The invention relates to a steerable wound drainage device which permits control of the positioning within the body of the device thereby affording the practitioner the ability to re-position the wound drain within the body while avoiding unnecessary trauma to surrounding tissues and organs. In one embodiment, the wound drainage device contains at least one longitudinal duct, at least one internal lumen, and at least one lateral opening communicating therewith, and an internal steering apparatus adapted to controllably position the catheter within the body.
|
1. A wound drainage device comprising:
a flexible catheter having a solid body and a plurality of drainage ducts defined therein;
a steering conduit, wherein the body of the catheter encloses the steering conduit, and the plurality of drainage ducts are arranged around the steering conduit and extend circumferentially relative to the steering conduit, and wherein only the body of the catheter is located directly between an outer circumference of the steering conduit and the plurality of drainage ducts; and
an internal steering apparatus at least partially disposed within the steering conduit and structured to controllably position the catheter within a body by causing deviation of the catheter into a plurality of configurations and directions relative to a longitudinal axis of the catheter,
wherein the internal steering apparatus is configured to selectively alter an effective rigidity of the catheter while the internal steering apparatus is disposed within the steering conduit.
2. The wound drainage device of
3. The wound drainage device of
4. The wound drainage device of
5. The wound drainage device of
6. The wound drainage device of
7. The wound drainage device of
8. The wound drainage device of
9. The wound drainage device of
10. The wound drainage device of
11. The wound drainage device of
12. The wound drainage device of
a central tension member;
a coil surrounding the tension member; and
a handle connected to the tension member and the coil;
wherein upon final assembly of the device, the tension member and the coil are at least partially disposed within the catheter, and the handle is external the catheter.
13. The wound drainage device of
14. The wound drainage device of
15. A wound drainage kit comprising:
a wound drainage device according to
16. The wound drainage kit according to
|
This application is a Divisional Application, of U.S. patent application Ser. No. 10/756,022, filed Jan. 12, 2004, now pending, which is a continuation-in-part of U.S. patent application Ser. No. 09/717,664, filed Nov. 21, 2000, now abandoned, which is a continuation-in-part of U.S. patent application Ser. No. 09/274,439, filed Mar. 22, 1999, now abandoned. The disclosures of the prior applications are hereby incorporated herein in their entirety by reference.
The invention relates to the field of surgical devices. In particular, the invention relates to wound drainage catheters and systems for removal of fluids from wound sites.
Wounds resulting from surgical procedures often produce fluid, called exudate, which needs to be drained from the wound site in order for proper healing and recovery to occur. At the conclusion of surgery, wounds are closed thereby creating the need for drainage devices which are compatible with closed surgical sites. To address this need, a variety of wound drainage devices have been developed in the past.
Wound drainage catheters typically contain a longitudinal flexible tube-like structure and features which facilitate the flow of body fluid away from the wound site. Various configurations and features have been developed in efforts to improve their performance.
Grooved or channeled wound drainage devices are known. For example, see Blake, U.S. Pat. Nos. 4,398,910 and D288,962, which disclose surgical drainage tubes with longitudinal ducts, and Miner et al., U.S. Pat. No. 3,860,008, which discloses a flat drain having a series of channels. Drainage catheters having lateral openings which permit ingress of body fluids are known. For example, see Sheridan et al., U.S. Pat. No. 3,528,427; Ekbladh et al., U.S. Pat. No. 4,445,897; and Loseff, U.S. Pat. No. 3,993,080, which disclose surgical drainage tubes having a plurality of lateral openings. Surgical drainage tubes which contain both longitudinal ducts and lateral openings are also known, such as that disclosed in LeVeen et al., U.S. Pat. No. 4,650,463.
The use of rigid removable guidewires to position catheters is known. For example, see Bosma et al., U.S. Pat. No. 5,713,849 and Bengmark, U.S. Pat. No. 4,887,996, which disclose a preconfigured catheter which contorts upon removal of the guidewire, and Nichols et al., U.S. Pat. No. 5,160,325.
Spehalski, U.S. Pat. No. 6,099,513, discloses a wound drainage catheter containing a plurality of alternating longitudinal ducts and internal lumens. This reference does not teach the use of a steerable guidewire in conjunction with a wound drainage catheter. Wound drainage catheters having longitudinal ducts, internal lumens, lateral openings and reinforcing fibers to prevent kinking are also known. See Seder et al., U.S. Pat. No. 5,116,310.
Various mechanisms to control catheter configuration within the body have been proposed. Leoni, U.S. Pat. No. 4,867,173, discloses a guide catheter having a steerable guidewire useful for cardiac procedures. Aldrich et al., U.S. Pat. No. 5,489,269, and Lanciano, U.S. Pat. No. 4,740,195, disclose catheters having a tension member positioned exterior to the distal portion of the catheter which “loops” the catheter upon applied tension. Falwell et al., U.S. Pat. No. 5,944,690, discloses a steerable catheter control mechanism comprising selectively tensioned control wires. Fleischhacker, Jr., U.S. Pat. No. 5,069,217, discloses an steerable guidewire comprising a solid core wire and wire coil. Accisano, III, U.S. Pat. No. 5,571,085, discloses a steerable catheter containing a fluid transport tube.
There exists a need in the medical field for improved wound drainage catheters and systems which operate more effectively and reduce the trauma caused to the patient. Especially useful would be a wound drainage catheter containing the fluid flow advantages of longitudinal ducts, internal lumens and lateral openings as well as the advantages of a steerable and controllable internal guidewire to aid in accurate positioning and re-positioning as well as reduce or eliminate undesirable trauma to tissues and organs surrounding the wound site.
The invention provided for herein pertains to a steerable wound drainage device which facilitates fluid flow away from the wound site and permits precise and controlled positioning of the wound drain within the body thereby affording the practitioner the ability to precisely position and re-position the wound drain within the body while avoiding undesirable trauma to surrounding tissues and organs. The device is particularly useful in draining fluids from wound sites which can benefit from precise or accurate positioning of a wound drainage catheter in a controllable manner.
Accordingly, the invention provides for a wound drainage device comprising a flexible catheter having at least one longitudinal duct and having at least one internal lumen, at least one lateral opening in communication with said internal lumen, and an internal steering apparatus structured to controllably position said catheter when placed within the body by permitting deviation of said catheter portion into a plurality of configurations and directions relative to a longitudinal axis while continually residing within said catheter. In a preferred embodiment, the wound drainage device comprises a plurality of longitudinal ducts, internal lumens, and lateral openings. In another preferred embodiment, the internal steering structured to controllably position the catheter within the body comprises a control element which is externally and manually operable by the practitioner. The invention also includes a kit comprising the wound drainage device of the invention.
In another embodiment, the invention includes a wound drainage device comprising a flexible catheter having at least one longitudinal duct and an internal steering means adapted to controllably position said catheter within the body by permitting deviation of said catheter portion into a plurality of configurations and directions relative to a longitudinal axis while said internal steering apparatus performs said controllable positioning while continually residing within said catheter.
In yet another embodiment, the invention includes a wound drainage device comprising a flexible catheter having at least one internal lumen; at least one lateral opening in communication with said internal lumen; and an internal steering apparatus structured to controllably position said catheter within the body by permitting deviation of said catheter portion into a plurality of configurations and directions relative to a longitudinal axis while continually residing within said catheter.
The invention also provides for a method of placing a wound drainage device within a body comprising inserting a wound drainage device into a site within the body, said device having a flexible catheter having at least one longitudinal duct and having at least one internal lumen; at least one lateral opening in communication with said internal lumen; and an internal steering apparatus structured to controllably position said catheter within the body by permitting deviation of said catheter portion into a plurality of configurations and directions relative to a longitudinal axis while continually residing within said catheter; and positioning the wound drainage device within the body by actuating said internal steering apparatus.
The invention provides for a method of draining a wound site in a body in need of fluid removal therefrom comprising inserting a wound drainage device into a wound site within the body, said device having a flexible catheter having at least one longitudinal duct and having at least one internal lumen; at least one lateral opening in communication with said internal lumen; and an internal steering apparatus structured to controllably position said catheter within the body by permitting deviation of said catheter portion into a plurality of configurations and directions relative to a longitudinal axis while continually residing within said catheter; positioning the wound drainage device into position; and draining fluid from the wound site. In a further embodiment, the device can be subsequently repositioned within the body.
The term “fluid” when used in the context of body fluid is meant to include any bodily fluid suitable for removal using a wound drainage device, e.g., exudate produced at a wound site, liquefied fat cells, blood, and the like.
The term “site” when used in the context of placement of the wound drainage device refers to the location within the body which can benefit from drainage of fluids, e.g., a wound resulting from surgery whereby removal of fluids aids in the healing of the wound.
As used herein, the phrase “controllably position” is meant to describe the capability afforded to the device of the invention by its assembled structural components that permit deviation of the catheter portion into a plurality of configurations and directions relative to a longitudinal axis.
Referring to
An important feature of the invention is the ability to controllably position the device. In other words, the assembled structural components of the device permit deviation of the catheter portion into a plurality of configurations and directions relative to a longitudinal axis. Unlike a conventional rigid stylet or guidewire placed within a catheter, the internal steering apparatus of the inventive device “guides” or “steers” the catheter portion of the device into various configurations, angles, and the like by its operation without requiring the removal of the internal steering apparatus from the catheter portion.
Referring now to
The flexible catheter component can be composed of any flexible material in accordance with the chemical and physical requirements of an internally positioned wound drainage device. Such properties include inertness and/or biocompatibility, and pliability. Examples of suitable materials which can be used include, but are not limited to, low durameter (e.g., 40-80 Shore A) plastic or silicone. The exterior surface of the catheter body can be treated with biocompatibility enhancing substances, such as heparin or polytetrafluoroethylene (PTFE or Teflon®). The catheter portion can be manufactured in accordance with any conventional technique well known in the art, such as extrusion methods.
In general, the catheter portion of the device according to the invention has a proximal 16 and distal portion 17 and contains a steering conduit 31 (see
The catheter portion of the device contains at least one longitudinal duct 12, at least one internal lumen 13, and at least one lateral opening 14 in communication with said internal lumen. In a preferred embodiment, the catheter portion comprises a plurality of longitudinal ducts, internal lumens and lateral openings. In an even more preferred embodiment, the catheter portion contains a plurality of alternating longitudinal ducts and internal lumens circumscribing the center of the catheter as depicted in
Longitudinal ducts 12 are formed on the catheter as externally accessible open longitudinal grooves or channels traveling along at least a portion of the length of the catheter. The size, number and shape of the longitudinal duct(s) can vary and can correspond to the longitudinal configuration of the catheter body defining the duct. The duct(s) function to prevent or inhibit obstruction of the lateral opening(s) on the catheter by surrounding tissue, thereby improving fluid movement.
Likewise, the internal lumen(s) 13 used in the invention can vary in diameter, number and shape. Each lumen functions in communication with the lateral openings 14 which, when positioned at the wound site, permit the ingress of fluid from the surrounding area into the lumen 13.
The number, size and location of the lateral opening(s) 14 on the catheter portion can vary and can be selected according to the desired characteristics of the wound drainage device as determined in light of the intended surgical site or nature of body fluid to be removed, or according to the patient's other particular needs.
The lateral opening(s) 14 are positioned on the surface of the catheter body. Each opening can be positioned within a longitudinal duct 12, or positioned outside the duct(s), or combinations thereof. In a preferred embodiment, the lateral opening(s) 14 communicate simultaneously with both the interior channel of the longitudinal duct(s) 12 and the lumen(s) 13.
An alternative and less preferred embodiment to the catheter portion can include catheter portions having at least one longitudinal duct without internal lumens as depicted in
The proximal portion 16 of the wound drainage device 10 of the invention can contain a hub 21 which accommodates a fluid exit conduit 22, internal steering apparatus, or both. The fluid exit conduit 22 can further include one or more connectors (not shown) for attachment of additional tubing or a fluid reservoir or a suction device, for example.
The internal steering apparatus used in accordance with the invention can be any hand operated mechanism which is adapted to manipulate the configuration of a flexible catheter using components within the catheter portion. Operation of the internal steering apparatus can be performed using an external control element 33. A preferred internal steering apparatus for use with the invention is a steerable guidewire structure 30 which resides within a steering conduit 31 inside the catheter and that is coupled to an external control element 33. In
The external control element 33 that is mechanically coupled to the steerable guidewire structure 30 and is adapted to manipulate the configuration of the guidewire by manual operation while the distal portion of the guidewire structure resides internally within the catheter 11. In a guidewire structure containing a central tension member, the longitudinal movement of the central tension member controls the bending or flexing of the guidewire structure, and thereby controls the bending or flexing of the catheter portion from within. With respect to guidewire structures, the external control element 33 can be any conventional manually operable mechanism which controls the configuration of the guidewire. Typical external control elements which can be used in conjunction with the invention include, but are not limited to, those which are in the form of a handle, a plunger or syringe-like assembly (as shown in
In one embodiment of the invention, the external control element further includes a mechanical lock which can retain or fix the desired position and configuration of the catheter for extended periods of time. In the case of a steerable guidewire structure, the mechanical lock can prevent longitudinal movement of the central tension member.
Examples of suitable internal steering apparatuses which can be used with catheters include, but are not limited to, apparatuses similar to those described in Leoni, U.S. Pat. No. 4,867,173; Fleischhacker, Jr., U.S. Pat. No. 5,069,217; Falwell et al., U.S. Pat. No. 5,944,690; and Accisano, III, U.S. Pat. No. 5,571,085, the entire disclosures of which are incorporated herein by reference.
In a preferred embodiment, the movement capabilities of the catheter portion of the wound drainage device include both transverse and rotational motion of the catheter portion, thereby enhancing the maneuvering capability of the device by the practitioner. In an even more preferred embodiment, the internal steering apparatus can be used to make the catheter portion reversibly rigid and is adapted to control the overall flexibility of the catheter portion. In other words, the internal steering apparatus has the ability to freely alternate between the rigid, semi-rigid and flexible states.
In an alternative embodiment, the internal steering means is removable and reinsertable into the catheter portion by sliding the steering means in a longitudinal direction within a steering conduit adapted to accommodate the internal steering apparatus. Accordingly, in situations where the wound drainage device is inserted into the site and the surrounding anatomy can retain its desired position, the internal steering apparatus can be removed from the device to permit the portion of the device within the body to naturally comply with the surrounding tissue. This is preferred when the wound drainage device is to be placed within the patient's body for extended periods of time, as it increases patient comfort and reduces trauma to the surround tissues.
The steering conduit 31 and internal steering apparatus can be in a variety of locations within the catheter portion of the device according to the overall design of the device. For example, the steering conduit 31 and internal steering apparatus can be located at the central longitudinal axis of the drainage catheter as shown ion
In a further embodiment, the steering conduit 31 can have a dual function as an additional fluid conduit upon removal of the internal steering apparatus. Accordingly, at least one lateral opening(s) can extend directly from the duct or exterior surface into the conduit, or intralumen opening(s) can permit communication between the internal lumen(s) and the conduit in addition to the opening(s) between the duct and internal lumen(s). Additional opening(s) directly into the conduit can serve as an alternative fluid ingress in the event the other lateral opening(s) become clogged during use.
The distal tip of the catheter portion preferably contains a puncture-resistant element 50 which prevents the distal tip of the internal steering apparatus, such as a steerable guidewire structure 30, from perforating the end of the catheter. Such perforation is often referred to as “peeling back,” and causes undesirable damage to tissues during its use. Puncture-resistant elements 50 which can be used include, but are not limited to, end caps, plug, or integrated molding of a semi-rigid material into the distal end of the catheter. Preferably, the puncture-resistant element 50 is composed of a material which is semi-rigid to afford some pliability to the catheter tip and reduce the likelihood of damage to tissue. In the case of an end-cap or plug as shown in
To further prevent “peel back,” there can be a distance between the distal end of the internal steering apparatus and the distal tip of the catheter sufficient to permit anticipated longitudinal movement of the internal steering apparatus within the steering conduit 31 during manipulation of the device. Accordingly, the wound drainage device of the invention can contain the puncture-resistant element, steering means and catheter tip distance, or a combination of both.
The overall configuration of the catheter portion of the wound drainage device can vary as well, and can be selected according to the desired characteristics of the wound drainage device as determined in light of the intended surgical site or nature of body fluid to be removed, or according to the patient's other particular needs. For example, the distal catheter portion can have an overall tubular (or cylindrical) configuration as shown in
The wound drainage device of the invention by way of the duct, lumen and opening features facilitates the removal of fluid from the wound site. The internal steering means permits the controlled positioning of the wound drainage device both during its initial insertion and during subsequent repositioning if needed. Accordingly, the insertion and positioning of the device of the invention can be accomplished in a manner which significantly reduces the amount of trauma to surrounding tissues and organs by enabling the practitioner to avoid unintentional damage. The ability of the wound drainage device to become rigid or semi-rigid permits insertion into the body in a forward direction by a proximally or rearwardly applied force and does not require the use of secondary guiding instruments “pull” the wound drain through the area to be drained. As a result, significantly more positioning options are available for the device of the invention.
The invention includes a kit comprising the wound drainage device of the invention together with additional surgical instruments or devices. Such instruments and devices include, but are not limited to, trocars, introducers (such as the T-Peel™ OTN Peelable Introducer available from TFX Medical, Jaffrey, N H), access cannulas or portals, suturing equipment, gauzes or bandages, scalpels, catheters and tubing, fluid reservoirs and collection devices, suction devices, and the like. Fluid reservoirs and collection devices which can be used in conjunction with the device of the invention include those similar to that of the Seroma-Cath® wound drainage system (available from Greer Medical, Santa Barbara, Calif.) and described in U.S. Pat. No. 4,341,212. Suction devices which can be used include conventional vacuum apparatuses and suction bulbs.
Furthermore, the wound drainage device of the invention can be used in conjunction with minimally invasive surgical procedures by virtue of its controllable features. The device can be positioned to selectively drain fluids without unnecessary damage. One example of a surgical procedure which benefits from the device of the invention is laparoscopic surgical procedures wherein careful and controlled manipulation within the abdominal cavity is needed to avoid unwanted damage to organs and connective tissues.
Another surgical procedure which can benefit from the device of the invention is ultrasound-assisted liposuction, which involves a two-stage procedure which first liquefies fat cells using an ultrasonic probe thereby leaving connective tissue, nerves and blood vessels intact. The second stage involves the use of a suction catheter to remove the liquefied cells from the site. In contrast to conventional liposuction probes which involve traumatic movement within the site and indiscriminately aspirate all materials that contact the intake holes, the wound drainage device of the invention permits both controlled movement and selective material removal within a broad area. The device of the invention is structured to allow liquefied fat cells to transverse the duct and permits steering (positioning and repositioning) of the device within a broad range without the need for the forcing or “ramming” motion associated with the conventional suction catheters. The full benefits of ultrasound assisted liposuction, therefore, can be realized throughout the entire procedure when using the device of the invention because the device significantly reduces the extent of damage to the vessels, nerves and connective tissues that the procedure seeks to avoid.
Another advantage of the wound drainage device of the invention is that it permits intraoperative use or use during a surgical procedure. Conventional wound drainage devices are flaccid and cannot be manipulated within the body easily. The wound drainage device of the invention is flexible enough to permit long term use, while at the same time rigid enough and controllable to permit repositioning to avoid interference with surgical instruments during surgical procedures.
The wound drainage device of the invention allows medical practitioners to exercise significantly greater control over the placement of the device in the patient. The inventive device also provides improved drainage catheter features. Accordingly, unnecessary trauma to surrounding tissues and organs can be avoided thereby increasing patient comfort and expediting healing and recovery.
The complete disclosures of all patents, patent applications, and publications are incorporated herein by reference as if each were individually incorporate by reference. The invention has been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications can be made while remaining within the spirit and scope of the invention.
Patent | Priority | Assignee | Title |
10980981, | May 01 2018 | ABBOTT CARDIOVASCULAR SYSTEMS, INC | Procedural sheath |
8834453, | Mar 22 1999 | Allegiance Corporation | Steerable wound drain device |
Patent | Priority | Assignee | Title |
1596754, | |||
1879249, | |||
2134152, | |||
2450217, | |||
2498692, | |||
3260258, | |||
3528427, | |||
3559641, | |||
3582234, | |||
3623484, | |||
3630206, | |||
3630207, | |||
3860008, | |||
3993080, | Mar 01 1974 | Suction tube and retrograde flushing for wounds, body cavities and the like | |
4007743, | Oct 20 1975 | Baxter International Inc | Opening mechanism for umbrella-like intravascular shunt defect closure device |
4089506, | Jan 24 1977 | Baxter International Inc | Gate valve |
4307723, | Apr 07 1978 | Cabot Technology Corporation | Externally grooved ureteral stent |
4341212, | Jul 18 1980 | ALBERT MEDWID AND DONNA MEDWID TRUSTEES OF THE ALBERT MEDWID FAMILY REVOCABLE TRUST, DATED OCTOBER 27, 1993 | Serous fluid drain kit |
4398910, | Feb 26 1981 | JOHNSON & JOHNSON MEDICAL, INC , A CORP OF NJ | Wound drain catheter |
4445897, | Jun 09 1981 | AKTIEBOLAGET METEVE, A SWEDEN CORP | Catheter for postsurgical drainage |
4465481, | |||
4573965, | Feb 13 1984 | SUPERIOR HEALTHCARE GROUP, INC | Device for draining wounds |
4650463, | Dec 24 1984 | DEVICE DEVELOPMENTS, INC | Perforated tubing |
4676530, | Apr 07 1983 | DESERET MEDICAL, INC , A CORP OF DE | Coupling assembly for use in fluid flow systems |
4692153, | Apr 03 1986 | Surgical wound drain device | |
4717379, | Jun 29 1984 | Mediplast AB | Catheter, probe or similar device |
4740195, | Feb 14 1986 | Boston Scientific Corporation | Drainage catheter |
4753640, | Oct 06 1986 | Catheter Technology Corporation | Catheters and methods |
4790810, | Nov 04 1985 | AMS Research Corporation | Ureteral connector stent |
4867173, | Jun 30 1986 | Boston Scientific Scimed, Inc | Steerable guidewire |
4887996, | Feb 13 1987 | Method and tube equipment for supplying fluid to a space and draining said space | |
4913683, | Jul 05 1988 | Cabot Technology Corporation | Infusion stent system |
4976684, | Nov 21 1988 | DePuy Orthopaedics, Inc | Method of using a bendable trocar |
4995863, | Oct 06 1986 | Catheter Technology Corporation | Catheter with slit valve |
5021044, | Jan 30 1989 | Advanced Cardiovascular Systems, INC | Catheter for even distribution of therapeutic fluids |
5035764, | Aug 28 1987 | H & P INVESTMENTS | Cohesive finishes for composite materials |
5069217, | Jul 09 1990 | LAKE REGION MANUFACTURING, INC | Steerable guide wire |
5116310, | Jul 30 1990 | Helix Medical, Inc. | Multiple lumen wound drain with bypass openings |
5141503, | Jan 29 1991 | Wound suction drainage system | |
5160325, | Oct 06 1986 | C. R. Bard, Inc. | Catheter with novel lumens shapes |
5242720, | Apr 11 1990 | H & P INVESTMENTS | Cohesive finishes for composite materials |
5419761, | Aug 03 1993 | MISONIX, INC | Liposuction apparatus and associated method |
5489269, | Nov 10 1993 | Cook Medical Technologies LLC | Hard tip drainage catheter |
5511965, | Oct 11 1991 | Specialty Silicone Fabricators, Inc. | Apparatus for extruding tubing having a variable outer diameter |
5512045, | Dec 22 1993 | Surgical decompression and irrigation apparatus and method | |
5527279, | Dec 01 1992 | Boston Scientific Scimed, Inc | Control mechanism and system and method for steering distal extremity of a flexible elongate member |
5549579, | Nov 20 1992 | Specialty Silicone Fabricators | Unitary drain and method for making |
5571085, | Mar 24 1995 | Merit Medical Systems, Inc | Steerable open lumen catheter |
5578031, | May 10 1993 | Laparoscopic instrument assembly and associated method | |
5607405, | May 19 1992 | Surgical insertion device and method | |
5697911, | Jan 17 1995 | Plug for a wound drain | |
5713849, | Jul 19 1995 | Cordis Corporation | Suction catheter and method |
5879279, | Sep 05 1996 | U S CENTRIFUGE | Centrifugal separator apparatus having a vibration sensor |
5944690, | Mar 17 1997 | Boston Scientific Scimed, Inc | Slidable control mechanism for steerable catheter |
5957903, | Oct 15 1991 | Advanced Cardiovascular Systems, Inc. | Variable stiffness guidewire |
6099513, | Aug 27 1996 | Allegiance Corporation | Wound drain with alternating perimetrically arranged lumens and ducts |
6348041, | Mar 29 1999 | Cook Medical Technologies LLC | Guidewire |
6866657, | Jul 04 2002 | Drain catheters | |
7658735, | Mar 22 1999 | Allegiance Corporation | Steerable wound drain device |
D288962, | Jun 15 1984 | JOHNSON & JOHNSON MEDICAL, INC A NJ CORPORATION | Surgical drain tube |
FR2240026, | |||
GB105038, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 25 2010 | SPEHALSKI, STEPHAN R | Allegiance Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024558 | /0540 | |
Jan 28 2010 | Allegiance Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Apr 03 2017 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 24 2021 | REM: Maintenance Fee Reminder Mailed. |
Nov 08 2021 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Oct 01 2016 | 4 years fee payment window open |
Apr 01 2017 | 6 months grace period start (w surcharge) |
Oct 01 2017 | patent expiry (for year 4) |
Oct 01 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 01 2020 | 8 years fee payment window open |
Apr 01 2021 | 6 months grace period start (w surcharge) |
Oct 01 2021 | patent expiry (for year 8) |
Oct 01 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 01 2024 | 12 years fee payment window open |
Apr 01 2025 | 6 months grace period start (w surcharge) |
Oct 01 2025 | patent expiry (for year 12) |
Oct 01 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |