 1984 | PPG Industries, Inc. | Porous glass fibers with immobilized biochemically active material |
4749551, | Sep 24 1985 | Sorin Biomedica S.p.A. | Hollow-fiber oxygenators for blood |
4769175, | Jun 26 1985 | Mitsubishi Gas Chemical Company, Inc. | Sheet-like, oxygen-scavenging agent |
4769318, | Jun 03 1986 | Ube Industries, Ltd.; The Japanese Red Cross Society | Additive solution for blood preservation and activation |
4837047, | Jul 16 1984 | Sumitomo Bakelite Co., Ltd. | Container and method for storing blood |
4880548, | Feb 17 1988 | Pall Corporation | Device and method for separating leucocytes from platelet concentrate |
4880786, | Jan 14 1987 | Ube Industries, Ltd.; Showa Denko K.K.; The Japanese Red Cross Society | Additive solution for blood preservation and activation |
4902701, | Apr 27 1982 | Burroughs Welcome Co. | Tetrazolyl substituted tricyclic compounds and pharmacological compositions thereof |
4925572, | Oct 20 1987 | Pall Corporation | Device and method for depletion of the leukocyte content of blood and blood components |
5000848, | Jan 28 1987 | Membrex, Inc. | Rotary filtration device with hyperphilic membrane |
5023054, | Nov 11 1988 | MC LABORATORY INC | Blood filter and apparatus for hemorheological measurement |
5037419, | Sep 21 1989 | Eastman Chemical Company | Blood bag system containing vitamin E |
5152905, | Sep 12 1989 | Pall Corporation | Method for processing blood for human transfusion |
5192320, | Jul 11 1987 | Nipro Corporation | Artificial lung and method of using it |
5208335, | Mar 19 1991 | National Institute for Strategic Technology Acquisition and Commercialization | Reversible oxygen sorbent compositions |
5229012, | May 09 1989 | Pall Corporation | Method for depletion of the leucocyte content of blood and blood components |
5254248, | Jun 28 1990 | Terumo Kabushiki Kaisha | Blood plasma separating apparatus |
5353793, | Nov 25 1991 | Oishi-Kogyo Company | Sensor apparatus |
5356375, | Apr 06 1992 | Medline Industries, Inc | Positive pressure fluid delivery and waste removal system |
5362442, | Jul 22 1993 | CLEARANT, INC | Method for sterilizing products with gamma radiation |
5386014, | Nov 22 1989 | Enzon, Inc. | Chemically modified hemoglobin as an effective, stable, non-immunogenic red blood cell substitute |
5387624, | Dec 26 1991 | Dow Corning Toray Silicon Co., Ltd. | Method for the preparation of a powder mixture composed of cured silicone microparticles and inorganic microparticles |
5417986, | Mar 16 1984 | ARMY, UNITED STATES | Vaccines against diseases caused by enteropathogenic organisms using antigens encapsulated within biodegradable-biocompatible microspheres |
5427663, | Jun 08 1993 | BTG INTERNATIONAL INC | Microlithographic array for macromolecule and cell fractionation |
5443743, | Sep 11 1991 | Pall Corporation | Gas plasma treated porous medium and method of separation using same |
5476764, | Sep 16 1994 | Los Alamos National Security, LLC | Method using CO for extending the useful shelf-life of refrigerated red blood cells |
5506141, | May 10 1982 | Bar-Ilan University | Apertured cell carrier |
5529821, | Jun 29 1992 | Terumo Kabushiki Kaisha | Container for storing blood or blood component |
5617873, | Aug 25 1994 | The United States of America as represented by the Administrator, of the | Non-invasive method and apparatus for monitoring intracranial pressure and pressure volume index in humans |
5624794, | Jun 05 1995 | Regents of the University of California, The | Method for extending the useful shelf-life of refrigerated red blood cells by flushing with inert gas |
5635358, | May 01 1992 | Trustees of the University of Pennsylvania | Fluid handling methods for use in mesoscale analytical devices |
5691452, | Jun 02 1995 | Hemoglobin Oxygen Therapeutics LLC | Method for preserving a hemoglobin blood substitute |
5693230, | Jan 25 1996 | Gas Technology Institute | Hollow fiber contactor and process |
5698250, | Apr 03 1996 | PACTIV LLC | Modifield atmosphere package for cut of raw meat |
5730989, | Feb 16 1995 | NOVAVAX, INC | Oral vaccine against gram negative bacterial infection |
5750115, | Aug 03 1989 | INTERVET INTERNATIONAL B V | Escherichia coli vaccine |
5783094, | Apr 13 1995 | Teva Medical Ltd. | Whole blood and platelet leukocyte filtration method |
5783148, | Mar 14 1994 | Becton Dickinson and Company | Nucleic acid amplification method and apparatus |
5789151, | May 15 1997 | Los Alamos National Security, LLC | Prolonged cold storage of red blood cells by oxygen removal and additive usage |
5811142, | Apr 03 1996 | PACTIV LLC | Modified atmosphere package for cut of raw meat |
5846427, | Oct 23 1996 | Hemasure, Inc. | Extra-lumenal crossflow plasmapheresis devices and method of use thereof |
5972710, | Mar 29 1996 | Washington, University of | Microfabricated diffusion-based chemical sensor |
6027623, | Apr 22 1998 | NANO FUSION TECHNOLOGIES, INC | Device and method for electrophoretic fraction |
6047203, | Mar 17 1997 | adidas AG | Physiologic signs feedback system |
6090062, | May 29 1998 | Wayne State University | Programmable antisiphon shunt system |
6150085, | Sep 16 1998 | The University of Cincinnati | Prolonged storage of red blood cells and composition |
6162396, | Apr 26 1997 | Los Alamos National Security, LLC | Blood storage device and method for oxygen removal |
6187572, | Apr 16 1990 | Baxter International Inc | Method of inactivation of viral and bacterial blood contaminants |
6210601, | Apr 21 1999 | Crown Cork & Seal Technologies Corporation | Method of making an oxygen scavenging sealant composition |
6231770, | Jul 09 1996 | Pall Corporation | Multiple element filter and method of using therefor |
6254628, | Dec 09 1996 | MICROTHERAPEUTICS, INC | Intracranial stent |
6337026, | Mar 08 1999 | Pall Corporation | Leukocyte reduction filtration media |
6368871, | Aug 13 1997 | Cepheid | Non-planar microstructures for manipulation of fluid samples |
6387461, | May 06 1999 | W R GRACE & CO -CONN | Oxygen scavenger compositions |
6403124, | Apr 16 1997 | SIGMA-TAU INDUSTRIE FARMACEUTICHE RIUNITE S P A | Storage and maintenance of blood products including red blood cells and platelets |
6413713, | Oct 30 1998 | Human Biosystems | Method for preserving blood platelets |
6439577, | May 20 1997 | Velico Medical, Inc | Rotating seals for cell processing systems |
6447987, | Sep 09 1978 | ARMY, UNITED STATES | Prolonged storage of red blood cells |
6468732, | Apr 04 2000 | Siemens Healthcare Diagnostics Inc | METHOD AND LONG-TERM STABLE BICARBONATE-CONTAINING DILUENT COMPOSITION, AND STORAGE MEANS THEREFOR, FOR REDUCING OR REVERSING AERATION INDUCED CELL SHRINKAGE AND STORAGE INDUCED CELL SWELLING OF A WHOLE BLOOD SAMPLE |
6475147, | Jan 27 1999 | NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, THE NASI | Ultrasonic apparatus and technique to measure changes in intracranial pressure |
6482585, | Apr 16 1997 | SIGMA-TAU INDUSTRIE FARMACEUTICHE RIUNITE S P A | Storage and maintenance of blood products including red blood cells and platelets |
6527957, | Aug 09 1995 | Fenwal, Inc | Methods for separating, collecting and storing red blood cells |
6564207, | Nov 02 1998 | Method for automated data collection, analysis and reporting | |
6610772, | Aug 10 1999 | Eastman Chemical Company | Platelet particle polymer composite with oxygen scavenging organic cations |
6688476, | Dec 22 1993 | Fenwal, Inc | Filter assembly having a flexible housing and method of making same |
6695803, | Oct 16 1998 | TERUMO MEDICAL CORPORATION | Blood processing system |
6697667, | May 31 2001 | Advanced Cardiovascular Systems, INC | Apparatus and method for locating coronary sinus |
6723051, | Sep 29 2000 | NEW HEALTH SCIENCES; NEW HEALTH SCIENCES, INC | Systems and methods for assessing vascular health |
6761695, | Mar 07 2002 | The United States of America as represented by the Administrator of the National Aeronautics and Space Administration | Method and apparatus for non-invasive measurement of changes in intracranial pressure |
6773407, | Apr 08 2002 | National Aeronautics and Space Administration | Non-invasive method of determining absolute intracranial pressure |
6817979, | Jun 28 2002 | Nokia Technologies Oy | System and method for interacting with a user's virtual physiological model via a mobile terminal |
6866783, | Mar 07 2000 | MAT ADSORPTION TECHNOLOGIES GMBH & CO KG | Module with membrane elements in cross-flow and in a dead-end arrangement |
6955648, | Sep 29 2000 | NEW HEALTH SCIENCES, INC | Precision brain blood flow assessment remotely in real time using nanotechnology ultrasound |
7104958, | Oct 01 2001 | NEW HEALTH SCIENCES, INC | Systems and methods for investigating intracranial pressure |
7208120, | Sep 27 2000 | Trustees of Princeton University | Cellular diagnostic arrays, methods of using and processing for producing same |
7347887, | Dec 22 2003 | BOC GROUP, INC , THE | Oxygen sorbent compositions and methods of using same |
7361277, | Mar 16 1999 | Pall Corporation | Biological fluid filter and system |
7431995, | Apr 17 2001 | Baxter International Inc.; Baxter Healthcare S.A. | Multiple layer polymeric structure |
7452601, | May 30 2006 | Cryovac, Inc. | Oxygen scavenger compositions derived from isophthalic acid/or terephthalic acid monomer or derivatives thereof |
7721898, | Jul 31 2001 | ASAHI KASEI MEDICAL CO , LTD | Coating material for leukocyte removal filter and the filter |
7723017, | Nov 16 2001 | The Trustees of Boston University | Method for extending the useful shelf-life of refrigerated red blood cells by nutrient supplementation |
7754798, | Aug 28 2003 | Cryovac, Inc. | Oxygen scavenger block copolymers and compositions |
7775376, | Jan 24 2003 | FRESENIUS HEMOCARE ITALIA S R L | Filter for the separation of leukocytes from whole blood or blood preparations, method for production of said filter, corresponding device and use thereof |
8071282, | Nov 16 2001 | The Trustees of Boston University | Method of storing red blood cells with an acidic additive solution under oxygen depletion |
20010027156, | |||
20020062078, | |||
20020066699, | |||
20020085952, | |||
20020086329, | |||
20020099570, | |||
20020182241, | |||
20030003575, | |||
20030062299, | |||
20030124504, | |||
20030183801, | |||
20030189003, | |||
20040026341, | |||
20040168982, | |||
20050038342, | |||
20050137517, | |||
20050139806, | |||
20050208462, | |||
20050230856, | |||
20050233302, | |||
20060081524, | |||
20060118479, | |||
20070078113, | |||
20070240569, | |||
20080243045, | |||
20090017128, | |||
20090269837, | |||
20100221697, | |||
20100313755, | |||
20120024156, | |||
20120129148, | |||
20120219633, | |||
DE3722984, | |||
EP100419, | |||
EP217759, | |||
EP299381, | |||
EP890368, | |||
FR2581289, | |||
GB1044649, | |||
JP1104271, | |||
JP2000516963, | |||
JP2002253936, | |||
JP2005535279, | |||
JP2700170, | |||
JP5305123, | |||
JP5503075, | |||
JP5503304, | |||
JP58194879, | |||
JP6121920, | |||
JP6363616, | |||
KR100721054, | |||
SU1718766, | |||
WO3043571, | |||
WO2006057473, | |||
WO2011014855, | |||
WO8102239, | |||
WO8600809, | |||
WO8902274, | |||
WO9104659, | |||
WO9208348, | |||
WO9529662, | |||
WO9629864, | |||
WO9948963, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 08 2010 | New Health Sciences, Inc. | (assignment on the face of the patent) | / | |||
Nov 03 2010 | YOSHIDA, TATSURO | NEW HEALTH SCIENCES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030288 | /0376 | |
Nov 03 2010 | VERNUCCI, PAUL J | NEW HEALTH SCIENCES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030288 | /0376 | |
Jan 13 2011 | YOSHIDA, TATSURO | NEW HEALTH SCIENCES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025742 | /0267 | |
Jan 17 2011 | VERNUCCI, PAUL J | NEW HEALTH SCIENCES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025742 | /0267 |
Date | Maintenance Fee Events |
Mar 02 2017 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Mar 03 2021 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Date | Maintenance Schedule |
Sep 17 2016 | 4 years fee payment window open |
Mar 17 2017 | 6 months grace period start (w surcharge) |
Sep 17 2017 | patent expiry (for year 4) |
Sep 17 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 17 2020 | 8 years fee payment window open |
Mar 17 2021 | 6 months grace period start (w surcharge) |
Sep 17 2021 | patent expiry (for year 8) |
Sep 17 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 17 2024 | 12 years fee payment window open |
Mar 17 2025 | 6 months grace period start (w surcharge) |
Sep 17 2025 | patent expiry (for year 12) |
Sep 17 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |