A network of collection, charging and distribution machines collect, charge and distribute portable electrical energy storage devices (e.g., batteries, supercapacitors or ultracapacitors). To avoid theft and tampering of the portable electrical energy storage devices, by default, each portable electrical energy storage device is locked in and operably connected to the vehicle to which it provides power unless the vehicle comes within the vicinity of a collection, charging and distribution machine or other authorized external device such as that in a service center. Once within the vicinity of a collection, charging and distribution machine or other authorized external device a locking mechanism in the vehicle or within the portable electrical energy storage device unlocks and allows the portable electrical energy storage device to be exchanged or serviced.

Patent
   8560147
Priority
Jul 26 2011
Filed
Jul 26 2012
Issued
Oct 15 2013
Expiry
Jul 26 2032
Assg.orig
Entity
Large
872
58
currently ok
10. A method of operating a portable electric energy storage device security system, the method comprising:
receiving, by the portable electrical storage device security system, information regarding authentication of an external device;
making a determination, by the portable electrical energy storage device security system, regarding unlocking a portable electrical energy storage device locking mechanism to allow a portable electrical energy storage device to be removed from being operably connected to a vehicle, based on the information regarding authentication;
sending a signal from a controller of the portable electrical energy storage device security system in a manner to unlock the portable electrical energy storage device locking mechanism in order to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle, if the external device is authenticated based on the information regarding authentication; and
sending a signal from the controller of the portable electrical energy storage device security system in a manner to lock the portable electrical energy storage device locking mechanism in order to prevent the portable electrical energy storage device from being removed from being operably connected to the vehicle, if, after a defined period of time, the information regarding authentication of the external device has not been received via a communications module of the portable electrical energy storage device.
19. A non-transitory computer-readable medium having computer-executable instructions stored thereon that, when executed by at least one computer processor, cause the at least one computer processor to:
cause a portable electrical energy storage device security system to receive information regarding authentication of an external device via a communications module;
make a determination, by the portable electrical energy storage device security system, regarding unlocking a portable electrical energy storage device locking mechanism to allow a portable electrical energy storage device to be removed from being operably connected to a vehicle, based on the information regarding authentication;
send a signal from a controller of the portable electrical energy storage device security system in a manner to unlock the portable electrical energy storage device locking mechanism in order to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle, if the external device is authenticated based on the information regarding authentication; and
send a signal from the controller of the portable electrical energy storage device security system in a manner to lock the portable electrical energy storage device locking mechanism in order to prevent the portable electrical energy storage device from being removed from being operably connected to the vehicle, if, after a defined period of time, the information regarding authentication of the external device has not been received via a communications module of the portable electrical energy storage device.
1. A portable electrical energy storage device security system comprising:
at least one controller; and
at least one communications module coupled to the at least one controller, wherein the at least one controller is configured to:
receive information regarding authentication of an external device via the communications module; and
make a determination regarding unlocking the portable electrical energy storage device locking mechanism based on the received information regarding authentication, the at least one controller being configured to make the determination at least by being configured to:
generate a challenge key to send to the external device;
send the challenge key to the external device;
receive a response from the external device to the sending of the challenge key, the response including a response code as part of the information regarding authentication;
generate an output from a secret algorithm using a secret key and the response code as input, the secret algorithm and the secret key configured to be known only to the portable electrical energy storage device security system and one or more authorized external devices; and
compare the output from the secret algorithm to the response code, and wherein the at least one controller is configured to make the determination regarding unlocking the portable electrical energy storage device locking mechanism based at least on the comparison; and
in response to receiving the information regarding authentication and, based on the determination, unlock a portable electrical energy storage device locking mechanism to allow the portable electrical energy storage device to be removed from being operably connected to a vehicle.
5. A portable electrical energy storage device security system comprising:
at least one controller;
at least one communications module coupled to the at least one controller;
a portable electrical energy storage device locking mechanism coupled to the at least one controller; and
a switch coupled to the portable electrical energy storage device locking mechanism and the at least one controller, the switch configured to be activated by a control signal generated by the at least one controller of the configured portable electrical energy storage device security system, wherein the controller is configured to:
receive information regarding authentication of an external device via the communications module;
in response to receiving the information regarding authentication, unlock the portable electrical energy storage device locking mechanism to allow the portable electrical energy storage device to be removed from being operably connected to a vehicle by at least being configured to send the control signal in a manner to unlock the portable electrical energy storage device locking mechanism in order to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle, if the external device is authenticated based on the information regarding authentication; and
send the control signal in a manner to lock the portable electrical energy storage device locking mechanism in order to prevent the portable electrical energy storage device from being removed from being operably connected to the vehicle, if, after a defined period of time, the information regarding authentication of the external device has not been received via the communications module.
13. A method of operating a portable electrical energy storage device security system, the method comprising:
receiving, by the portable electrical energy storage device security system. information regarding authentication of an external device;
making a determination, by the portable electrical energy storage device security system, regarding unlocking a portable electrical energy storage device locking mechanism to allow a portable electrical energy storage device to be removed from being operably connected to a vehicle, based on the information regarding authentication, wherein the making the determination includes comparing a code from the received information regarding authentication to one or more codes associated with the portable electrical energy storage device security system;
unlocking the portable electrical energy storage device locking mechanism to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle if the code from the received information regarding authentication matches one of the one or more codes associated with the portable electrical energy storage device; and
locking the portable electrical energy storage device locking mechanism in order to prevent the portable electrical energy storage device from being removed from being operably connected to the vehicle, if after a defined period of time, the information regarding authentication of the external device has not been received via a communications module of the portable electrical energy storage device or if, after a defined period of time, a code from the received information can no longer be matched to at least one or one of one or more codes currently associated with the portable electrical energy storage device security system.
22. A non-transitory computer-readable medium having computer-executable instructions stored thereon that, when executed by at least one computer processor, cause the at least one computer processor to:
receive, via a communication module, information regarding authentication of an external device;
make a determination regarding unlocking a portable electrical energy storage device locking mechanism to allow a portable electrical energy storage device to be removed from being operably connected to a vehicle, based on the information regarding authentication, wherein the making the determination includes comparing a code from the received information regarding authentication to one or more codes associated with the portable electrical energy storage device security system;
send a signal to unlock a portable electrical energy storage device locking mechanism to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle if the code from the received information regarding authentication matches one of the one or more codes associated with the portable electrical energy storage device; and
send a signal to lock the portable electrical energy storage device locking mechanism in order to prevent the portable electrical energy storage device from being removed from being operably connected to the vehicle, if, after a defined period of time, the information regarding authentication of the external device has not been received via the communications module of the portable electrical energy storage device or if, after a defined period of time, a code from the received information can no longer be matched to at least one or one of one or more codes currently associated with the portable electrical energy storage device security system.
21. A non-transitory computer-readable medium having computer-executable instructions stored thereon that, when executed by at least one computer processor, cause the at least one computer processor to:
receive information regarding authentication of an external device via a communications module; and
make a determination regarding unlocking the portable electrical energy storage device locking mechanism based on the received information regarding authentication, wherein the computer-executable instructions cause the at least one computer processor to make the determination at least by causing the at least one computer processor to:
generate a challenge key to send to the external device;
send the challenge key to the external device;
receive a response from the external device to the sending of the challenge key, the response including a response code as part of the information regarding authentication;
generate an output from a secret algorithm using a secret key and the response code as input, the secret algorithm and the secret key configured to be known only to the portable electrical energy storage device security system and one or more authorized external devices;
compare the output from the secret algorithm to the response code, and wherein the computer-executable instructions cause the at least one computer processor to make the determination regarding unlocking the portable electrical energy storage device locking mechanism based at least on the comparison; and
in response to receiving the information regarding authentication and, based on the determination, cause a controller to unlock a portable electrical energy storage device locking mechanism to allow the portable electrical energy storage device to be removed from being operably connected to a vehicle.
15. A portable electrical energy storage device, comprising:
a battery cell; and
a security system operably coupled to the cell, the security system including:
at least one controller; at least one communications module coupled to the at least one controller;
a portable electrical energy storage device locking mechanism coupled to the at least one controller; and
a switch coupled to the portable electrical energy storage device locking mechanism and the at least one controller, the switch configured to be activated by a control signal generated by the at least one controller of the configured portable electrical energy storage device security system, wherein the controller is configured to:
receive information regarding authentication of an external device via the communications module;
in response to receiving the information regarding authentication, unlock the portable electrical energy storage device locking mechanism to allow the portable electrical energy storage device to be removed from being operably connected to a vehicle by at least being configured to send the control signal in a manner to unlock the portable electrical energy storage device locking mechanism in order to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle, if the external device is authenticated based on the information regarding authentication; and
send the control signal in a manner to lock the portable electrical energy storage device locking mechanism in order to prevent the portable electrical energy storage device from being removed from being operably connected to the vehicle, if, after a defined period of time, the information regarding authentication of the external device has not been received via the communications module.
20. A portable electrical energy storage device security system comprising:
at least one controller; and
at least one communications module coupled to the at least one controller, wherein the at least one controller is configured to:
receive, via the communications module, information regarding authentication of an external device;
make a determination regarding unlocking a portable electrical energy storage device locking mechanism to allow a portable electrical energy storage device to be removed from being operably connected to a vehicle, based on the information regarding authentication, wherein the making the determination includes comparing a code from the received information regarding authentication to one or more codes associated with the portable electrical energy storage device security system;
send a signal to unlock a portable electrical energy storage device locking mechanism to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle if the code from the received information regarding authentication matches one of the one or more codes associated with the portable electrical energy storage device; and send a signal to lock the portable electrical energy storage device locking mechanism in order to prevent the portable electrical energy storage device from being removed from being operably connected to the vehicle, if, after a defined period of time, the information regarding authentication of the external device has not been received via the communications module of the portable electrical energy storage device security system or if, after a defined period of time, a code from the received information can no longer be matched to at least one or one of one or more codes currently associated with the portable electrical energy storage device security system.
2. The portable electrical energy storage device security system of claim 1 wherein the configured portable electrical energy storage device security system is coupled to the vehicle or is integrated as part of the portable electrical energy storage device.
3. The portable electrical energy storage device security system of claim 1 wherein the external device is a device located at a vehicle service center.
4. The portable electrical energy storage device security system of claim, wherein the at least one communications module is configured to receive the information regarding authentication of the external device via a wireless signal and communicate the information to the at least one controller to unlock the portable electrical energy storage device locking mechanism in order to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle.
6. The portable electrical energy storage device security system of claim 5 wherein the at least one controller is configured to receive the information regarding authentication via a wireless signal transmitted from the external device, and wherein the wireless signal transmitted from the external device is not detectable outside a specified maximum range from the portable electrical energy storage device security system communications module.
7. The portable electrical energy storage device security system of claim 6 wherein the wireless signal includes a rolling code for the authentication of the external device by the at least one controller.
8. The portable electrical energy storage device security system of claim 5, further comprising:
a power interface coupled to the at least one controller and configured to be coupled to the portable electrical energy storage device and the electrical energy storage device locking mechanism to provide power to the electrical energy storage device locking mechanism.
9. The portable electrical energy storage device security system of claim 8 wherein the power interface is configured to be coupled to an auxiliary power source other than the portable electrical energy storage device to provide power to the electrical energy storage device locking mechanism should the portable electrical energy storage device be not able to provide enough power to operate the electrical energy storage device locking mechanism.
11. The method of claim 10 wherein the portable electrical energy storage device security system is integrated as part of the portable electrical energy storage device.
12. The method of claim 10 wherein the portable electrical energy storage device security system is coupled to the vehicle.
14. The method of claim 10, wherein the making the determination regarding unlocking the portable electrical energy storage device locking mechanism includes:
generating a challenge key to send to the external device;
sending the challenge key to the external device;
receiving a response from the external device to the sending of the challenge key, the response including a response code as part of the information regarding authentication;
generating an output from a secret algorithm using a secret key and the response code as input, the secret algorithm and the secret key configured to be known only to the portable electrical energy storage device security system and one or more authorized external devices; and
comparing the output from the secret algorithm to the response code, and wherein making the determination regarding unlocking the portable electrical energy storage device locking mechanism is based at least on the comparison.
16. The portable electrical energy storage device of claim 15 wherein at least one communications module coupled to the at least one controller, wherein the at least one controller is configured to:
make a determination regarding unlocking the portable electrical energy storage device locking mechanism to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle, based on the information regarding authentication.
17. The portable electrical energy storage device of claim 15 further comprising:
a power interface that is configured to be coupled to the at least one controller and to an auxiliary power source other than the portable electrical energy storage device to provide power to the electrical energy storage device locking mechanism should the portable electrical energy storage device be not able to provide enough power to operate the electrical energy storage device locking mechanism.
18. The portable electrical energy storage device of claim 15 wherein a security system operably coupled to the cell, the security system is configured to:
receive the information regarding authentication of an external device via a wireless signal transmitted from a portable electrical energy storage device collection, charging and distribution machine, and wherein the wireless signal received from the collection, charging and distribution machine is not detectable outside a specified maximum range from a communications module of the portable electrical energy storage device security system; and
allow the portable electrical energy storage device to be removed from being operably connected to the vehicle, based on the information received wirelessly regarding authentication of the external device.

This application claims the benefit under 35 U.S.C. 119(e) of the filing date of U.S. provisional patent application Ser. No. 61/511,900 entitled “APPARATUS, METHOD AND ARTICLE FOR COLLECTION, CHARGING AND DISTRIBUTING POWER STORAGE DEVICES, SUCH AS BATTERIES” and filed Jul. 26, 2011, U.S. provisional patent application Ser. No. 61/647,936 entitled “APPARATUS, METHOD AND ARTICLE FOR COLLECTION, CHARGING AND DISTRIBUTING POWER STORAGE DEVICES, SUCH AS BATTERIES” and filed May 16, 2012, U.S. provisional patent application Ser. No. 61/534,753 entitled “APPARATUS, METHOD AND ARTICLE FOR REDISTRIBUTING POWER STORAGE DEVICES, SUCH AS BATTERIES, BETWEEN COLLECTION, CHARGING AND DISTRIBUTION MACHINES” and filed Sep. 14, 2011, U.S. provisional patent application Ser. No. 61/534,761 entitled “APPARATUS, METHOD AND ARTICLE FOR AUTHENTICATION, SECURITY AND CONTROL OF POWER STORAGE DEVICES SUCH AS BATTERIES” and filed Sep. 14, 2011, U.S. provisional patent application Ser. No. 61/534,772 entitled “APPARATUS, METHOD AND ARTICLE FOR AUTHENTICATION, SECURITY AND CONTROL OF POWER STORAGE DEVICES, SUCH AS BATTERIES, BASED ON USER PROFILES” and filed Sep. 14, 2011, U.S. provisional patent application Ser. No. 61/511,887 entitled “THERMAL MANAGEMENT OF COMPONENTS IN ELECTRIC MOTOR DRIVE VEHICLES” and filed Jul. 26, 2011, U.S. provisional patent application Ser. No. 61/647,941 entitled “THERMAL MANAGEMENT OF COMPONENTS IN ELECTRIC MOTOR DRIVE VEHICLES” and filed May 16, 2012, U.S. provisional patent application Ser. No. 61/511,880 entitled “DYNAMICALLY LIMITING VEHICLE OPERATION FOR BEST EFFORT ECONOMY” and filed Jul. 26, 2011, U.S. provisional patent application Ser. No. 61/557,170 entitled “APPARATUS, METHOD, AND ARTICLE FOR PHYSICAL SECURITY OF POWER STORAGE DEVICES IN VEHICLES” and filed Nov. 8, 2011, U.S. provisional patent application Ser. No. 61/581,566 entitled “APPARATUS, METHOD AND ARTICLE FOR A POWER STORAGE DEVICE COMPARTMENT” and filed Dec. 29, 2011, U.S. provisional patent application Ser. No. 61/601,404 entitled “APPARATUS, METHOD AND ARTICLE FOR PROVIDING VEHICLE DIAGNOSTIC DATA” and filed Feb. 21, 2012 , U.S. provisional patent application Ser. No. 61/601,949 entitled “APPARATUS, METHOD AND ARTICLE FOR PROVIDING LOCATIONS OF POWER STORAGE DEVICE COLLECTION, CHARGING AND DISTRIBUTION MACHINES” and filed Feb. 22, 2012, and U.S. provisional patent application Ser. No. 61/601,953 entitled “APPARATUS, METHOD AND ARTICLE FOR PROVIDING INFORMATION REGARDING AVAILABILITY OF POWER STORAGE DEVICES AT A POWER STORAGE DEVICE COLLECTION, CHARGING AND DISTRIBUTION MACHINE” and filed Feb. 22, 2012.

1. Technical Field

The present disclosure generally relates to the physical security of power storage devices, and particularly to the physical security of power storage devices in vehicles.

2. Description of the Related Art

There are a wide variety of uses or applications for portable electrical power storage devices.

One such application is in the field of transportation. Hybrid and all-electric vehicles are becoming increasingly common. Such vehicles may achieve a number of advantages over traditional internal combustion engine vehicles. For example, hybrid or electrical vehicles may achieve higher fuel economy and may have little or even zero tail pipe pollution. In particular, all-electric vehicles may not only have zero tail pipe pollution, but may be associated with lower overall pollution. For example, electrical power may be generated from renewable sources (e.g., solar, hydro). Also for example, electrical power may be generated at generation plants that produce no air pollution (e.g., nuclear plants). Also for example, electrical power may be generated at generation plants that burn relatively “clean burning” fuels (e.g., natural gas), which have higher efficiency than internal combustion engines, and/or which employ pollution control or removal systems (e.g., industrial air scrubbers) which are too large, costly or expensive for use with individual vehicles.

Personal transportation vehicles such as combustion engine powered scooters and/or motorbikes are ubiquitous in many places, for example in the many large cities of Asia. Such scooters and/or motorbikes tend to be relatively inexpensive, particular as compared to automobiles, cars or trucks. Cities with high numbers of combustion engine scooters and/or motorbikes also tend to be very densely populated and suffer from high levels of air pollution. When new, many combustion engine scooters and/or motorbikes are equipped with a relatively low polluting source of personal transportation. For instance, such scooters and/or motorbikes may have higher mileage ratings than larger vehicles. Some scooters and/or motorbikes may even be equipped with basic pollution control equipment (e.g., catalytic converter). Unfortunately, factory specified levels of emission are quickly exceeded as the scooters and/or motorbikes are used and either not maintained and/or as the scooters and/or motorbikes are modified, for example by intentional or unintentional removal of catalytic converters. Often owners or operators of scooters and/or motorbikes lack the financial resources or the motivation to maintain their vehicles.

It is known that air pollution has a negative effect on human health, being associated with causing or exacerbating various diseases (e.g., various reports tie air pollution to emphysema, asthma, pneumonia, cystic fibrosis as well as various cardiovascular diseases). Such diseases take large numbers of lives and severely reduce the quality of life of countless others.

A portable electrical energy storage device security system for a portable electrical energy storage device may be summarized as including at least one controller; and at least one communications module coupled to the at least one controller, wherein the at least one controller is configured to: receive information regarding authentication of an external device via the communications module; and in response to receiving the information regarding authentication, unlock a portable electrical energy storage device locking mechanism to allow the portable electrical energy storage device to be removed from being operably connected to a vehicle.

The at least one controller may be configured to make a determination regarding unlocking the portable electrical energy storage device locking mechanism based on the received information regarding authentication. The least one controller may be further configured to: generate a challenge key to send to the external device; send the challenge key to the external device; receive a response from the external device to the sending of the challenge key, the response including a response code as part of the information regarding authentication; generate an output from a secret algorithm using a secret key and the response code as input, the secret algorithm and the secret key configured to be known only to the portable electrical energy storage device security system and one or more authorized external devices; and comparing the output from the secret algorithm to the response code, and wherein the at least one controller is configured to make the determination regarding unlocking the portable electrical energy storage device locking mechanism based at least on the comparison. The configured portable electrical energy storage device security system may be coupled to the vehicle or may be integrated as part of the portable electrical energy storage device. The external device may be a portable electrical energy storage device collection and charging machine. The external device may be a device located at a vehicle service center. The at least one communications module may be configured to receive the information regarding authentication of the external device via a wireless signal and communicate the information to the at least one controller to unlock the portable electrical energy storage device locking mechanism in order to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle. The portable electrical energy storage device security system may further include the portable electrical energy storage device locking mechanism coupled to the at least one controller; and a switch coupled to the portable electrical energy storage device locking mechanism and the at least one controller, the switch configured to be activated by a control signal generated by the at least one controller of the configured portable electrical energy storage device security system, wherein the controller is configured to: send the signal in a manner to unlock the portable electrical energy storage device locking mechanism in order to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle, if the external device is authenticated based on the information regarding authentication; and send the signal in a manner to lock the portable electrical energy storage device locking mechanism in order to prevent the portable electrical energy storage device from being removed from being operably connected to the vehicle, if, after a defined period of time, the information regarding authentication of the external device can no longer be received via the communications module. The at least one controller may be configured to receive the information regarding authentication via a wireless signal transmitted from the external device. In some embodiments, the wireless signal transmitted from the external device is not detectable outside a specified maximum range from the portable electrical energy storage device security system communications module. The wireless signal may include a rolling code for the authentication of the external device by the at least one controller. The portable electrical energy storage device security system may further include a power interface coupled to the at least one controller and configured to be coupled to the portable electrical energy storage device and the electrical energy storage device locking mechanism to provide power to the electrical energy storage device locking mechanism. The power interface may be configured to be coupled to an auxiliary power source other than the portable electrical energy storage device to provide power to the electrical energy storage device locking mechanism should the portable electrical energy storage device be not able to provide enough power to operate the electrical energy storage device locking mechanism.

A method of operating a portable electrical energy storage device security system may be summarized as including receiving, by the portable electrical energy storage device security system, information regarding authentication of an external device; and making a determination, by the portable electrical energy storage device security system, regarding unlocking a portable electrical energy storage device locking mechanism to allow a portable electrical energy storage device to be removed from being operably connected to a vehicle, based on the information regarding authentication.

The receiving the information may include receiving the information regarding authentication via a wireless signal transmitted from a portable electrical energy storage device collection, charging and distribution machine, and wherein the wireless signal received from the collection, charging and distribution machine may not be detectable outside a specified maximum range from a communications module of the portable electrical energy storage device security system. The method may further include sending a signal from a controller of the portable electrical energy storage device security system in a manner to unlock the portable electrical energy storage device locking mechanism in order to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle, if the external device is authenticated based on the information regarding authentication; and sending a signal from the controller of the portable electrical energy storage device security system in a manner to lock the portable electrical energy storage device locking mechanism in order to prevent the portable electrical energy storage device from being removed from being operably connected to the vehicle, if, after a defined period of time, the information regarding authentication of the external device can no longer continue to be received via a communications module of the portable electrical energy storage device. The portable electrical energy storage device security system may be integrated as part of the portable electrical energy storage device. The portable electrical energy storage device security system may be coupled to the vehicle. The making the determination may include comparing a code from the received information regarding authentication to one or more codes associated with the portable electrical energy storage device security system and may further include unlocking the portable electrical energy storage device locking mechanism to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle if the code from the received information regarding authentication matches one of the one or more codes associated with the portable electrical energy storage device; and locking the portable electrical energy storage device locking mechanism in order to prevent the portable electrical energy storage device from being removed from being operably connected to the vehicle, if, after a defined period of time, the information regarding authentication of the external device can no longer be received via a communications module of the portable electrical energy storage device or if, after a defined period of time, a code from the received information can no longer be matched to at least one or one of one or more codes currently associated with the portable electrical energy storage device security system. The method may further include generating a challenge key to send to the external device; sending the challenge key to the external device; receiving a response from the external device to the sending of the challenge key, the response including a response code as part of the information regarding authentication; generating an output from a secret algorithm using a secret key and the response code as input, the secret algorithm and the secret key configured to be known only to the portable electrical energy storage device security system and one or more authorized external devices; and comparing the output from the secret algorithm to the response code, and wherein making the determination regarding unlocking the portable electrical energy storage device locking mechanism is based at least on the comparison.

A portable electrical energy storage device may be summarized as including a battery cell; and a security system operably coupled to the cell, the security system configured to allow the portable electrical energy storage device to be removed from being operably connected to a vehicle, based on information received wirelessly regarding authentication of an external device.

The security system may include at least one controller; and at least one communications module coupled to the at least one controller, wherein the at least one controller is configured to: receive information regarding authentication of an external device via the communications module; and make a determination regarding unlocking a portable electrical energy storage device locking mechanism to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle, based on the information regarding authentication. The security system may further include the portable electrical energy storage device locking mechanism coupled to the at least one controller; and a power interface that is configured to be coupled to the at least one controller and to an auxiliary power source other than the portable electrical energy storage device to provide power to the electrical energy storage device locking mechanism should the portable electrical energy storage device be not able to provide enough power to operate the electrical energy storage device locking mechanism.

In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn, are not intended to convey any information regarding the actual shape of the particular elements, and have been solely selected for ease of recognition in the drawings.

FIG. 1 is a schematic view of a collection, charging and distribution machine along with a number of electrical power storage devices according to one non-limiting illustrated embodiment, along with an electric scooter or motorbike, and an electrical service provided via an electrical grid.

FIG. 2 is a block diagram of the collection, charging and distribution machine of FIG. 1, according to one non-limiting illustrated embodiment.

FIG. 3 is a block diagram of a portable electrical energy storage device physical security system for the portable electrical energy storage device of the scooter or motorbike of FIG. 1 in wireless communication in one instance with the collection, charging and distribution machine of FIG. 1 and in another instance with a scooter or motorbike service center, according to one non-limiting illustrated embodiment.

FIG. 4 is a schematic view of the locking mechanism controller of FIG. 3, according to one non-limiting illustrated embodiment.

FIG. 5 is a cross-sectional elevation view of the portable electrical energy storage device of FIG. 1 and FIG. 3 coupled to the portable electrical energy storage device physical security system of FIG. 3 and locked in an operable position within the scooter of FIG. 1 and FIG. 3, according to one non-limiting illustrated embodiment.

FIG. 6 is a cross-sectional elevation view of an alternative embodiment of the portable electrical energy storage device of FIG. 1 and FIG. 3 in which the portable electrical energy storage device physical security system of FIG. 3 is integrated with and part of the portable electrical energy storage device of FIG. 1 and FIG. 3, according to one non-limiting illustrated alternative embodiment.

FIG. 7 is a flow diagram showing a high level method of operating the locking mechanism controller of FIGS. 3-6, according to one non-limiting illustrated embodiment.

FIG. 8 is a flow diagram showing a low level method of operating the locking mechanism controller of FIGS. 3-6, according to one non-limiting illustrated embodiment, including accepting the portable electrical energy storage device charge, useful in the method of FIG. 7.

FIG. 9 is a flow diagram showing a low level method of operating the locking mechanism controller of FIGS. 3-6, according to one non-limiting illustrated embodiment, including sending a signal to lock and unlock the portable electrical energy storage device locking mechanism, useful in the method of FIG. 7 and FIG. 8.

In the following description, certain specific details are set forth in order to provide a thorough understanding of various disclosed embodiments. However, one skilled in the relevant art will recognize that embodiments may be practiced without one or more of these specific details, or with other methods, components, materials, etc. In other instances, well-known structures associated with vending apparatus, batteries, locking mechanisms, wireless technologies, supercapacitors or ultracapacitors, power converters including but not limited to transformers, rectifiers, DC/DC power converters, switch mode power converters, controllers, and communications systems and structures and networks have not been shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments.

Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense that is as “including, but not limited to.”

Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment.

The use of ordinals such as first, second and third does not necessarily imply a ranked sense of order, but rather may only distinguish between multiple instances of an act or structure.

Reference to portable electrical power storage device means any device capable of storing electrical power and releasing stored electrical power including but not limited to batteries, supercapacitors or ultracapacitors. Reference to batteries means chemical storage cell or cells, for instance rechargeable or secondary battery cells including but not limited to nickel cadmium alloy or lithium ion battery cells.

The headings and Abstract of the Disclosure provided herein are for convenience only and do not interpret the scope or meaning of the embodiments.

FIG. 1 shows an environment 100 including a collection, charging and distribution machine 102, according to one illustrated embodiment.

The collection, charging and distribution machine 102 may take the form of a vending machine or kiosk. The collection, charging and distribution machine 102 has a plurality of receivers, compartments or receptacles 104a, 104b-104n (only three called out in FIG. 1, collectively 104) to removably receive portable electrical energy storage devices (e.g., batteries, supercapacitors or ultracapacitors) 106a-106n (collectively 106) for collection, charging and distribution. As illustrated in FIG. 1, some of the receivers 104 are empty, while other receivers 104 hold portable electrical energy storage devices 106. While

FIG. 1 shows a single portable electrical energy storage device 106 per receiver 104, in some embodiments each receiver 104 may hold two or even more portable electrical energy storage devices 106. For example, each of the receivers 104 may be sufficiently deep to receive three portable electrical energy storage devices 106. Thus, for example, the collection, charging and distribution machine 102 illustrated in FIG. 1 may have a capacity capable of simultaneously holding 40, 80 or 120 portable electrical energy storage devices 106.

The portable electrical energy storage devices 106 may take a variety of forms, for example batteries (e.g., array of battery cells) or supercapacitors or ultracapacitors (e.g., array of ultracapacitor cells). For example, the portable electrical energy storage device 106z may take the form of rechargeable batteries (i.e., secondary cells or batteries). The portable electrical energy storage device 106z may, for instance, be sized to physically fit, and electrically power, personal transportation vehicles, such as all-electric scooters or motorbikes 108. As previously noted, combustion engine scooters and motorbikes are common in many large cities, for example in Asia, Europe and the Middle East. The ability to conveniently access charged batteries throughout a city or region may facilitate the use of all-electric scooters and motorbikes 108 in place of combustion engine scooters and motorbikes, thereby alleviating air pollution, as well as reducing noise.

The portable electrical energy storage devices 106 (only visible for portable electrical energy storage device 106z) may include a number of electrical terminals 110a, 110b (two illustrated, collectively 110), accessible from an exterior of the portable electrical energy storage device 106z. The electrical terminals 110 allow charge to be delivered from the portable electrical energy storage device 106z, as well as allow charge to be delivered to the portable electrical energy storage device 106z for charging or recharging the same. While illustrated in FIG. 1 as posts, the electrical terminals 110 may take any other form which is accessible from an exterior of the portable electrical energy storage device 106z, including electrical terminals positioned within slots in a battery housing. As the portable electrical energy storage devices 106 may be lent, leased, and/or rented out to the public, it is desirable to control how and in what circumstances the portable electrical energy storage devices 106 may be removed from being operably connected to the vehicle for which they provide power. This control of the physical security of the portable electrical energy storage devices 106 helps to prevent theft and/or misuse of the portable electrical energy storage devices 106. Systems and methods for physical security of the portable electrical energy storage devices 106, including a security system for controlling removal of the portable electrical energy storage devices 106 from a vehicle, are described in more detail below with reference to FIGS. 3-9, and are useful in the overall system for collection, charging and distribution of the portable electrical energy storage devices 106 described herein.

The collection, charging and distribution machine 102 is positioned at some location 112 at which the collection, charging and distribution machine 102 is conveniently and easily accessible by various end users. The location may take any of a large variety of forms, for example, a retail environment such as a convenience store, supermarket, gas or petrol station, or service or service center. Alternatively, the collection, charging and distribution machine 102 may stand alone at a location 112 not associated with an existing retail or other business, for example in public parks or other public places. Thus, for example, collection, charging and distribution machines 102 may be located at each store of a chain of convenience stores throughout a city or region. Such may advantageously rely on the fact that convenience stores are often sited or distributed based on convenience to the target population or demographic. Such may advantageously rely on pre-existing leases on storefronts or other retail locations to allow an extensive network of collection, charging and distribution machines 102 to be quickly developed in a city or region. Quickly achieving a large network that provides for physical security of the of portable electrical energy storage devices 106 while in the all-electric scooters or motorbikes 108 enhances the ability to depend on such a system and likely commercial success of such an effort.

The location 112 may include an electrical service 114 to receive electrical power from a generating station (not shown) for example via a grid 116. The electrical service 114 may, for example, include one or more of an electrical service meter 114a, a circuit panel (e.g., circuit breaker panel or fuse box) 114b, wiring 114c, and electrical outlet 114d. Where the location 112 is an existing retail or convenience store, the electrical service 114 may be an existing electrical service, so may be somewhat limited in rating (e.g., 120 volts, 240 volts, 220 volts, 230 volts, 15 amps).

Optionally, the collection, charging and distribution machine 102 may include or be coupled to a source of renewable electrical power. For example, where installed in an outside location the collection, charging and distribution machine 102 may include an array of photovoltaic (PV) cells 118 to produce electrical power from solar insolation. Alternatively, the collection, charging and distribution machine 102 may be electrically coupled to a microturbine (e.g., wind turbine) or PV array positioned elsewhere at the location 112, for instance on a roof top or mounted at a top of a pole (not shown).

The collection, charging and distribution machine 102 may be communicatively coupled to one or more remotely located computer systems, such as back end or back office systems (only one shown) 120. The back end or back office systems 120 may collect data from and/or control a plurality of collection, charging and distribution machines 102 distributed about an area, such as a city.

In some embodiments, the back end or back office systems 120 may collect data from and/or control a plurality of the portable electrical energy storage devices 106, such as by generating, tracking, sending and/or receiving one or more codes included in a wireless signal 126 sent by the collection, charging and distribution machine 102 to an all-electric scooter or motorbike 108 or other vehicle. The sending and/or receiving one or more codes enables access to the portable electrical energy storage devices 106 for removal from a respective all-electric scooter or motorbike 108 while the all-electric scooter or motorbike 108 is in the vicinity of the collection, charging and distribution machine 102. The communications between the back end or back office systems 120 and the collection, charging and distribution machine 102 may occur over one or more communications channels including one or more networks 122, or non-networked communications channels. Communications may be over one or more wired communications channels (e.g., twisted pair wiring, optical fiber), wireless communications channels (e.g., radio, microwave, satellite, 801.11 compliant). Networked communications channels may include one or more local area networks (LANs), wide area networks (WANs), extranets, intranets, or the Internet including the World Wide Web portion of the Internet.

The collection, charging and distribution machine 102 may include a user interface 124. The user interface may include a variety of input/output (I/O) devices to allow an end user to interact with the collection, charging and distribution machine 102. Various I/O devices are called out and described in reference to FIG. 2, which follows.

FIG. 2 shows the collection, charging and distribution machine 102 of FIG. 1, according to one illustrated embodiment.

The collection, charging and distribution machine 102 includes a control subsystem 202, a charging subsystem 204, a communications subsystem 206, and a user interface subsystem 208.

The control subsystem 202 includes a controller 210, for example a microprocessor, microcontroller, programmable logic controller (PLC), programmable gate array (PGA), application specific integrated circuit (ASIC) or another controller capable of receiving signals from various sensors, performing logical operations, and sending signals to various components. Typically, the controller 210 may take the form of a microprocessor (e.g., INTEL, AMD, ATOM). The control subsystem 202 may also include one or more non-transitory processor- or computer-readable storage media, for example read only memory (ROM) 212, random access memory (RAM) 214, and data store 216 (e.g., solid-state storage media such as flash memory or EEPROM, or spinning storage media such as hard disk). The non-transitory processor- or computer-readable storage media 212, 214, 216 may be in addition to any non-transitory storage medium (e.g., registers) which is part of the controller 210. The control subsystem 202 may include one or more buses 218 (only one illustrated) coupling various components together, for example one or more power buses, instruction buses, data buses, etc.

As illustrated, the ROM 212, or some other one of the non-transitory processor- or computer-readable storage media 212, 214, 216, stores instructions and/or data or values for variables or parameters. The sets of data may take a variety of forms, for example a lookup table, a set of records in a database, etc. The instructions and sets of data or values are executable by the controller 110. Execution of the instructions and sets of data or values causes the controller 110 to perform specific acts to cause the collection, charging and distribution machine 102 to collect, charge, and distribute portable energy storage devices, and to send one or more signals that enable access to the portable electrical energy storage devices 106 for removal from the all-electric scooters or motorbikes 108 while the all-electric scooters or motorbikes 108 are in the vicinity of a collection, charging and distribution machine 102 . Specific operation of the collection, charging and distribution machine 102 is described herein and also below with reference to FIG. 3 and various flow diagrams (FIGS. 7-9) in the context of being an external device which is authenticated in order to allow the portable electrical energy storage device 106 to be removed from being operably connected to the all-electric scooter or motorbike 108.

The controller 210 may use RAM 214 in a conventional fashion, for volatile storage of instructions, data, etc. The controller 210 may use data store 216 to log or retain information, for example one or more codes that enable access to the portable electrical energy storage devices 106 for removal from the all-electric scooters or motorbikes 108 while the all-electric scooters or motorbikes 108 are in the vicinity of the collection, charging and distribution machine 102, and/or information related to operation of the collection, charging and distribution machine 102 itself. The instructions are executable by the controller 210 to control operation of the collection, charging and distribution machine 102 in response to end user or operator input, and using data or values for the variables or parameters.

The control subsystem 202 receives signals from various sensors and/or other components of the collection, charging and distribution machine 102 which include information that characterizes or is indicative of operation, status, or condition of such other components. Sensors are represented in FIG. 2 by the letter S appearing in a circle along with appropriate subscript letters.

For example, one or more position sensors SP1-SPN may detect the presence or absence of a portable electrical power storage device 106 at each of the receivers 104. The position sensors SP1-SPN may take a variety of forms. For example, the position sensors SP1-SPN may take the form of mechanical switches that are closed, or alternatively opened, in response to contact with a portion of a respective portable electrical power storage device 106 when the portable electrical power storage device 106 is inserted into the receiver 104. Also for example, the position sensors SP1-SPN may take the form of optical switches (i.e., optical source and receiver) that are closed, or alternatively opened, in response to contact with a portion of a respective portable electrical power storage device 106 when the portable electrical power storage device 106 is inserted into the receiver 104. Also for example, the position sensors SP1-SPN may take the form of electrical sensors or switches that are closed, or alternatively opened, in response to detecting a closed circuit condition created by contact with the terminals 110 of a respective portable electrical power storage device 106 when the portable electrical power storage device 106 is inserted into the receiver 104, or an open circuit condition that results from the lack of a respective portable electrical power storage device 106 in the receiver 104. These examples are intended to be non-limiting, and it is noted that any other structures and devices for detecting the presence/absence or even the insertion of the portable electrical power storage devices 106 into receivers may be employed.

For example, one or more charge sensors SC1-SCN may detect charge of the portable electrical power storage devices 106 at each of the receivers 104. Charge sensors SC1-SCN may detect the amount of charge stored by the portable electrical power storage devices 106. Charge sensors SC1-SCN may additionally detect an amount of charge and/or rate of charging being supplied to ones of the portable electrical power storage devices 106 at each of the receivers 104. Such may allow assessment of current (i.e., temporal) charge condition or status of each portable electrical power storage device 106, as well as allow feedback control over charging of same, including control over rate of charging. Charge sensors SC1-SCN may include any variety of current and/or voltage sensors.

For example, one or more charge sensors ST1 (only one shown) may detect or sense a temperature at the receivers 104 or in the ambient environment.

The control subsystem 202 provides signals to various actuators and/or other components responsive to control signals, which signals include information that characterizes or is indicative of an operation the component is to perform or a state or condition into which the components should enter. Control signals, actuators or other components responsive to control signals are represented in FIG. 2 by the letter C appearing in a circle along with appropriate subscript letters.

For example, one or more engine control signals CA1-CAN may affect the operation of one or more actuators 220 (only one illustrated). For instance, a control signal CA1 may cause movement of an actuator 220 between a first and a second position or change a magnetic field produced by the actuator 220. The actuator 220 may take any of a variety of forms, including but not limited to a solenoid, an electric motor such as a stepper motor, or an electromagnet. The actuator 220 may be coupled to operate a latch, lock or other retainer mechanism 222. The latch, lock or other retainer mechanism 222 may selectively secure or retain one or more portable electrical power storage devices 106 (FIG. 1) in the receiver 104 (FIG. 1). For instance, the latch, lock or other retainer mechanism 222 may physically couple to a complimentary structure that is part of a housing of the portable electrical power storage devices 106 (FIG. 1). Alternatively, the latch, lock or other retainer mechanism 222 may magnetically couple to a complimentary structure that is part of a housing of the portable electrical power storage devices 106 (FIG. 1). Also for instance, the latch, lock or other retainer mechanism 222 may open a receiver 104 (FIG. 1), or may allow a receiver 104 to be opened, to receive a partially or fully discharged portable electrical power storage device 106 for charging. For example, the actuator may open and/or close a door to the receiver 104 (FIG. 1), to selectively provide access to a portable electrical power storage device 106 (FIG. 1) received therein. Also for example, the actuator may open and/or close a latch or lock, allowing an end user to open and/or close a door to the receiver 104 (FIG. 1), to selectively provide access to a portable electrical power storage device 106 (FIG. 1) received therein.

The control subsystem 202 may include one or more ports 224a to provide control signals to one or more ports 224b of the charging subsystem 204. The ports 224a, 224b may provide bi-directional communications. The control subsystem 202 may include one or more ports 226a to provide control signals to one or more ports 226b of the user interface subsystem 208. The ports 226a, 226b may provide bi-directional communications.

The charging subsystem 204 includes various electrical and electronic components to charge portable electrical power storage devices 106 when positioned or received in the receivers 104. For example, the charging subsystem 204 may include one or more power buses or power bus bars, relays, contactors or other switches (e.g., insulated gate bipolar transistors or IGBTs, metal oxide semiconductor transistors or MOSFETs), rectifier bridge(s), current sensors, ground fault circuitry, etc. The electrical power is supplied via contacts that can take any of a variety of forms, for instance terminals, leads, posts, etc. The contacts allow electrical coupling of various components. Some possible implementations are illustrated in FIG. 2. Such is not intended to be exhaustive. Additional components may be employed while other components may be omitted.

The illustrated charging subsystem 204 includes a first power converter 230 that receives electrical power from the electrical service 114 (FIG. 1) via a line or cord 232. The power will typically be in the form of single two- or three-phase AC electrical power. As such, the first power converter 230 may need to convert and otherwise condition the electrical power received via the electrical services 114 (FIG. 1), for example for rectifying an AC waveform to DC, transforming voltage, current, and phase, as well as reducing transients and noise. Thus, the first power converter 230 may include a transformer 234, rectifier 236, DC/DC power converter 238, and filter(s) 240.

The transformer 234 may take the form of any variety of commercially available transformers with suitable ratings for handling the power received via the electrical service 114 (FIG. 1). Some embodiments may employ multiple transformers. The transformer 234 may advantageously provide galvanic isolation between the components of the collection, charging and distribution machine 102 and the grid 116 (FIG. 1). The rectifier 236 may take any of variety of forms, for example a full bridge diode rectifier or a switch mode rectifier. The rectifier 236 may be operated to transform AC electrical power to DC electrical power. The DC/DC power converter 238 may take any of a large variety of forms. For example, DC/DC power converter 238 may take the form a switch mode DC/DC power converter, for instance employing IGBTs or MOSFETs in a half or full bridge configuration, and may include one or more inductors. The DC/DC power converter 238 may have any number of topologies including a boost converter, buck converter, synchronous buck converter, buck-boost converter or fly-back converter. The filter(s) 240 may include one or more capacitors, resistors, Zener diodes or other elements to suppress voltage spikes, or to remove or reduce transients and/or noise.

The illustrated charging subsystem 204 may also receive electrical power from a renewable power source, for example the PV array 118 (FIG. 1). Such may be converted or conditioned by the first power converter 230, for example being supplied directly to the DC/DC power converter 238, bypassing the transformer 236 and/or rectifier 236. Alternatively, the illustrated charging subsystem 204 may include a dedicated power converter to convert or otherwise condition such electrical power.

The illustrated charging subsystem 204 may optionally include second power converter 242 that receives electrical power from one or more portable electrical power storage devices 106 (FIG. 1) via one or more lines 244, for charging other ones of the portable electrical power storage devices 106. As such, the second power converter 242 may need to convert and/or otherwise condition the electrical power received from portable electrical power storage devices 106, for example optionally transforming voltage or current, as well as reducing transients and noise. Thus, the second power converter 242 may optionally include a DC/DC power converter 246 and/or filter(s) 248. Various types of DC/DC power converters and filters are discussed above.

The illustrated charging subsystem 204 includes a plurality of switches 250 responsive to the control signals delivered via ports 224a, 224b from the control subsystem 202. The switches may be operable to selectively couple a first number or set of portable electrical power storage devices 106 to be charged from electrical power supplied by both the electrical service via the first power converter 230 and from electrical power supplied by a second number or set of portable electrical power storage devices 106. The first number or set of portable electrical power storage devices 106 may include a single portable electrical power storage device 106, two, or even more portable electrical power storage devices 106. The second number or set of portable electrical power storage devices 106 may include a single portable electrical power storage device 106, two, or even more portable electrical power storage devices 106. The portable electrical power storage devices 106 are represented in FIG. 2 as loads L1,L2-LN.

The communications subsystem 206 may additionally include one or more communications modules or components which facilitate communications with the various components of a back end or back office system 120 (FIG. 1), various components of the all-electric scooter or motorbike 108, and/or various components of the portable electrical power storage devices 106. The communications subsystem 206 may, for example, include one or more modems 252 and/or one or more Ethernet cards or other types of communications cards or components 254. A port 256a of the control subsystem 202 may communicatively couple the control subsystem 202 with a port 256b of the communications subsystem 206. The communications subsystem 206 may provide wired and/or wireless communications. For example, the communications subsystem 206 may provide components enabling short range (e.g., via Bluetooth, near field communication (NFC), radio frequency identification (RFID) components and protocols) or longer range wireless communications (e.g., over a wireless LAN, satellite, or cellular network) with various other devices external to the collection, charging and distribution machine 102, including various components of the all-electric scooter or motorbike 108, and/or various components of the portable electrical power storage devices 106. The communications subsystem 206 may include one or more ports, wireless receivers, wireless transmitters or wireless transceivers to provide wireless signal paths to the various remote components or systems. The communications subsystem 206 may include one or more bridges or routers suitable to handle network traffic including switched packet type communications protocols (TCP/IP), Ethernet or other networking protocols.

The user interface subsystem 208 includes one or more user input/output (I/O) components. For example, user interface subsystem 208 may include a touch screen display 208a operable to present information to an end user, and a graphical user interface (GUI) to receive indications of user selections. The user interface subsystem 208 may include a keyboard or keypad 208b, and/or a cursor controller (e.g., mouse, trackball, trackpad) (not illustrated) to allow an end user to enter information and/or select user selectable icons in a GUI. The user interface subsystem 208 may include a speaker 208c to provide aural messages to an end user and/or a microphone 208d to receive spoken user input such as spoken commands.

The user interface subsystem 208 may include a card reader 208e to read information from card type media 209. The card reader 208e may take a variety of forms. For instance, the card reader 208e may take the form of, or include, a magnetic stripe reader for reading information encoded in a magnetic stripe carried by a card 209. For instance, the card reader 208e may take the form of, or include, a machine-readable symbol (e.g., barcode, matrix code) card reader for reading information encoded in a machine-readable symbol carried by a card 209. For instance, the card reader 208e may take the form of, or include, a smart card reader for reading information encoded in a non-transitory medium carried by a card 209. Such may, for instance, include media employing radio frequency identification (RFID) transponders or electronic payment chips (e.g., near filed communications (NFC) chips). Thus, the card reader 208e may be able to read information from a variety of card media 209, for instance credit cards, debit cards, gift cards, prepaid cards, as well as identification media such as drivers licenses. The card reader 208e may also be able to read information encoded in a non-transitory medium carried by the portable electrical energy storage devices 106, and may also include RFID transponders, transceivers, NFC chips and/or other communications devices to communicate information to various components of the all-electric scooter or motorbike 108, and/or various components of the portable electrical power storage devices 106 (e.g., for authentication of the collection, charging and distribution machine 102 to the portable electrical energy storage devices 106 and/or the all-electric scooter or motorbike 108, or for authentication of the portable electrical energy storage devices 106 to the collection, charging and distribution machine 102).

The user interface subsystem 208 may include a bill acceptor 208f and a validator and/or coin acceptor 208g to accept and validate cash payments. Such may be highly useful in servicing populations lacking access to credit. Bill acceptor and validator 208f and/or coin acceptor 208g may take any variety of forms, for example those that are currently commercially available and used in various vending machines and kiosks.

FIG. 3 shows a portable electrical energy storage device physical security system for the portable electrical energy storage device 106z of the scooter or motorbike 108 in wireless communication in one instance with the collection, charging and distribution machine 102 and in another instance with a device at a scooter or motorbike service center 318, according to one non-limiting illustrated embodiment.

Shown is a portable electrical energy storage device locking mechanism 320 operably coupled to a locking mechanism controller 306. In some embodiments, the portable electrical energy storage device locking mechanism 320 and the locking mechanism controller 306 are part of the scooter or motorbike 108. In other embodiments, the portable electrical energy storage device locking mechanism 320 and the locking mechanism controller 306 are integrated with or part of the portable electrical energy storage device 106z.

Also shown is the collection, charging and distribution machine 102 in wireless communication with the locking mechanism controller 306. For example, the communications subsystem 206 (shown in FIG. 2) of the collection, charging and distribution machine 102 may provide components enabling short range (e.g., via Bluetooth, near field communication (NFC), radio frequency identification (RFID) components and protocols) or longer range wireless communications (e.g., over a wireless LAN, satellite, or cellular network) with various other devices external to the collection, charging and distribution machine 102, including the locking mechanism controller 306. The communications subsystem 206 of the collection, charging and distribution machine 102 may include one or more ports, wireless receivers, wireless transmitters or wireless transceivers to provide wireless signal paths to the locking mechanism controller 306. The communications subsystem 206 of the collection, charging and distribution machine 102 may also or instead include one or more bridges or routers suitable to handle network traffic including switched packet type communications protocols (TCP/IP), Ethernet or other networking protocols.

The portable electrical energy storage device 106z may be lent, leased, and/or rented out to the public. Since the portable electrical energy storage device 106z is typically a relatively expensive component, it is desirable to control how and in what circumstances the portable electrical energy storage device 106z may be removed from being operably connected or attached to the scooter or motorbike 108 for which it provides power. This control of the physical security of the portable electrical energy storage device 106z helps to prevent theft and/or misuse of the portable electrical energy storage device 106z. For example, the portable electrical energy storage device 106z may be operably connected to and physically locked or otherwise physically secured in the scooter or motorbike 108 until the locking mechanism controller 306 detects a wireless signal including authentication information from an external device such as the collection, charging and distribution machine 102 or a device at a service center 306 with one or more wireless communications subsystems such as that described above of the collection, charging and distribution machine 102. Other such external devices (not shown) with one or more wireless communications subsystems such as that described above of the collection, charging and distribution machine 102 may include, but are not limited to: card keys, access cards, credit cards, access control key fobs, mobile computing devices, cellular telephones, personal digital assistants (PDAs), smart phones, battery chargers, other access control devices, etc.

The collection, charging and distribution machine 102 may periodically, constantly or aperiodically emit a wireless signal 126 for a locking mechanism controller 306 listening for such a signal to receive and authenticate the collection, charging and distribution machine 102 in order to trigger the portable electrical energy storage device locking mechanism 320 to unlock, enabling the portable electrical energy storage device 106z to be removed from the scooter or motorbike 108. Also or instead, the locking mechanism controller 306 may periodically or constantly emit a wireless signal 126 to which a collection, charging and distribution machine 102 listening for such a signal will respond with a wireless signal for the locking mechanism controller 306 to receive and authenticate the collection, charging and distribution machine 102 in order to trigger the portable electrical energy storage device locking mechanism 320 to unlock, enabling the portable electrical energy storage device 106z to be removed from the scooter or motorbike 108.

In some embodiments, the wireless signal received from the collection, charging and distribution machine 102 may include a code that may be authenticated by the locking mechanism controller 306 in order to ensure the signal is being received from an authorized device. For example, the code may be time-sensitive code such as a “hopping” code or a “rolling” code to provide such security. In the case of a 40-bit rolling code, forty bits provide 240 (about 1 trillion) possible codes. However, codes of other bit lengths may be used instead. The collection, charging and distribution machine 102 memory (e.g., ROM 212) may hold the current 40-bit code. The collection, charging and distribution machine 102 then sends that 40-bit code to the locking mechanism controller 306 for the locking mechanism controller 306 to unlock the portable electrical energy storage device locking mechanism 320. The locking mechanism controller 306 also holds the current 40-bit code. If the locking mechanism controller 306 receives the 40-bit code it expects, then it unlocks the portable electrical energy storage device locking mechanism 320. If the locking mechanism controller 306 does not receive the 40-bit code it expects, the locking mechanism controller 306 does nothing. In some embodiments, the locking mechanism controller 306 will lock the portable electrical energy storage device locking mechanism 320 if the portable electrical energy storage device locking mechanism 320 is in an unlocked state and the locking mechanism controller 306 does not receive the 40-bit code it expects, or is not able to receive any signal over a determined period of time.

Both the collection, charging and distribution machine 102 and the locking mechanism controller 306 use the same pseudo-random number generator (e.g., implemented by the respective processors of the collection, charging and distribution machine 102 and the locking mechanism controller 306) to generate the 40-bit code. The collection, charging and distribution machine 102 may have different pseudo-random number generators to match the pseudo-random number generator of each locking mechanism controller 306 of each scooter or motorbike 108 or of each of the portable electrical energy storage devices 106. When the locking mechanism controller 306 receives a valid code form the collection, charging and distribution machine 102, it uses the same pseudo-random number generator to generate the next code relative to the valid code received and communicates wirelessly with the collection, charging and distribution machine 102 to instruct it to also generate the next code using the same pseudo-random number generator, which the collection, charging and distribution machine 102 stores for the next use. In this way, the collection, charging and distribution machine 102 and the locking mechanism controller 306 are synchronized. The locking mechanism controller 306 only unlocks the portable electrical energy storage device locking mechanism 320 if it receives the code it expects.

Also, the current 40-bit code or other time-sensitive rolling code may be generated and communicated to one or more other collection, charging and distribution machines within a network of collection, charging and distribution machines (e.g., via the network 122 shown in FIG. 1) so that any collection, charging and distribution machine 102 may communicate the correct current code to the locking mechanism controller 306 when the scooter or motorbike having the locking mechanism controller 306 or the portable electrical energy storage device 106z having the locking mechanism controller 306 comes within wireless signal range of the other collection, charging and distribution machines. In some embodiments, the locking mechanism controller 306 may accept any of the next 256 possible valid codes in the pseudo-random number sequence. This way, if the locking mechanism controller 306 and the collection, charging and distribution machine 102 for some reason become unsynchronized by 256 rolling codes or less, the locking mechanism controller 306 would still accept the transmission from the collection, charging and distribution machine 102, unlock the portable electrical energy storage device locking mechanism 320 and generate the next code relative to the valid code received.

In other embodiments, the hopping, rolling or time-sensitive code may be a universal code communicated by the back end or back office system 120 to the collection, charging and distribution machine 102 and communicated wirelessly to the locking mechanism controller 306. For example, this may occur over a WAN, LAN and/or when the locking mechanism controller 306 comes within wireless communications range of the collection, charging and distribution machine 102 such as when the scooter or motorbike 108 visits the collection, charging and distribution machine 102.

In some embodiments, the locking mechanism controller 306 and the collection, charging and distribution machine store a common secret key or code and use a common secret algorithm for authentication of the collection, charging and distribution machine. The common secret algorithm, for example, can be a hash function or other algorithm which takes the secret key and at least one other key or code as input and generates different output based on the secret key and different input. The common secret algorithm may be executed by respective processors of the locking mechanism controller 306 and the collection, charging and distribution machine using stored instructions on respective computer readable media of the locking mechanism controller 306 and the collection, charging and distribution machine or on respective configured hardware or firmware components of the of locking mechanism controller 306 and collection, charging and distribution machine. The common secret algorithm and common secret key or code may be initially encoded, programmed or installed in the locking mechanism controller 306 and collection, charging and distribution machine in a secure fashion such that they are irretrievable or otherwise protected from being discovered. The common secret algorithm and common secret key or code are not communicated between the locking mechanism controller 306 and collection, charging and distribution machine during the authentication process.

In response to receiving an authentication beacon or request from the collection, charging and distribution machine via the wireless signal 126 (which may have been sent in response to a wireless signal or beacon received from the locking mechanism controller 306), the locking mechanism controller 306 generates a challenge key and sends this challenge key to the collection, charging and distribution machine. In response to receiving the challenge key, the collection, charging and distribution machine uses the secret algorithm and the common secret key to generate a response value and sends this response value to the locking mechanism controller 306. The locking mechanism controller 306 then verifies the response value by using the generated challenge key and secret key as input to the secret algorithm to generate an output value from the secret algorithm. The locking mechanism controller 306 then compares this output value from the secret algorithm to the response value received from the collection, charging and distribution machine. If the output from the secret algorithm generated by the locking mechanism controller 306 and the response value received from the collection, charging and distribution machine match, then the collection, charging and distribution machine is authenticated and the locking mechanism controller 306 may then take actions accordingly, such as sending a control signal to the locking mechanism 320 to unlock. If the output from the secret algorithm generated by the locking mechanism controller 306 and the response value received from the collection, charging and distribution machine do not match, then the collection, charging and distribution machine is not authenticated and the locking mechanism controller 306 may then take no action, or take other actions accordingly, such as sending a control signal to the locking mechanism 320 to lock if not already locked. In some embodiments any authentication process involving using any combination of a public key and or public algorithm may be used.

Once the locking mechanism controller 306 can no longer receive the wireless signal 126 from the collection, charging and distribution machine 102 (e.g., after the scooter or motorbike has already exchanged the portable electrical energy storage device 106z at the collection, charging and distribution machine 102 and is no longer within range of the collection, charging and distribution machine 102 wireless signal 126), the locking mechanism controller 306 will send a signal to cause the portable electrical energy storage device locking mechanism 320 to lock to prevent the portable electrical energy storage device 106z from being able to be removed from being operably connected to the scooter or motorbike 108. Also, as described above, if the signal received from the collection, charging and distribution machine 102 or other device contains an invalid code, if not already locked, the locking mechanism controller 306 will send a signal to cause the portable electrical energy storage device locking mechanism 320 to lock to prevent the portable electrical energy storage device 106z from being able to be removed from being operably connected to the scooter or motorbike. In some instances, where the locking mechanism controller 306 is not part of the portable electrical energy storage device 106z, the locking mechanism controller 306 must detect the presence of the portable electrical energy storage device 106z in the scooter or motorbike 108 before sending a signal to cause the portable electrical energy storage device locking mechanism 320 to lock.

In some embodiments, the wireless portion of the authentication is strongly phased. Nearby, the system challenges some or all portable electrical energy storage device collection, charging and distribution machines that would wirelessly tell the vehicle to disengage the portable electrical energy storage device in order to swap the portable electrical energy storage device. Also, the portable electrical energy storage device collection, charging and distribution machine/service center may be mobile. For example, a service vehicle may come to a broken down/out of charge vehicle on the side of the road and the portable electrical energy storage device can only release when the authenticated service vehicle is nearby. “Nearby”, may be any range of distance selected by the system within range of short range wireless signal. A very short close distance may also be used, for example, as in some embodiments, the system may use technology such as near field communications (NFC) or other near field or very short range technologies.

FIG. 4 is a schematic view of the locking mechanism controller of FIG. 3, according to one non-limiting illustrated embodiment.

The locking mechanism controller 306 includes a controller 410, a communications subsystem 406, and a power interface 420.

The controller 410, for example, is a microprocessor, microcontroller, programmable logic controller (PLC), programmable gate array (PGA), application specific integrated circuit (ASIC) or another controller capable of receiving signals from various sensors, performing logical operations, and sending signals to various components. Typically, the controller 410 may take the form of a microprocessor (e.g., INTEL, AMD, ATOM). The locking mechanism controller 306 may also include one or more non-transitory processor- or computer-readable storage media, for example read only memory (ROM) 412, random access memory (RAM) 414, and other storage 416 (e.g., solid-state storage media such as flash memory or EEPROM, or spinning storage media such as hard disk). The non-transitory processor- or computer-readable storage media 412, 414, 416 may be in addition to any non-transitory storage medium (e.g., registers) which is part of the controller 410. The locking mechanism controller 306 may include one or more buses 418 (only one illustrated) coupling various components together, for example one or more power buses, instruction buses, data buses, etc.

As illustrated, the ROM 412, or some other one of the non-transitory processor- or computer-readable storage media 412, 414, 416, stores instructions and/or data or values for variables or parameters. The sets of data may take a variety of forms, for example a lookup table, a set of records in a database, etc. The instructions and sets of data or values are executable by the controller 410. Execution of the instructions and sets of data or values causes the controller 410 to perform specific acts to compare a code received from an external device and cause the locking mechanism controller 306 to generate control signals to lock or unlock the portable electrical energy storage device locking mechanism 320 based on the comparison. Also, such acts may include, for example, operations implementing a pseudo-random number to generate a rolling code as described above. Specific operation of the locking mechanism controller 306 is described herein and also below with reference to various flow diagrams (FIGS. 7-9).

The controller 410 may use RAM 414 in a conventional fashion, for volatile storage of instructions, data, etc. The controller 410 may use data store 416 to log or retain information, for example, information regarding user profile information, vehicle profile information, security codes, credentials, security certificates, passwords, vehicle information, etc. The instructions are executable by the controller 410 to control operation of the locking mechanism controller 306 in response to input from remote systems such as those of external devices including but not limited to: charging devices, vehicles, user identification devices (cards, electronic keys, etc.) vehicles, collection, charging and distribution machines, collection, charging and distribution machine service systems, service centers, user mobile devices, user vehicles, and end user or operator input.

The controller 410 may also receive signals from various sensors and/or components of an external device via the communications subsystem 406 of the locking mechanism controller 306. This information may include information that characterizes or is indicative of the authenticity, authorization level, operation, status, or condition of such components and/or external devices.

The communications subsystem 406 may include one or more communications modules or components which facilitate communications with the various components of the collection, charging and distribution machine 102 of FIG. 1 (e.g., such as to receive a security code) and/or of other external devices and also, such that data may be exchanged between the locking mechanism controller 306 and the external devices for authentication purposes. The communications subsystem 406 may provide wired and/or wireless communications. The communications subsystem 406 may include one or more ports, wireless receivers, wireless transmitters or wireless transceivers to provide wireless signal paths to the various remote components or systems. The communications subsystem 406 may, for example, include components enabling short range (e.g., via Bluetooth, near field communication (NFC), radio frequency identification (RFID) components and protocols) or longer range wireless communications (e.g., over a wireless LAN, satellite, or cellular network) and may include one or more modems or one or more Ethernet or other types of communications cards or components for doing so. The remote communications subsystem 406 may include one or more bridges or routers suitable to handle network traffic including switched packet type communications protocols (TCP/IP), Ethernet or other networking protocols.

In some embodiments, some or all of the components of the locking mechanism controller 306 may be located outside of the portable electrical energy storage device 106z as a separate device that actuates one or more actuators 502 (shown in FIG. 6 and FIG. 7) of the portable electric al energy storage device 106z (e.g., by a wireless control signal) sent via the communications subsystem 406.

The power interface 420 is controllable by the controller 410 and is configured to receive power from the portable electrical energy storage device 106z via connection 314a to provide power to the locking mechanism controller 306 and also to the portable electrical energy storage device locking mechanism 320 (via connection 314b). Also, the power interface 420 is controllable by the controller 410 and is configured to receive power from an auxiliary source other than the portable electrical energy storage device 106z via connection 314c to provide power to the portable electrical energy storage device locking mechanism 320 and/or the locking mechanism controller 306 should the portable electrical energy storage device 106z be not able to provide enough power to operate the portable electrical energy storage device locking mechanism 320 and/or the locking mechanism controller 306. The power interface 420 includes various components operable for performing the above functions such as electrical transformers, converters, rectifiers, etc.

FIG. 5 shows a cross-sectional elevation view of the portable electrical energy storage device 106z of FIG. 1 and FIG. 3 coupled to the portable electrical energy storage device physical security system of FIG. 3 and locked in an operable position within the scooter 108 of FIG. 1 and FIG. 3, according to one non-limiting illustrated embodiment.

Shown is a portable electrical energy storage device holder 510, a part of a vehicle 508, a portable electrical energy storage device housing 302, electrical terminals 110a, 110b, a battery cell 304, a locking mechanism controller 306, a portable electrical energy storage device locking mechanism 320 and an auxiliary power source 516. The battery cell 304 may be any rechargeable type of electrochemical cell that converts stored chemical energy into electrical energy. Also, the battery cell 304 may comprise any type of rechargeable ultracapacitor array or fuel cell array. As described above, the electrical terminals 110a, 110b are accessible from an exterior of the portable electrical energy storage device 106z. The electrical terminals 110 allow charge to be delivered from the portable electrical energy storage device 106z, as well as allow charge to be delivered to the portable electrical energy storage device 106z for charging or recharging the same through conductive terminal connections 312a and 312b to the battery cell 304. While illustrated in FIG. 3 as posts, the electrical terminals 110a and 110b may take any other form which is accessible from an exterior of the portable electrical energy storage device 106z, including electrical terminals positioned within slots in the battery housing 302.

The portable electrical energy storage device locking mechanism 320 is located outside the portable electrical energy storage device housing 302 and fixedly attached to a vehicle part 508 (e.g., a vehicle frame or chassis) that is attached to a holder 510 in which the portable electrical energy storage device 106z is placed. The holder 510 has a top opening 512 through which the portable electrical energy storage device 106z may be placed into the holder 510 and removed from the holder 510. Once the portable electrical energy storage device 106z is placed in the holder 510, the holder 510 surrounds the portable electrical energy storage device 106z except at the top opening 512. The portable electrical energy storage device locking mechanism 320 has a slidable bolt 506 which partially covers the opening 512 (as shown in FIG. 5) in a locked state to block passage of the portable electrical energy storage device 106z through the opening 512 and thus prevent the portable electrical energy storage device 106z from being able to be removed from the holder 510. The slidable bolt 506 is slidable on a bolt track or through bolt housing 504 fixedly attached to the vehicle part 508. When the portable electrical energy storage device locking mechanism 320 is in an unlocked state, the slidable bolt 506 is retracted (not shown) into the bolt housing 504 to not cover the opening 512 and thus allow passage of the portable electrical energy storage device 106z through the opening 512 of the holder 510 for the portable electrical energy storage device 106z to be removed.

The portable electrical energy storage device locking mechanism 320 is coupled to the locking mechanism controller 306 via a control line 308 and power line 314b. For example, one or more engine control signals received from the locking mechanism controller 306 via control line 308 may affect the operation of one or more actuators 502 (only one illustrated) to cause the slidable bolt 506 to move. For instance, a control signal may cause movement of an actuator 502 between a first and a second position or change a magnetic field produced by the actuator 502. The actuator 502 may take any of a variety of forms, including but not limited to a solenoid, an electric motor such as a stepper motor, or an electromagnet. The actuator 502 may alternatively be coupled to operate a different latch, lock or other type of retainer mechanism for the portable electrical energy storage device 106z.

The locking mechanism controller 306 is configured to receive power from the portable electrical energy storage device 106z via connection 314a to provide power to the locking mechanism controller 306 and also to the portable electrical energy storage device locking mechanism 320 (via connection 314b).

Also, the locking mechanism controller 306 is optionally configured to receive power from an auxiliary source 516 other than the portable electrical energy storage device 106z via connection 314c to provide power to the portable electrical energy storage device locking mechanism 320 and/or the locking mechanism controller 306 should the portable electrical energy storage device 106z be not able to provide enough power to operate the portable electrical energy storage device locking mechanism 320 and/or the locking mechanism controller 306.

The housing 302 may provide a protection to prevent or deter tampering, and may be formed of suitably strong and resilient materials (e.g., ABS plastic). Such may not only prevent or deter tampering, but may leave a visible indication of any tampering attempts. For example, the housing 302 may include a strong outer layer of a first color (e.g., black) within an inner layer of a second color (e.g., fluorescent orange) therebeneath. Such will render attempts to cut through the housing 302 visibly apparent.

It is also noted that the housing 302 may serve as a frangible substrate, or a frangible substrate may be secured to an inner portion of the housing 302, for instance, via suitable adhesives. Thus, tampering with the housing may break or damage a circuit connection, rendering the portable electrical energy storage device 106z inoperable.

FIG. 6 shows a cross-sectional elevation view of an alternative embodiment the portable electrical energy storage device 106z of FIG. 1 and FIG. 3 in which the portable electrical energy storage device physical security system of FIG. 3 is integrated with and part of the portable electrical energy storage device 106z of FIG. 1 and FIG. 3, according to one non-limiting illustrated alternative embodiment.

Shown is a portable electrical energy storage device holder 510, a portable electrical energy storage device housing 302, electrical terminals 110a, 110b, a battery cell 304, a locking mechanism controller 306, a portable electrical energy storage device locking mechanism 320 and an access panel 518 to plug in an auxiliary power source. The battery cell 304 is any rechargeable type of electrochemical cell that converts stored chemical energy into electrical energy. As described above, the electrical terminals 110a, 110b are accessible from an exterior of the portable electrical energy storage device 106z.

The portable electrical energy storage device locking mechanism 320 is located inside the portable electrical energy storage device housing 302 and fixedly attached to the interior of the portable electrical energy storage device housing 302. The holder 510 has a top opening 512 through which the portable electrical energy storage device 106z may be placed into the holder 510 and removed from the holder 510. Once the portable electrical energy storage device 106z is placed in the holder 510, the holder 510 surrounds the portable electrical energy storage device 106z except at the top opening 512. The portable electrical energy storage device locking mechanism 320 has a slidable bolt 506 which is configured to slide on a bolt track or through bolt housing 504 fixedly attached to an interior wall of the portable electrical energy storage device housing 502. The slidable bolt 506 is configured to slide through an opening 520 in the side of the housing 302 and into an opening 520 in the side wall of the holder 510 aligned with the opening in the side of the housing 302 to block passage of the portable electrical energy storage device 106z through the top opening 512 of the holder 510, and thus prevent the portable electrical energy storage device 106z from being able to be removed from the holder 510 (as shown in FIG. 6). When the portable electrical energy storage device locking mechanism 320 is in an unlocked state, the slidable bolt 506 is retracted (not shown) back into the bolt housing 504 inside the portable electrical energy storage device 106z, and thus allows passage of the portable electrical energy storage device 106z through the top opening 512 of the holder 510 for the portable electrical energy storage device 106z to be removed.

The portable electrical energy storage device locking mechanism 320 is coupled to the locking mechanism controller 306 via a control line 308 and power line 314b. For example, one or more engine control signals received from the locking mechanism controller 306 via control line 308 may affect the operation of one or more actuators 502 (only one illustrated) to cause the slidable bolt 506 to move. For instance, a control signal may cause movement of an actuator 502 between a first and a second position or change a magnetic field produced by the actuator 502. The actuator 502 may take any of a variety of forms, including but not limited to a solenoid, an electric motor such as a stepper motor, or an electromagnet. The actuator 502 may alternatively be coupled to operate a different latch, lock or other type of retainer mechanism for the portable electrical energy storage device 106z.

The locking mechanism controller 306 is configured to receive power from the portable electrical energy storage device 106z via connection 314a to provide power to the locking mechanism controller 306 and also to the portable electrical energy storage device locking mechanism 320 (via power line 314b). Also, the locking mechanism controller 306 is configured to receive power from an auxiliary source other than the portable electrical energy storage device 106z via line 314c. The auxiliary source may be connected to line 314b through an access panel 518 in the housing 302 to provide power to the portable electrical energy storage device locking mechanism 320 and/or the locking mechanism controller 306 should the portable electrical energy storage device 106z be not able to provide enough power to operate the portable electrical energy storage device locking mechanism 320 and/or the locking mechanism controller 306.

The housing 302 may provide protection to prevent or deter tampering, and may be formed of suitably strong and resilient materials (e.g., ABS plastic). Such may not only prevent or deter tampering, but may leave a visible indication of any tampering attempts. For example, the housing 302 may include a strong outer layer of a first color (e.g., black) within an inner layer of a second color (e.g., fluorescent orange) therebeneath. Such will render attempts to cut through the housing 302 visibly apparent.

It is also noted that the housing 302 may serve as a frangible substrate, or a frangible substrate may be secured to an inner portion of the housing 302, for instance, via suitable adhesives. Thus, tampering with the housing may break or damage a circuit connection, rendering the portable electrical energy storage device 106z inoperable.

FIG. 7 shows a high level method 700 of operating the locking mechanism controller of FIGS. 3-6, according to one non-limiting illustrated embodiment.

At 702, the portable electric storage device security system receives information regarding authentication of an external device such as the collection, charging and distribution machine 102.

At 704, the portable electrical energy storage device security system makes a determination regarding unlocking the portable electrical energy storage device locking mechanism 320 to allow the portable electrical energy storage device 106z to be removed from being operably connected to a vehicle, based on the information regarding authentication.

FIG. 8 shows a low level method 800 of operating the locking mechanism controller of FIGS. 3-6, according to one non-limiting illustrated embodiment, including accepting the portable electrical energy storage device charge, useful in the method of FIG. 7.

At 802, the portable electric storage device security system receives the information regarding authentication via a wireless signal transmitted from the collection, charging and distribution machine 102. The wireless signal received from the collection, charging and distribution machine 102 is not detectable outside a specified maximum range from a communications module of the portable electrical energy storage device security system.

FIG. 9 shows a low level method 900 of operating the portable electrical energy storage device security system controller 306 of FIGS. 3 and 4, according to one non-limiting illustrated embodiment, including determining how much energy to release, based on a vehicle performance profile of the vehicle, useful in the method of FIG. 8.

At 902, the portable electric storage device security system receives information regarding authentication of an external device such as the collection, charging and distribution machine 102.

At 904 the portable electric storage device security system determines whether the information received is authentic.

At 906, if the information received was determined to be authentic (e.g., by matching a code received), then the portable electrical energy storage device security system sends a signal from locking mechanism controller 306 in a manner to unlock the portable electrical energy storage device locking mechanism 320 in order to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle.

At 908, the portable electric storage device security system determines whether the information is able to continue to be received. For example, the information may not be able to continue to be received once the locking mechanism controller 306 can no longer receive the wireless signal from the collection, charging and distribution machine 102 (e.g., after the scooter or motorbike has already exchanged the portable electrical energy storage device 106z at the collection, charging and distribution machine 102 and is no longer within range of the collection, charging and distribution machine 102 wireless signal 126).

At 909, if the information received was determined not to be authentic or the information is not able to continue to be received by the portable electric storage device security system, and if the portable electrical energy storage device locking mechanism 320 is not already locked, the portable electrical energy storage device security system sends a signal from the locking mechanism controller 306 in a manner to lock the portable electrical energy storage device locking mechanism 320 in order to prevent the portable electrical energy storage device from being removed from being operably connected to the vehicle. If the information is able to continue to be received by the portable electric storage device security system, the method 900 repeats by proceeding again to 902 to perform the authentication of the information. The method may repeat at periodic intervals or continuously.

The various methods described herein may include additional acts, omit some acts, and/or may perform the acts in a different order than set out in the various flow diagrams.

The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, schematics, and examples. Insofar as such block diagrams, schematics, and examples contain one or more functions and/or operations, it will be understood by those skilled in the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, the present subject matter may be implemented via one or more microcontrollers. However, those skilled in the art will recognize that the embodiments disclosed herein, in whole or in part, can be equivalently implemented in standard integrated circuits (e.g., Application Specific Integrated Circuits or ASICs), as one or more computer programs executed by one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs executed by on one or more controllers (e.g., microcontrollers) as one or more programs executed by one or more processors (e.g., microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and/or firmware would be well within the skill of one of ordinary skill in the art in light of the teachings of this disclosure.

When logic is implemented as software and stored in memory, logic or information can be stored on any non-transitory computer-readable medium for use by or in connection with any processor-related system or method. In the context of this disclosure, a memory is a nontransitory computer- or processor-readable storage medium that is an electronic, magnetic, optical, or other physical device or means that non-transitorily contains or stores a computer and/or processor program. Logic and/or the information can be embodied in any computer-readable medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions associated with logic and/or information.

In the context of this specification, a “computer-readable medium” can be any physical element that can store the program associated with logic and/or information for use by or in connection with the instruction execution system, apparatus, and/or device. The computer-readable medium can be, for example, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device. More specific examples (a non-exhaustive list) of the computer readable medium would include the following: a portable computer diskette (magnetic, compact flash card, secure digital, or the like), a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM, EEPROM, or Flash memory), a portable compact disc read-only memory (CDROM), and digital tape.

The various embodiments described above can be combined to provide further embodiments. To the extent that they are not inconsistent with the specific teachings and definitions herein, all of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, including but not limited to: U.S. provisional patent application Ser. No. 61/511,900 entitled “APPARATUS, METHOD AND ARTICLE FOR COLLECTION, CHARGING AND DISTRIBUTING POWER STORAGE DEVICES, SUCH AS BATTERIES” and filed Jul. 26, 2011, U.S. provisional patent application Ser. No. 61/647,936 entitled “APPARATUS, METHOD AND ARTICLE FOR COLLECTION, CHARGING AND DISTRIBUTING POWER STORAGE DEVICES, SUCH AS BATTERIES” and filed May 16, 2012, U.S. provisional patent application Ser. No. 61/534,753 entitled “APPARATUS, METHOD AND ARTICLE FOR REDISTRIBUTING POWER STORAGE DEVICES, SUCH AS BATTERIES, BETWEEN COLLECTION, CHARGING AND DISTRIBUTION MACHINES” and filed Sep. 14, 2011, U.S. provisional patent application Ser. No. 61/534,761 entitled “APPARATUS, METHOD AND ARTICLE FOR AUTHENTICATION, SECURITY AND CONTROL OF POWER STORAGE DEVICES SUCH AS BATTERIES” and filed Sep. 14, 2011, U.S. provisional patent application Ser. No. 61/534,772 entitled “APPARATUS, METHOD AND ARTICLE FOR AUTHENTICATION, SECURITY AND CONTROL OF POWER STORAGE DEVICES, SUCH AS BATTERIES, BASED ON USER PROFILES” and filed Sep. 14, 2011, U.S. provisional patent application Ser. No. 61/511,887 entitled “THERMAL MANAGEMENT OF COMPONENTS IN ELECTRIC MOTOR DRIVE VEHICLES” and filed Jul. 26, 2011, U.S. provisional patent application Ser. No. 61/647,941 entitled “THERMAL MANAGEMENT OF COMPONENTS IN ELECTRIC MOTOR DRIVE VEHICLES” and filed May 16, 2012, U.S. provisional patent application Ser. No. 61/511,880 entitled “DYNAMICALLY LIMITING VEHICLE OPERATION FOR BEST EFFORT ECONOMY” and filed Jul. 26, 2011 provisional patent application Ser. No. 61/557,170 entitled “APPARATUS, METHOD, AND ARTICLE FOR PHYSICAL SECURITY OF POWER STORAGE DEVICES IN VEHICLES” and filed Nov. 8, 2011, U.S. provisional patent application Ser. No. 61/581,566 entitled APPARATUS, METHOD AND ARTICLE FOR A POWER STORAGE DEVICE COMPARTMENT’ and filed Dec. 29, 2011, U.S. provisional patent application Ser. No. 61/601,404 entitled “APPARATUS, METHOD AND ARTICLE FOR PROVIDING VEHICLE DIAGNOSTIC DATA” and filed Feb. 21, 2012, U.S. provisional patent application Ser. No. 61/601,949 entitled “APPARATUS, METHOD AND ARTICLE FOR PROVIDING LOCATIONS OF POWER STORAGE DEVICE COLLECTION, CHARGING AND DISTRIBUTION MACHINES” and filed Feb. 22, 2012, and U.S. provisional patent application Ser. No. 61/601,953 entitled “APPARATUS, METHOD AND ARTICLE FOR PROVIDING INFORMATION REGARDING AVAILABILITY OF POWER STORAGE DEVICES AT A POWER STORAGE DEVICE COLLECTION, CHARGING AND DISTRIBUTION MACHINE” and filed Feb. 22, 2012, U.S. application Ser. No. 13/559,314 filed on Jul. 26, 2012, naming Hok-Sum Horace Luke, Matthew Whiting Taylor and Huang-Cheng Hung as inventors and entitled “APPARATUS, METHOD AND ARTICLE FOR COLLECTION, CHARGING AND DISTRIBUTING POWER STORAGE DEVICES, SUCH AS BATTERIES”, U.S. application Ser. No. 13/559,038 filed on Jul. 26, 2012, naming Hok-Sum Horace Luke and Matthew Whiting Taylor as inventors and entitled “APPARATUS, METHOD AND ARTICLE FOR AUTHENTICATION, SECURITY AND CONTROL OF POWER STORAGE DEVICES SUCH AS BATTERIES” U.S. application Ser. No. 13/559,264 filed on Jul. 26, 2012 naming Hok-Sum Horace Luke and Matthew Whiting Taylor as inventors and entitled “DYNAMICALLY LIMITING VEHICLE OPERATION FOR BEST EFFORT ECONOMY”, U.S. application Ser. No. 13/559,390 filed on Jul. 26, 2012, naming Ching Chen, Hok-Sum Horace Luke, Matthew Whiting Taylor, Yi-Tsung Wu as inventors and entitled “APPARATUS, METHOD AND ARTICLE FOR PROVIDING VEHICLE DIAGNOSTIC DATA”, U.S. application Ser. No. 13/559,343 filed on Jul. 26, 2012, naming Yi-Tsung Wu, Matthew Whiting Taylor, Hok-Sum Horace Luke and Jung-Hsiu Chen as inventors and entitled “APPARATUS, METHOD AND ARTICLE FOR PROVIDING INFORMATION REGARDING AVAILABILITY OF POWER STORAGE DEVICES AT A POWER STORAGE DEVICE COLLECTION, CHARGING AND DISTRIBUTION MACHINE”, and U.S. application Ser. No. 13/559,064 filed on Jul. 26, 2012, naming Hok-Sum Horace Luke, Yi-Tsung Wu, Jung-Hsiu Chen, Yulin Wu, Chien Ming Huang, TsungTing Chan, Shen-Chi Chen and Feng Kai Yang as inventors and entitled “APPARATUS, METHOD AND ARTICLE FOR RESERVING POWER STORAGE DEVICES AT RESERVING POWER STORAGE DEVICE COLLECTION, CHARGING AND DISTRIBUTION MACHINES” are incorporated herein by reference, in their entirety. Aspects of the embodiments can be modified, if necessary, to employ systems, circuits and concepts of the various patents, applications and publications to provide yet further embodiments.

While generally discussed in the environment and context of collection, charging and distribution of portable electrical energy storage devices for use with personal transportation vehicle such as all-electric scooters and/or motorbikes, the teachings herein can be applied in a wide variety of other environments, including other vehicular as well as non-vehicular environments.

The above description of illustrated embodiments, including what is described in the Abstract of the Disclosure, is not intended to be exhaustive or to limit the embodiments to the precise forms disclosed. Although specific embodiments and examples are described herein for illustrative purposes, various equivalent modifications can be made without departing from the spirit and scope of the disclosure, as will be recognized by those skilled in the relevant art.

These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.

Luke, Hok-Sum Horace, Wu, Yi-Tsung, Taylor, Matthew Whiting, Hung, Huang-Cheng

Patent Priority Assignee Title
10040359, Sep 04 2014 GOGORO INC Apparatus, system, and method for vending, charging, and two-way distribution of electrical energy storage devices
10065525, Aug 06 2013 GOGORO INC Adjusting electric vehicle systems based on an electrical energy storage device thermal profile
10149682, Sep 30 2010 Cilag GmbH International Stapling system including an actuation system
10159483, Feb 27 2015 Cilag GmbH International Surgical apparatus configured to track an end-of-life parameter
10172620, Sep 30 2015 Cilag GmbH International Compressible adjuncts with bonding nodes
10180463, Feb 27 2015 Cilag GmbH International Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
10182816, Feb 27 2015 Cilag GmbH International Charging system that enables emergency resolutions for charging a battery
10182819, Sep 30 2010 Cilag GmbH International Implantable layer assemblies
10186094, Jul 26 2011 GOGORO INC. Apparatus, method and article for providing locations of power storage device collection, charging and distribution machines
10188385, Dec 18 2014 Cilag GmbH International Surgical instrument system comprising lockable systems
10201349, Aug 23 2013 Cilag GmbH International End effector detection and firing rate modulation systems for surgical instruments
10201363, Jan 31 2006 Cilag GmbH International Motor-driven surgical instrument
10201364, Mar 26 2014 Cilag GmbH International Surgical instrument comprising a rotatable shaft
10206605, Mar 06 2015 Cilag GmbH International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
10206676, Feb 14 2008 Cilag GmbH International Surgical cutting and fastening instrument
10206677, Sep 26 2014 Cilag GmbH International Surgical staple and driver arrangements for staple cartridges
10206678, Oct 03 2006 Cilag GmbH International Surgical stapling instrument with lockout features to prevent advancement of a firing assembly unless an unfired surgical staple cartridge is operably mounted in an end effector portion of the instrument
10211586, Jun 28 2017 Cilag GmbH International Surgical shaft assemblies with watertight housings
10213201, Mar 31 2015 Cilag GmbH International Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
10213262, Mar 23 2006 Cilag GmbH International Manipulatable surgical systems with selectively articulatable fastening device
10226249, Mar 01 2013 Cilag GmbH International Articulatable surgical instruments with conductive pathways for signal communication
10231794, May 27 2011 Cilag GmbH International Surgical stapling instruments with rotatable staple deployment arrangements
10238385, Feb 14 2008 Cilag GmbH International Surgical instrument system for evaluating tissue impedance
10238386, Sep 23 2015 Cilag GmbH International Surgical stapler having motor control based on an electrical parameter related to a motor current
10238387, Feb 14 2008 Cilag GmbH International Surgical instrument comprising a control system
10238391, Mar 14 2013 Cilag GmbH International Drive train control arrangements for modular surgical instruments
10245027, Dec 18 2014 Cilag GmbH International Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
10245028, Feb 27 2015 Cilag GmbH International Power adapter for a surgical instrument
10245029, Feb 09 2016 Cilag GmbH International Surgical instrument with articulating and axially translatable end effector
10245030, Feb 09 2016 Cilag GmbH International Surgical instruments with tensioning arrangements for cable driven articulation systems
10245032, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
10245033, Mar 06 2015 Cilag GmbH International Surgical instrument comprising a lockable battery housing
10245035, Aug 31 2005 Cilag GmbH International Stapling assembly configured to produce different formed staple heights
10258330, Sep 30 2010 Cilag GmbH International End effector including an implantable arrangement
10258331, Feb 12 2016 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
10258332, Sep 30 2010 Cilag GmbH International Stapling system comprising an adjunct and a flowable adhesive
10258333, Jun 28 2012 Cilag GmbH International Surgical fastening apparatus with a rotary end effector drive shaft for selective engagement with a motorized drive system
10258418, Jun 29 2017 Cilag GmbH International System for controlling articulation forces
10265067, Feb 14 2008 Cilag GmbH International Surgical instrument including a regulator and a control system
10265068, Dec 30 2015 Cilag GmbH International Surgical instruments with separable motors and motor control circuits
10265072, Sep 30 2010 Cilag GmbH International Surgical stapling system comprising an end effector including an implantable layer
10265074, Sep 30 2010 Cilag GmbH International Implantable layers for surgical stapling devices
10271845, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a cam and driver arrangement
10271846, Aug 31 2005 Cilag GmbH International Staple cartridge for use with a surgical stapler
10271849, Sep 30 2015 Cilag GmbH International Woven constructs with interlocked standing fibers
10278697, Aug 31 2005 Cilag GmbH International Staple cartridge comprising a staple driver arrangement
10278702, Jul 28 2004 Cilag GmbH International Stapling system comprising a firing bar and a lockout
10278722, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument
10285695, Mar 01 2013 Cilag GmbH International Articulatable surgical instruments with conductive pathways
10285699, Sep 30 2015 Cilag GmbH International Compressible adjunct
10292704, Dec 30 2015 Cilag GmbH International Mechanisms for compensating for battery pack failure in powered surgical instruments
10292707, Jul 28 2004 Cilag GmbH International Articulating surgical stapling instrument incorporating a firing mechanism
10293100, Jul 28 2004 Cilag GmbH International Surgical stapling instrument having a medical substance dispenser
10299787, Jun 04 2007 Cilag GmbH International Stapling system comprising rotary inputs
10299792, Apr 16 2014 Cilag GmbH International Fastener cartridge comprising non-uniform fasteners
10299817, Jan 31 2006 Cilag GmbH International Motor-driven fastening assembly
10299878, Sep 25 2015 Cilag GmbH International Implantable adjunct systems for determining adjunct skew
10307160, Sep 30 2015 Cilag GmbH International Compressible adjunct assemblies with attachment layers
10307163, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
10307170, Jun 20 2017 Cilag GmbH International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
10314589, Jun 27 2006 Cilag GmbH International Surgical instrument including a shifting assembly
10314590, Jul 28 2004 Cilag GmbH International Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
10321909, Aug 31 2005 Cilag GmbH International Staple cartridge comprising a staple including deformable members
10327764, Sep 26 2014 Cilag GmbH International Method for creating a flexible staple line
10327765, Jun 04 2007 Cilag GmbH International Drive systems for surgical instruments
10327767, Jun 20 2017 Cilag GmbH International Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
10327769, Sep 23 2015 Cilag GmbH International Surgical stapler having motor control based on a drive system component
10327777, Sep 30 2015 Cilag GmbH International Implantable layer comprising plastically deformed fibers
10335145, Apr 15 2016 Cilag GmbH International Modular surgical instrument with configurable operating mode
10335148, Sep 30 2010 Cilag GmbH International Staple cartridge including a tissue thickness compensator for a surgical stapler
10335150, Sep 30 2010 Cilag GmbH International Staple cartridge comprising an implantable layer
10335151, May 27 2011 Cilag GmbH International Robotically-driven surgical instrument
10342541, Oct 03 2006 Cilag GmbH International Surgical instruments with E-beam driver and rotary drive arrangements
10345843, Jul 26 2011 GOGORO INC. Apparatus, method and article for redistributing power storage devices, such as batteries, between collection, charging and distribution machines
10357247, Apr 15 2016 Cilag GmbH International Surgical instrument with multiple program responses during a firing motion
10363031, Sep 30 2010 Cilag GmbH International Tissue thickness compensators for surgical staplers
10363033, Jun 04 2007 Cilag GmbH International Robotically-controlled surgical instruments
10363036, Sep 23 2015 Cilag GmbH International Surgical stapler having force-based motor control
10363037, Apr 18 2016 Cilag GmbH International Surgical instrument system comprising a magnetic lockout
10368863, Jun 04 2007 Cilag GmbH International Robotically-controlled shaft based rotary drive systems for surgical instruments
10368864, Jun 20 2017 Cilag GmbH International Systems and methods for controlling displaying motor velocity for a surgical instrument
10368865, Dec 30 2015 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
10368867, Apr 18 2016 Cilag GmbH International Surgical instrument comprising a lockout
10376263, Apr 01 2016 Cilag GmbH International Anvil modification members for surgical staplers
10383630, Jun 28 2012 Cilag GmbH International Surgical stapling device with rotary driven firing member
10383633, May 27 2011 Cilag GmbH International Robotically-driven surgical assembly
10383634, Jul 28 2004 Cilag GmbH International Stapling system incorporating a firing lockout
10390823, Feb 15 2008 Cilag GmbH International End effector comprising an adjunct
10390841, Jun 20 2017 Cilag GmbH International Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
10398433, Mar 28 2007 Cilag GmbH International Laparoscopic clamp load measuring devices
10398434, Jun 29 2017 Cilag GmbH International Closed loop velocity control of closure member for robotic surgical instrument
10398436, Sep 30 2010 Cilag GmbH International Staple cartridge comprising staples positioned within a compressible portion thereof
10405857, Apr 16 2013 Cilag GmbH International Powered linear surgical stapler
10405859, Apr 15 2016 Cilag GmbH International Surgical instrument with adjustable stop/start control during a firing motion
10413291, Feb 09 2016 Cilag GmbH International Surgical instrument articulation mechanism with slotted secondary constraint
10413294, Jun 28 2012 Cilag GmbH International Shaft assembly arrangements for surgical instruments
10420549, Sep 23 2008 Cilag GmbH International Motorized surgical instrument
10420550, Feb 06 2009 Cilag GmbH International Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
10420553, Aug 31 2005 Cilag GmbH International Staple cartridge comprising a staple driver arrangement
10420555, Jun 28 2012 Cilag GmbH International Hand held rotary powered surgical instruments with end effectors that are articulatable about multiple axes
10420560, Jun 27 2006 Cilag GmbH International Manually driven surgical cutting and fastening instrument
10420561, May 27 2011 Cilag GmbH International Robotically-driven surgical instrument
10421462, Jun 05 2015 GOGORO INC. Systems and methods for vehicle load detection and response
10426463, Jan 31 2006 Cilag GmbH International Surgical instrument having a feedback system
10426467, Apr 15 2016 Cilag GmbH International Surgical instrument with detection sensors
10426469, Apr 18 2016 Cilag GmbH International Surgical instrument comprising a primary firing lockout and a secondary firing lockout
10426471, Dec 21 2016 Cilag GmbH International Surgical instrument with multiple failure response modes
10426476, Sep 26 2014 Cilag GmbH International Circular fastener cartridges for applying radially expandable fastener lines
10426477, Sep 26 2014 Cilag GmbH International Staple cartridge assembly including a ramp
10426478, May 27 2011 Cilag GmbH International Surgical stapling systems
10426481, Feb 24 2014 Cilag GmbH International Implantable layer assemblies
10433837, Feb 09 2016 Cilag GmbH International Surgical instruments with multiple link articulation arrangements
10433840, Apr 18 2016 Cilag GmbH International Surgical instrument comprising a replaceable cartridge jaw
10433844, Mar 31 2015 Cilag GmbH International Surgical instrument with selectively disengageable threaded drive systems
10433846, Sep 30 2015 Cilag GmbH International Compressible adjunct with crossing spacer fibers
10433918, Jan 10 2007 Cilag GmbH International Surgical instrument system configured to evaluate the load applied to a firing member at the initiation of a firing stroke
10441279, Mar 06 2015 Cilag GmbH International Multiple level thresholds to modify operation of powered surgical instruments
10441281, Aug 23 2013 Cilag GmbH International surgical instrument including securing and aligning features
10448948, Feb 12 2016 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
10448950, Dec 21 2016 Cilag GmbH International Surgical staplers with independently actuatable closing and firing systems
10448952, Sep 29 2006 Cilag GmbH International End effector for use with a surgical fastening instrument
10456133, Sep 23 2008 Cilag GmbH International Motorized surgical instrument
10456137, Apr 15 2016 Cilag GmbH International Staple formation detection mechanisms
10463369, Aug 31 2005 Cilag GmbH International Disposable end effector for use with a surgical instrument
10463370, Feb 14 2008 Ethicon LLC Motorized surgical instrument
10463372, Sep 30 2010 Cilag GmbH International Staple cartridge comprising multiple regions
10463383, Jan 31 2006 Cilag GmbH International Stapling instrument including a sensing system
10463384, Jan 31 2006 Cilag GmbH International Stapling assembly
10467827, Nov 08 2013 GOGORO INC. Apparatus, method and article for providing vehicle event data
10470762, Mar 14 2013 Cilag GmbH International Multi-function motor for a surgical instrument
10470763, Feb 14 2008 Cilag GmbH International Surgical cutting and fastening instrument including a sensing system
10470764, Feb 09 2016 Cilag GmbH International Surgical instruments with closure stroke reduction arrangements
10478181, Apr 18 2016 Cilag GmbH International Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
10478188, Sep 30 2015 Cilag GmbH International Implantable layer comprising a constricted configuration
10485536, Sep 30 2010 Cilag GmbH International Tissue stapler having an anti-microbial agent
10485537, Sep 23 2008 Cilag GmbH International Motorized surgical instrument
10485539, Jan 31 2006 Cilag GmbH International Surgical instrument with firing lockout
10485541, Jun 28 2012 Cilag GmbH International Robotically powered surgical device with manually-actuatable reversing system
10485543, Dec 21 2016 Cilag GmbH International Anvil having a knife slot width
10485546, May 27 2011 Cilag GmbH International Robotically-driven surgical assembly
10485547, Jul 28 2004 Cilag GmbH International Surgical staple cartridges
10492783, Apr 15 2016 Cilag GmbH International Surgical instrument with improved stop/start control during a firing motion
10492785, Dec 21 2016 Cilag GmbH International Shaft assembly comprising a lockout
10499914, Dec 21 2016 Cilag GmbH International Staple forming pocket arrangements
10517590, Jan 10 2007 Cilag GmbH International Powered surgical instrument having a transmission system
10517594, Oct 29 2014 Cilag GmbH International Cartridge assemblies for surgical staplers
10517595, Dec 21 2016 Cilag GmbH International Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
10517596, Dec 21 2016 Cilag GmbH International Articulatable surgical instruments with articulation stroke amplification features
10517682, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and remote sensor
10524787, Mar 06 2015 Cilag GmbH International Powered surgical instrument with parameter-based firing rate
10524788, Sep 30 2015 Cilag GmbH International Compressible adjunct with attachment regions
10524789, Dec 21 2016 Cilag GmbH International Laterally actuatable articulation lock arrangements for locking an end effector of a surgical instrument in an articulated configuration
10524790, May 27 2011 Cilag GmbH International Robotically-controlled surgical stapling devices that produce formed staples having different lengths
10531887, Mar 06 2015 Cilag GmbH International Powered surgical instrument including speed display
10537325, Dec 21 2016 Cilag GmbH International Staple forming pocket arrangement to accommodate different types of staples
10542974, Feb 14 2008 Cilag GmbH International Surgical instrument including a control system
10542982, Dec 21 2016 Cilag GmbH International Shaft assembly comprising first and second articulation lockouts
10542988, Apr 16 2014 Cilag GmbH International End effector comprising an anvil including projections extending therefrom
10548504, Mar 06 2015 Cilag GmbH International Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
10548600, Sep 30 2010 Cilag GmbH International Multiple thickness implantable layers for surgical stapling devices
10561420, Sep 30 2015 Cilag GmbH International Tubular absorbable constructs
10561422, Apr 16 2014 Cilag GmbH International Fastener cartridge comprising deployable tissue engaging members
10568624, Dec 21 2016 Cilag GmbH International Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
10568625, Dec 21 2016 Cilag GmbH International Staple cartridges and arrangements of staples and staple cavities therein
10568626, Dec 21 2016 Cilag GmbH International Surgical instruments with jaw opening features for increasing a jaw opening distance
10568629, Jul 28 2004 Cilag GmbH International Articulating surgical stapling instrument
10568652, Sep 29 2006 Cilag GmbH International Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
10575868, Mar 01 2013 Cilag GmbH International Surgical instrument with coupler assembly
10582928, Dec 21 2016 Cilag GmbH International Articulation lock arrangements for locking an end effector in an articulated position in response to actuation of a jaw closure system
10588623, Sep 30 2010 Cilag GmbH International Adhesive film laminate
10588625, Feb 09 2016 Cilag GmbH International Articulatable surgical instruments with off-axis firing beam arrangements
10588626, Mar 26 2014 Cilag GmbH International Surgical instrument displaying subsequent step of use
10588630, Dec 21 2016 Cilag GmbH International Surgical tool assemblies with closure stroke reduction features
10588631, Dec 21 2016 Cilag GmbH International Surgical instruments with positive jaw opening features
10588632, Dec 21 2016 Cilag GmbH International Surgical end effectors and firing members thereof
10588633, Jun 28 2017 Cilag GmbH International Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing
10595862, Sep 29 2006 Cilag GmbH International Staple cartridge including a compressible member
10595882, Jun 20 2017 Cilag GmbH International Methods for closed loop control of motor velocity of a surgical stapling and cutting instrument
10603036, Dec 21 2016 Cilag GmbH International Articulatable surgical instrument with independent pivotable linkage distal of an articulation lock
10603039, Sep 30 2015 Cilag GmbH International Progressively releasable implantable adjunct for use with a surgical stapling instrument
10607000, Dec 30 2011 BEDROCK AUTOMATION PLATFORMS INC Image capture devices for a secure industrial control system
10610224, Dec 21 2016 Cilag GmbH International Lockout arrangements for surgical end effectors and replaceable tool assemblies
10613567, Aug 06 2013 Analog Devices, Inc Secure power supply for an industrial control system
10617412, Mar 06 2015 Cilag GmbH International System for detecting the mis-insertion of a staple cartridge into a surgical stapler
10617413, Apr 01 2016 Cilag GmbH International Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
10617414, Dec 21 2016 Cilag GmbH International Closure member arrangements for surgical instruments
10617416, Mar 14 2013 Cilag GmbH International Control systems for surgical instruments
10617417, Nov 06 2014 Cilag GmbH International Staple cartridge comprising a releasable adjunct material
10617418, Aug 17 2015 Cilag GmbH International Implantable layers for a surgical instrument
10617420, May 27 2011 Cilag GmbH International Surgical system comprising drive systems
10624633, Jun 20 2017 Cilag GmbH International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
10624635, Dec 21 2016 Cilag GmbH International Firing members with non-parallel jaw engagement features for surgical end effectors
10624861, Sep 30 2010 Cilag GmbH International Tissue thickness compensator configured to redistribute compressive forces
10628361, Dec 30 2011 Analog Devices, Inc Switch fabric having a serial communications interface and a parallel communications interface
10631859, Jun 27 2017 Cilag GmbH International Articulation systems for surgical instruments
10639034, Dec 21 2016 Cilag GmbH International Surgical instruments with lockout arrangements for preventing firing system actuation unless an unspent staple cartridge is present
10639035, Dec 21 2016 Cilag GmbH International Surgical stapling instruments and replaceable tool assemblies thereof
10639036, Feb 14 2008 Cilag GmbH International Robotically-controlled motorized surgical cutting and fastening instrument
10639037, Jun 28 2017 Cilag GmbH International Surgical instrument with axially movable closure member
10639115, Jun 28 2012 Cilag GmbH International Surgical end effectors having angled tissue-contacting surfaces
10646220, Jun 20 2017 Cilag GmbH International Systems and methods for controlling displacement member velocity for a surgical instrument
10653413, Feb 09 2016 Cilag GmbH International Surgical instruments with an end effector that is highly articulatable relative to an elongate shaft assembly
10653417, Jan 31 2006 Cilag GmbH International Surgical instrument
10653435, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
10660640, Feb 14 2008 Cilag GmbH International Motorized surgical cutting and fastening instrument
10667808, Mar 28 2012 Cilag GmbH International Staple cartridge comprising an absorbable adjunct
10667809, Dec 21 2016 Cilag GmbH International Staple cartridge and staple cartridge channel comprising windows defined therein
10667810, Dec 21 2016 Cilag GmbH International Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems
10667811, Dec 21 2016 Cilag GmbH International Surgical stapling instruments and staple-forming anvils
10672218, Jun 20 2017 Personal electronic charging station
10675025, Dec 21 2016 Cilag GmbH International Shaft assembly comprising separately actuatable and retractable systems
10675026, Dec 21 2016 Cilag GmbH International Methods of stapling tissue
10675028, Jan 31 2006 Cilag GmbH International Powered surgical instruments with firing system lockout arrangements
10682134, Dec 21 2017 Cilag GmbH International Continuous use self-propelled stapling instrument
10682138, Dec 21 2016 Cilag GmbH International Bilaterally asymmetric staple forming pocket pairs
10682141, Feb 14 2008 Cilag GmbH International Surgical device including a control system
10682142, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus including an articulation system
10687806, Mar 06 2015 Cilag GmbH International Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
10687809, Dec 21 2016 Cilag GmbH International Surgical staple cartridge with movable camming member configured to disengage firing member lockout features
10687813, Dec 15 2017 Cilag GmbH International Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
10687817, Jul 28 2004 Cilag GmbH International Stapling device comprising a firing member lockout
10695055, Dec 21 2016 Cilag GmbH International Firing assembly comprising a lockout
10695057, Jun 28 2017 Cilag GmbH International Surgical instrument lockout arrangement
10695058, Dec 18 2014 Cilag GmbH International Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
10695062, Oct 01 2010 Cilag GmbH International Surgical instrument including a retractable firing member
10695063, Feb 13 2012 Cilag GmbH International Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
10702266, Apr 16 2013 Cilag GmbH International Surgical instrument system
10702267, Jun 29 2007 Cilag GmbH International Surgical stapling instrument having a releasable buttress material
10709468, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument
10716563, Jul 28 2004 Cilag GmbH International Stapling system comprising an instrument assembly including a lockout
10716565, Dec 19 2017 Cilag GmbH International Surgical instruments with dual articulation drivers
10716568, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus with control features operable with one hand
10716614, Jun 28 2017 Cilag GmbH International Surgical shaft assemblies with slip ring assemblies with increased contact pressure
10722232, Feb 14 2008 Cilag GmbH International Surgical instrument for use with different cartridges
10729432, Mar 06 2015 Cilag GmbH International Methods for operating a powered surgical instrument
10729436, Aug 31 2005 Cilag GmbH International Robotically-controlled surgical stapling devices that produce formed staples having different lengths
10729501, Sep 29 2017 Cilag GmbH International Systems and methods for language selection of a surgical instrument
10729509, Dec 19 2017 Cilag GmbH International Surgical instrument comprising closure and firing locking mechanism
10736628, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
10736629, Dec 21 2016 Cilag GmbH International Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems
10736630, Oct 13 2014 Cilag GmbH International Staple cartridge
10736633, Sep 30 2015 Cilag GmbH International Compressible adjunct with looping members
10736634, May 27 2011 Cilag GmbH International Robotically-driven surgical instrument including a drive system
10736636, Dec 10 2014 Cilag GmbH International Articulatable surgical instrument system
10743849, Jan 31 2006 Cilag GmbH International Stapling system including an articulation system
10743851, Feb 14 2008 Cilag GmbH International Interchangeable tools for surgical instruments
10743868, Dec 21 2017 Cilag GmbH International Surgical instrument comprising a pivotable distal head
10743870, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus with interlockable firing system
10743872, Sep 29 2017 Cilag GmbH International System and methods for controlling a display of a surgical instrument
10743873, Dec 18 2014 Cilag GmbH International Drive arrangements for articulatable surgical instruments
10743874, Dec 15 2017 Cilag GmbH International Sealed adapters for use with electromechanical surgical instruments
10743875, Dec 15 2017 Cilag GmbH International Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
10743877, Sep 30 2010 Cilag GmbH International Surgical stapler with floating anvil
10751053, Sep 26 2014 Cilag GmbH International Fastener cartridges for applying expandable fastener lines
10751076, Dec 24 2009 Cilag GmbH International Motor-driven surgical cutting instrument with electric actuator directional control assembly
10751138, Jan 10 2007 Cilag GmbH International Surgical instrument for use with a robotic system
10758229, Dec 21 2016 Cilag GmbH International Surgical instrument comprising improved jaw control
10758230, Dec 21 2016 Cilag GmbH International Surgical instrument with primary and safety processors
10758232, Jun 28 2017 Cilag GmbH International Surgical instrument with positive jaw opening features
10765425, Sep 23 2008 Cilag GmbH International Robotically-controlled motorized surgical instrument with an end effector
10765427, Jun 28 2017 Cilag GmbH International Method for articulating a surgical instrument
10765429, Sep 29 2017 Cilag GmbH International Systems and methods for providing alerts according to the operational state of a surgical instrument
10765432, Feb 14 2008 Cilag GmbH International Surgical device including a control system
10772625, Mar 06 2015 Cilag GmbH International Signal and power communication system positioned on a rotatable shaft
10772629, Jun 27 2017 Cilag GmbH International Surgical anvil arrangements
10779820, Jun 20 2017 Cilag GmbH International Systems and methods for controlling motor speed according to user input for a surgical instrument
10779821, Aug 20 2018 Cilag GmbH International Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
10779822, Feb 14 2008 Cilag GmbH International System including a surgical cutting and fastening instrument
10779823, Dec 21 2016 Cilag GmbH International Firing member pin angle
10779824, Jun 28 2017 Cilag GmbH International Surgical instrument comprising an articulation system lockable by a closure system
10779825, Dec 15 2017 Cilag GmbH International Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
10779826, Dec 15 2017 Cilag GmbH International Methods of operating surgical end effectors
10779903, Oct 31 2017 Cilag GmbH International Positive shaft rotation lock activated by jaw closure
10780539, May 27 2011 Cilag GmbH International Stapling instrument for use with a robotic system
10786253, Jun 28 2017 Cilag GmbH International Surgical end effectors with improved jaw aperture arrangements
10796471, Sep 29 2017 Cilag GmbH International Systems and methods of displaying a knife position for a surgical instrument
10797497, Jan 04 2019 NEUTRON HOLDINGS, INC DBA LIME Rechargeable battery kiosk for light electric vehicles
10799240, Jul 28 2004 Cilag GmbH International Surgical instrument comprising a staple firing lockout
10806448, Dec 18 2014 Cilag GmbH International Surgical instrument assembly comprising a flexible articulation system
10806449, Nov 09 2005 Cilag GmbH International End effectors for surgical staplers
10806450, Feb 14 2008 Cilag GmbH International Surgical cutting and fastening instrument having a control system
10806479, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
10807492, Apr 15 2016 X Development LLC Switchable magnetic battery docking
10813638, Dec 21 2016 Cilag GmbH International Surgical end effectors with expandable tissue stop arrangements
10813639, Jun 20 2017 Cilag GmbH International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
10813641, May 27 2011 Cilag GmbH International Robotically-driven surgical instrument
10824711, Aug 06 2013 Analog Devices, Inc Secure industrial control system
10828028, Apr 15 2016 Cilag GmbH International Surgical instrument with multiple program responses during a firing motion
10828032, Aug 23 2013 Cilag GmbH International End effector detection systems for surgical instruments
10828033, Dec 15 2017 Cilag GmbH International Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
10832861, Dec 30 2011 Analog Devices, Inc Electromagnetic connector for an industrial control system
10833872, Aug 06 2013 Analog Devices, Inc Industrial control system redundant communication/control modules authentication
10834094, Aug 06 2013 Analog Devices, Inc Operator action authentication in an industrial control system
10834820, Aug 06 2013 Analog Devices, Inc Industrial control system cable
10835245, Dec 21 2016 Cilag GmbH International Method for attaching a shaft assembly to a surgical instrument and, alternatively, to a surgical robot
10835247, Dec 21 2016 Cilag GmbH International Lockout arrangements for surgical end effectors
10835249, Aug 17 2015 Cilag GmbH International Implantable layers for a surgical instrument
10835251, Sep 30 2010 Cilag GmbH International Surgical instrument assembly including an end effector configurable in different positions
10835330, Dec 19 2017 Cilag GmbH International Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
10842488, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a fixed anvil and different staple heights
10842489, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a cam and driver arrangement
10842490, Oct 31 2017 Cilag GmbH International Cartridge body design with force reduction based on firing completion
10842491, Jan 31 2006 Cilag GmbH International Surgical system with an actuation console
10842492, Aug 20 2018 Cilag GmbH International Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
10848012, Dec 30 2011 Analog Devices, Inc Electromagnetic connectors for an industrial control system
10856866, Feb 15 2008 Cilag GmbH International Surgical end effector having buttress retention features
10856868, Dec 21 2016 Cilag GmbH International Firing member pin configurations
10856869, Jun 27 2017 Cilag GmbH International Surgical anvil arrangements
10856870, Aug 20 2018 Cilag GmbH International Switching arrangements for motor powered articulatable surgical instruments
10863981, Mar 26 2014 Cilag GmbH International Interface systems for use with surgical instruments
10863986, Sep 23 2015 Cilag GmbH International Surgical stapler having downstream current-based motor control
10869664, Aug 31 2005 Cilag GmbH International End effector for use with a surgical stapling instrument
10869666, Dec 15 2017 Cilag GmbH International Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
10869669, Sep 30 2010 Cilag GmbH International Surgical instrument assembly
10874391, Jun 28 2012 Cilag GmbH International Surgical instrument system including replaceable end effectors
10874396, Feb 14 2008 Cilag GmbH International Stapling instrument for use with a surgical robot
10881396, Jun 20 2017 Cilag GmbH International Surgical instrument with variable duration trigger arrangement
10881399, Jun 20 2017 Cilag GmbH International Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
10881401, Dec 21 2016 Cilag GmbH International Staple firing member comprising a missing cartridge and/or spent cartridge lockout
10888318, Apr 16 2013 Cilag GmbH International Powered surgical stapler
10888321, Jun 20 2017 Cilag GmbH International Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
10888322, Dec 21 2016 Cilag GmbH International Surgical instrument comprising a cutting member
10888328, Sep 30 2010 Cilag GmbH International Surgical end effector
10888329, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
10888330, Feb 14 2008 Cilag GmbH International Surgical system
10893853, Jan 31 2006 Cilag GmbH International Stapling assembly including motor drive systems
10893864, Dec 21 2016 Cilag GmbH International Staple cartridges and arrangements of staples and staple cavities therein
10893867, Mar 14 2013 Cilag GmbH International Drive train control arrangements for modular surgical instruments
10896145, Dec 30 2011 Analog Devices, Inc Communications control system with a serial communications interface and a parallel communications interface
10898183, Jun 29 2017 Cilag GmbH International Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
10898184, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
10898185, Mar 26 2014 Cilag GmbH International Surgical instrument power management through sleep and wake up control
10898186, Dec 21 2016 Cilag GmbH International Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls
10898190, Aug 23 2013 Cilag GmbH International Secondary battery arrangements for powered surgical instruments
10898193, Sep 30 2010 Cilag GmbH International End effector for use with a surgical instrument
10898194, May 27 2011 Cilag GmbH International Detachable motor powered surgical instrument
10898195, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
10903685, Jun 28 2017 Cilag GmbH International Surgical shaft assemblies with slip ring assemblies forming capacitive channels
10905418, Oct 16 2014 Cilag GmbH International Staple cartridge comprising a tissue thickness compensator
10905422, Dec 21 2016 Cilag GmbH International Surgical instrument for use with a robotic surgical system
10905423, Sep 05 2014 Cilag GmbH International Smart cartridge wake up operation and data retention
10905426, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
10905427, Feb 14 2008 Cilag GmbH International Surgical System
10912559, Aug 20 2018 Cilag GmbH International Reinforced deformable anvil tip for surgical stapler anvil
10912575, Jan 11 2007 Cilag GmbH International Surgical stapling device having supports for a flexible drive mechanism
10918380, Jan 31 2006 Cilag GmbH International Surgical instrument system including a control system
10918385, Dec 21 2016 Cilag GmbH International Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
10918386, Jan 10 2007 Cilag GmbH International Interlock and surgical instrument including same
10925605, Feb 14 2008 Cilag GmbH International Surgical stapling system
10932772, Jun 29 2017 Cilag GmbH International Methods for closed loop velocity control for robotic surgical instrument
10932774, Aug 30 2005 Cilag GmbH International Surgical end effector for forming staples to different heights
10932775, Jun 28 2012 Cilag GmbH International Firing system lockout arrangements for surgical instruments
10932778, Oct 10 2008 Cilag GmbH International Powered surgical cutting and stapling apparatus with manually retractable firing system
10932779, Sep 30 2015 Cilag GmbH International Compressible adjunct with crossing spacer fibers
10945728, Dec 18 2014 Cilag GmbH International Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
10945729, Jan 10 2007 Cilag GmbH International Interlock and surgical instrument including same
10945731, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising controlled release and expansion
10952727, Jan 10 2007 Cilag GmbH International Surgical instrument for assessing the state of a staple cartridge
10952728, Jan 31 2006 Cilag GmbH International Powered surgical instruments with firing system lockout arrangements
10959722, Jan 31 2006 Cilag GmbH International Surgical instrument for deploying fasteners by way of rotational motion
10959725, Jun 15 2012 Cilag GmbH International Articulatable surgical instrument comprising a firing drive
10959727, Dec 21 2016 Cilag GmbH International Articulatable surgical end effector with asymmetric shaft arrangement
10966627, Mar 06 2015 Cilag GmbH International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
10966718, Dec 15 2017 Cilag GmbH International Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
10973516, Dec 21 2016 Cilag GmbH International Surgical end effectors and adaptable firing members therefor
10980534, May 27 2011 Cilag GmbH International Robotically-controlled motorized surgical instrument with an end effector
10980535, Sep 23 2008 Cilag GmbH International Motorized surgical instrument with an end effector
10980536, Dec 21 2016 Cilag GmbH International No-cartridge and spent cartridge lockout arrangements for surgical staplers
10980537, Jun 20 2017 Cilag GmbH International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
10980539, Sep 30 2015 Cilag GmbH International Implantable adjunct comprising bonded layers
10987102, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising a plurality of layers
10993713, Nov 09 2005 Cilag GmbH International Surgical instruments
10993716, Jun 27 2017 Cilag GmbH International Surgical anvil arrangements
10993717, Jan 31 2006 Cilag GmbH International Surgical stapling system comprising a control system
11000274, Aug 23 2013 Cilag GmbH International Powered surgical instrument
11000275, Jan 31 2006 Cilag GmbH International Surgical instrument
11000277, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and remote sensor
11000279, Jun 28 2017 Cilag GmbH International Surgical instrument comprising an articulation system ratio
11006951, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and sensor transponders
11006955, Dec 15 2017 Cilag GmbH International End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
11007004, Jun 28 2012 Cilag GmbH International Powered multi-axial articulable electrosurgical device with external dissection features
11007022, Jun 29 2017 Cilag GmbH International Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
11013511, Jun 22 2007 Cilag GmbH International Surgical stapling instrument with an articulatable end effector
11020112, Dec 19 2017 Cilag GmbH International Surgical tools configured for interchangeable use with different controller interfaces
11020113, Jan 31 2006 Cilag GmbH International Surgical instrument having force feedback capabilities
11020114, Jun 28 2017 Cilag GmbH International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
11020115, Feb 12 2014 Cilag GmbH International Deliverable surgical instrument
11026678, Sep 23 2015 Cilag GmbH International Surgical stapler having motor control based on an electrical parameter related to a motor current
11026680, Aug 23 2013 Cilag GmbH International Surgical instrument configured to operate in different states
11026684, Apr 15 2016 Cilag GmbH International Surgical instrument with multiple program responses during a firing motion
11033267, Dec 15 2017 Cilag GmbH International Systems and methods of controlling a clamping member firing rate of a surgical instrument
11039834, Aug 20 2018 Cilag GmbH International Surgical stapler anvils with staple directing protrusions and tissue stability features
11039836, Jan 11 2007 Cilag GmbH International Staple cartridge for use with a surgical stapling instrument
11039837, Jun 28 2012 Cilag GmbH International Firing system lockout arrangements for surgical instruments
11045189, Sep 23 2008 Cilag GmbH International Robotically-controlled motorized surgical instrument with an end effector
11045192, Aug 20 2018 Cilag GmbH International Fabricating techniques for surgical stapler anvils
11045270, Dec 19 2017 Cilag GmbH International Robotic attachment comprising exterior drive actuator
11051807, Jun 28 2019 Cilag GmbH International Packaging assembly including a particulate trap
11051810, Apr 15 2016 Cilag GmbH International Modular surgical instrument with configurable operating mode
11051811, Jan 31 2006 Cilag GmbH International End effector for use with a surgical instrument
11051813, Jan 31 2006 Cilag GmbH International Powered surgical instruments with firing system lockout arrangements
11055246, Dec 30 2011 Analog Devices, Inc Input-output module with multi-channel switching capability
11058418, Feb 15 2008 Cilag GmbH International Surgical end effector having buttress retention features
11058420, Jan 31 2006 Cilag GmbH International Surgical stapling apparatus comprising a lockout system
11058422, Dec 30 2015 Cilag GmbH International Mechanisms for compensating for battery pack failure in powered surgical instruments
11058423, Jun 28 2012 Cilag GmbH International Stapling system including first and second closure systems for use with a surgical robot
11058424, Jun 28 2017 Cilag GmbH International Surgical instrument comprising an offset articulation joint
11058425, Aug 17 2015 Cilag GmbH International Implantable layers for a surgical instrument
11071543, Dec 15 2017 Cilag GmbH International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
11071545, Sep 05 2014 Cilag GmbH International Smart cartridge wake up operation and data retention
11071554, Jun 20 2017 Cilag GmbH International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
11076853, Dec 21 2017 Cilag GmbH International Systems and methods of displaying a knife position during transection for a surgical instrument
11076854, Sep 05 2014 Cilag GmbH International Smart cartridge wake up operation and data retention
11076929, Sep 25 2015 Cilag GmbH International Implantable adjunct systems for determining adjunct skew
11083452, Sep 30 2010 Cilag GmbH International Staple cartridge including a tissue thickness compensator
11083453, Dec 18 2014 Cilag GmbH International Surgical stapling system including a flexible firing actuator and lateral buckling supports
11083454, Dec 30 2015 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
11083455, Jun 28 2017 Cilag GmbH International Surgical instrument comprising an articulation system ratio
11083456, Jul 28 2004 Cilag GmbH International Articulating surgical instrument incorporating a two-piece firing mechanism
11083457, Jun 28 2012 Cilag GmbH International Surgical instrument system including replaceable end effectors
11083458, Aug 20 2018 Cilag GmbH International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
11090045, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
11090046, Jun 20 2017 Cilag GmbH International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
11090048, Dec 21 2016 Cilag GmbH International Method for resetting a fuse of a surgical instrument shaft
11090049, Jun 27 2017 Cilag GmbH International Staple forming pocket arrangements
11090075, Oct 30 2017 Cilag GmbH International Articulation features for surgical end effector
11093427, Dec 30 2011 Analog Devices, Inc Switch fabric having a serial communications interface and a parallel communications interface
11096689, Dec 21 2016 Cilag GmbH International Shaft assembly comprising a lockout
11103241, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
11103269, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
11109859, Mar 06 2015 Cilag GmbH International Surgical instrument comprising a lockable battery housing
11109860, Jun 28 2012 Cilag GmbH International Surgical end effectors for use with hand-held and robotically-controlled rotary powered surgical systems
11116502, Jul 28 2004 Cilag GmbH International Surgical stapling instrument incorporating a two-piece firing mechanism
11129613, Dec 30 2015 Cilag GmbH International Surgical instruments with separable motors and motor control circuits
11129615, Feb 05 2009 Cilag GmbH International Surgical stapling system
11129616, May 27 2011 Cilag GmbH International Surgical stapling system
11129680, Dec 21 2017 Cilag GmbH International Surgical instrument comprising a projector
11133106, Aug 23 2013 Cilag GmbH International Surgical instrument assembly comprising a retraction assembly
11134938, Jun 04 2007 Cilag GmbH International Robotically-controlled shaft based rotary drive systems for surgical instruments
11134942, Dec 21 2016 Cilag GmbH International Surgical stapling instruments and staple-forming anvils
11134943, Jan 10 2007 Cilag GmbH International Powered surgical instrument including a control unit and sensor
11134944, Oct 30 2017 Cilag GmbH International Surgical stapler knife motion controls
11134947, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a camming sled with variable cam arrangements
11135352, Jul 28 2004 Cilag GmbH International End effector including a gradually releasable medical adjunct
11141153, Oct 29 2014 Cilag GmbH International Staple cartridges comprising driver arrangements
11141154, Jun 27 2017 Cilag GmbH International Surgical end effectors and anvils
11141155, Jun 28 2012 Cilag GmbH International Drive system for surgical tool
11141156, Jun 28 2012 Cilag GmbH International Surgical stapling assembly comprising flexible output shaft
11144630, Dec 30 2011 Analog Devices, Inc Image capture devices for a secure industrial control system
11147549, Jun 04 2007 Cilag GmbH International Stapling instrument including a firing system and a closure system
11147551, Mar 25 2019 Cilag GmbH International Firing drive arrangements for surgical systems
11147553, Mar 25 2019 Cilag GmbH International Firing drive arrangements for surgical systems
11147554, Apr 18 2016 Cilag GmbH International Surgical instrument system comprising a magnetic lockout
11154296, Mar 28 2012 Cilag GmbH International Anvil layer attached to a proximal end of an end effector
11154297, Feb 15 2008 Cilag GmbH International Layer arrangements for surgical staple cartridges
11154298, Jun 04 2007 Cilag GmbH International Stapling system for use with a robotic surgical system
11154299, Jun 28 2012 Cilag GmbH International Stapling assembly comprising a firing lockout
11154301, Feb 27 2015 Cilag GmbH International Modular stapling assembly
11160551, Dec 21 2016 Cilag GmbH International Articulatable surgical stapling instruments
11160553, Dec 21 2016 Cilag GmbH International Surgical stapling systems
11166717, Jan 31 2006 Cilag GmbH International Surgical instrument with firing lockout
11166720, Jan 10 2007 Cilag GmbH International Surgical instrument including a control module for assessing an end effector
11172927, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
11172929, Mar 25 2019 Cilag GmbH International Articulation drive arrangements for surgical systems
11179150, Apr 15 2016 Cilag GmbH International Systems and methods for controlling a surgical stapling and cutting instrument
11179151, Dec 21 2017 Cilag GmbH International Surgical instrument comprising a display
11179152, Dec 21 2017 Cilag GmbH International Surgical instrument comprising a tissue grasping system
11179153, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
11179155, Dec 21 2016 Cilag GmbH International Anvil arrangements for surgical staplers
11185325, Oct 16 2014 Cilag GmbH International End effector including different tissue gaps
11185330, Apr 16 2014 Cilag GmbH International Fastener cartridge assemblies and staple retainer cover arrangements
11191539, Dec 21 2016 Cilag GmbH International Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
11191540, Dec 21 2016 Cilag GmbH International Protective cover arrangements for a joint interface between a movable jaw and actuator shaft of a surgical instrument
11191543, Dec 21 2016 Cilag GmbH International Assembly comprising a lock
11191545, Apr 15 2016 Cilag GmbH International Staple formation detection mechanisms
11197670, Dec 15 2017 Cilag GmbH International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
11197671, Jun 28 2012 Cilag GmbH International Stapling assembly comprising a lockout
11202631, Jun 28 2012 Cilag GmbH International Stapling assembly comprising a firing lockout
11202633, Sep 26 2014 Cilag GmbH International Surgical stapling buttresses and adjunct materials
11207064, May 27 2011 Cilag GmbH International Automated end effector component reloading system for use with a robotic system
11207065, Aug 20 2018 Cilag GmbH International Method for fabricating surgical stapler anvils
11213293, Feb 09 2016 Cilag GmbH International Articulatable surgical instruments with single articulation link arrangements
11213302, Jun 20 2017 Cilag GmbH International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
11219455, Jun 28 2019 Cilag GmbH International Surgical instrument including a lockout key
11224423, Mar 06 2015 Cilag GmbH International Smart sensors with local signal processing
11224426, Feb 12 2016 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
11224427, Jan 31 2006 Cilag GmbH International Surgical stapling system including a console and retraction assembly
11224428, Dec 21 2016 Cilag GmbH International Surgical stapling systems
11224454, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
11224497, Jun 28 2019 Cilag GmbH International Surgical systems with multiple RFID tags
11229437, Jun 28 2019 Cilag GmbH International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
11234698, Dec 19 2019 Cilag GmbH International Stapling system comprising a clamp lockout and a firing lockout
11235838, Oct 13 2016 Abus August Bremicker Sohne KG Battery lock for an electric vehicle
11241229, Oct 29 2014 Cilag GmbH International Staple cartridges comprising driver arrangements
11241230, Jun 28 2012 Cilag GmbH International Clip applier tool for use with a robotic surgical system
11241235, Jun 28 2019 Cilag GmbH International Method of using multiple RFID chips with a surgical assembly
11246590, Aug 31 2005 Cilag GmbH International Staple cartridge including staple drivers having different unfired heights
11246592, Jun 28 2017 Cilag GmbH International Surgical instrument comprising an articulation system lockable to a frame
11246616, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
11246618, Mar 01 2013 Cilag GmbH International Surgical instrument soft stop
11246678, Jun 28 2019 Cilag GmbH International Surgical stapling system having a frangible RFID tag
11253254, Apr 30 2019 Cilag GmbH International Shaft rotation actuator on a surgical instrument
11253256, Aug 20 2018 Cilag GmbH International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
11259799, Mar 26 2014 Cilag GmbH International Interface systems for use with surgical instruments
11259803, Jun 28 2019 Cilag GmbH International Surgical stapling system having an information encryption protocol
11259805, Jun 28 2017 Cilag GmbH International Surgical instrument comprising firing member supports
11266405, Jun 27 2017 Cilag GmbH International Surgical anvil manufacturing methods
11266406, Mar 14 2013 Cilag GmbH International Control systems for surgical instruments
11266409, Apr 16 2014 Cilag GmbH International Fastener cartridge comprising a sled including longitudinally-staggered ramps
11266410, May 27 2011 Cilag GmbH International Surgical device for use with a robotic system
11272927, Feb 15 2008 Cilag GmbH International Layer arrangements for surgical staple cartridges
11272928, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
11272938, Jun 27 2006 Cilag GmbH International Surgical instrument including dedicated firing and retraction assemblies
11278279, Jan 31 2006 Cilag GmbH International Surgical instrument assembly
11278284, Jun 28 2012 Cilag GmbH International Rotary drive arrangements for surgical instruments
11284891, Apr 15 2016 Cilag GmbH International Surgical instrument with multiple program responses during a firing motion
11284898, Sep 18 2014 Cilag GmbH International Surgical instrument including a deployable knife
11284953, Dec 19 2017 Cilag GmbH International Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
11291440, Aug 20 2018 Cilag GmbH International Method for operating a powered articulatable surgical instrument
11291441, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and remote sensor
11291447, Dec 19 2019 Cilag GmbH International Stapling instrument comprising independent jaw closing and staple firing systems
11291449, Dec 24 2009 Cilag GmbH International Surgical cutting instrument that analyzes tissue thickness
11291451, Jun 28 2019 Cilag GmbH International Surgical instrument with battery compatibility verification functionality
11298125, Sep 30 2010 Cilag GmbH International Tissue stapler having a thickness compensator
11298127, Jun 28 2019 Cilag GmbH International Surgical stapling system having a lockout mechanism for an incompatible cartridge
11298132, Jun 28 2019 Cilag GmbH International Staple cartridge including a honeycomb extension
11298134, Apr 16 2014 Cilag GmbH International Fastener cartridge comprising non-uniform fasteners
11304695, Aug 03 2017 Cilag GmbH International Surgical system shaft interconnection
11304696, Dec 19 2019 Cilag GmbH International Surgical instrument comprising a powered articulation system
11311290, Dec 21 2017 Cilag GmbH International Surgical instrument comprising an end effector dampener
11311292, Apr 15 2016 Cilag GmbH International Surgical instrument with detection sensors
11311294, Sep 05 2014 Cilag GmbH International Powered medical device including measurement of closure state of jaws
11314854, Dec 30 2011 Analog Devices, Inc Image capture devices for a secure industrial control system
11317910, Apr 15 2016 Cilag GmbH International Surgical instrument with detection sensors
11317913, Dec 21 2016 Cilag GmbH International Lockout arrangements for surgical end effectors and replaceable tool assemblies
11317917, Apr 18 2016 Cilag GmbH International Surgical stapling system comprising a lockable firing assembly
11324501, Aug 20 2018 Cilag GmbH International Surgical stapling devices with improved closure members
11324503, Jun 27 2017 Cilag GmbH International Surgical firing member arrangements
11324506, Feb 27 2015 Cilag GmbH International Modular stapling assembly
11337691, Dec 21 2017 Cilag GmbH International Surgical instrument configured to determine firing path
11337693, Jun 29 2007 Cilag GmbH International Surgical stapling instrument having a releasable buttress material
11337698, Nov 06 2014 Cilag GmbH International Staple cartridge comprising a releasable adjunct material
11344299, Sep 23 2015 Cilag GmbH International Surgical stapler having downstream current-based motor control
11344303, Feb 12 2016 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
11350843, Mar 06 2015 Cilag GmbH International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
11350916, Jan 31 2006 Cilag GmbH International Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
11350928, Apr 18 2016 Cilag GmbH International Surgical instrument comprising a tissue thickness lockout and speed control system
11350929, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and sensor transponders
11350932, Apr 15 2016 Cilag GmbH International Surgical instrument with improved stop/start control during a firing motion
11350934, Dec 21 2016 Cilag GmbH International Staple forming pocket arrangement to accommodate different types of staples
11350935, Dec 21 2016 Cilag GmbH International Surgical tool assemblies with closure stroke reduction features
11350938, Jun 28 2019 Cilag GmbH International Surgical instrument comprising an aligned rfid sensor
11364027, Dec 21 2017 Cilag GmbH International Surgical instrument comprising speed control
11364046, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
11369368, Dec 21 2017 Cilag GmbH International Surgical instrument comprising synchronized drive systems
11369376, Dec 21 2016 Cilag GmbH International Surgical stapling systems
11373755, Aug 23 2012 Cilag GmbH International Surgical device drive system including a ratchet mechanism
11376001, Aug 23 2013 Cilag GmbH International Surgical stapling device with rotary multi-turn retraction mechanism
11376098, Jun 28 2019 Cilag GmbH International Surgical instrument system comprising an RFID system
11382625, Apr 16 2014 Cilag GmbH International Fastener cartridge comprising non-uniform fasteners
11382626, Oct 03 2006 Cilag GmbH International Surgical system including a knife bar supported for rotational and axial travel
11382627, Apr 16 2014 Cilag GmbH International Surgical stapling assembly comprising a firing member including a lateral extension
11382628, Dec 10 2014 Cilag GmbH International Articulatable surgical instrument system
11382638, Jun 20 2017 Cilag GmbH International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
11389160, Aug 23 2013 Cilag GmbH International Surgical system comprising a display
11389161, Jun 28 2017 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
11389162, Sep 05 2014 Cilag GmbH International Smart cartridge wake up operation and data retention
11395651, Sep 30 2010 Cilag GmbH International Adhesive film laminate
11395652, Apr 16 2013 Cilag GmbH International Powered surgical stapler
11399828, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a fixed anvil and different staple heights
11399829, Sep 29 2017 Cilag GmbH International Systems and methods of initiating a power shutdown mode for a surgical instrument
11399831, Dec 18 2014 Cilag GmbH International Drive arrangements for articulatable surgical instruments
11399837, Jun 28 2019 Cilag GmbH International Mechanisms for motor control adjustments of a motorized surgical instrument
11406377, Sep 30 2010 Cilag GmbH International Adhesive film laminate
11406378, Mar 28 2012 Cilag GmbH International Staple cartridge comprising a compressible tissue thickness compensator
11406380, Sep 23 2008 Cilag GmbH International Motorized surgical instrument
11406381, Apr 16 2013 Cilag GmbH International Powered surgical stapler
11406386, Sep 05 2014 Cilag GmbH International End effector including magnetic and impedance sensors
11411417, Jan 04 2019 NEUTRON HOLDINGS, INC. Rechargeable battery kiosk for light electric vehicles
11419606, Dec 21 2016 Cilag GmbH International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
11426160, Mar 06 2015 Cilag GmbH International Smart sensors with local signal processing
11426167, Jun 28 2019 Cilag GmbH International Mechanisms for proper anvil attachment surgical stapling head assembly
11426251, Apr 30 2019 Cilag GmbH International Articulation directional lights on a surgical instrument
11429710, Aug 06 2013 Analog Devices, Inc Secure industrial control system
11432816, Apr 30 2019 Cilag GmbH International Articulation pin for a surgical instrument
11439470, May 27 2011 Cilag GmbH International Robotically-controlled surgical instrument with selectively articulatable end effector
11446029, Dec 19 2019 Cilag GmbH International Staple cartridge comprising projections extending from a curved deck surface
11446034, Feb 14 2008 Cilag GmbH International Surgical stapling assembly comprising first and second actuation systems configured to perform different functions
11452526, Oct 29 2020 Cilag GmbH International Surgical instrument comprising a staged voltage regulation start-up system
11452528, Apr 30 2019 Cilag GmbH International Articulation actuators for a surgical instrument
11457918, Oct 29 2014 Cilag GmbH International Cartridge assemblies for surgical staplers
11464512, Dec 19 2019 Cilag GmbH International Staple cartridge comprising a curved deck surface
11464513, Jun 28 2012 Cilag GmbH International Surgical instrument system including replaceable end effectors
11464514, Feb 14 2008 Cilag GmbH International Motorized surgical stapling system including a sensing array
11464601, Jun 28 2019 Cilag GmbH International Surgical instrument comprising an RFID system for tracking a movable component
11471155, Aug 03 2017 Cilag GmbH International Surgical system bailout
11471157, Apr 30 2019 Cilag GmbH International Articulation control mapping for a surgical instrument
11478241, Jun 28 2019 Cilag GmbH International Staple cartridge including projections
11478242, Jun 28 2017 Cilag GmbH International Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw
11478244, Oct 31 2017 Cilag GmbH International Cartridge body design with force reduction based on firing completion
11478247, Jul 30 2010 Cilag GmbH International Tissue acquisition arrangements and methods for surgical stapling devices
11484307, Feb 14 2008 Cilag GmbH International Loading unit coupleable to a surgical stapling system
11484309, Dec 30 2015 Cilag GmbH International Surgical stapling system comprising a controller configured to cause a motor to reset a firing sequence
11484310, Jun 28 2017 Cilag GmbH International Surgical instrument comprising a shaft including a closure tube profile
11484311, Aug 31 2005 Cilag GmbH International Staple cartridge comprising a staple driver arrangement
11484312, Aug 31 2005 Cilag GmbH International Staple cartridge comprising a staple driver arrangement
11490889, Sep 23 2015 Cilag GmbH International Surgical stapler having motor control based on an electrical parameter related to a motor current
11497488, Mar 26 2014 Cilag GmbH International Systems and methods for controlling a segmented circuit
11497492, Jun 28 2019 Cilag GmbH International Surgical instrument including an articulation lock
11497499, Dec 21 2016 Cilag GmbH International Articulatable surgical stapling instruments
11504116, Mar 28 2012 Cilag GmbH International Layer of material for a surgical end effector
11504119, Aug 23 2013 Cilag GmbH International Surgical instrument including an electronic firing lockout
11504122, Dec 19 2019 Cilag GmbH International Surgical instrument comprising a nested firing member
11510671, Jun 28 2012 Cilag GmbH International Firing system lockout arrangements for surgical instruments
11517304, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
11517306, Apr 15 2016 Cilag GmbH International Surgical instrument with detection sensors
11517311, Dec 18 2014 Cilag GmbH International Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
11517315, Apr 16 2014 Cilag GmbH International Fastener cartridges including extensions having different configurations
11517325, Jun 20 2017 Cilag GmbH International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
11517390, Oct 29 2020 Cilag GmbH International Surgical instrument comprising a limited travel switch
11523821, Sep 26 2014 Cilag GmbH International Method for creating a flexible staple line
11523822, Jun 28 2019 Cilag GmbH International Battery pack including a circuit interrupter
11523823, Feb 09 2016 Cilag GmbH International Surgical instruments with non-symmetrical articulation arrangements
11529137, Dec 19 2019 Cilag GmbH International Staple cartridge comprising driver retention members
11529138, Mar 01 2013 Cilag GmbH International Powered surgical instrument including a rotary drive screw
11529139, Dec 19 2019 Cilag GmbH International Motor driven surgical instrument
11529140, Jun 28 2017 Cilag GmbH International Surgical instrument lockout arrangement
11529142, Oct 01 2010 Cilag GmbH International Surgical instrument having a power control circuit
11534162, Jun 28 2012 Cilag GmbH International Robotically powered surgical device with manually-actuatable reversing system
11534259, Oct 29 2020 Cilag GmbH International Surgical instrument comprising an articulation indicator
11537157, Aug 06 2013 Analog Devices, Inc Secure power supply for an industrial control system
11540824, Sep 30 2010 Cilag GmbH International Tissue thickness compensator
11540829, Jun 28 2012 Cilag GmbH International Surgical instrument system including replaceable end effectors
11547403, Dec 18 2014 Cilag GmbH International Surgical instrument having a laminate firing actuator and lateral buckling supports
11547404, Dec 18 2014 Cilag GmbH International Surgical instrument assembly comprising a flexible articulation system
11553911, Dec 18 2014 Cilag GmbH International Surgical instrument assembly comprising a flexible articulation system
11553916, Sep 30 2015 Cilag GmbH International Compressible adjunct with crossing spacer fibers
11553919, Jun 28 2019 Cilag GmbH International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
11553971, Jun 28 2019 Cilag GmbH International Surgical RFID assemblies for display and communication
11559302, Jun 04 2007 Cilag GmbH International Surgical instrument including a firing member movable at different speeds
11559303, Apr 18 2016 Cilag GmbH International Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
11559304, Dec 19 2019 Cilag GmbH International Surgical instrument comprising a rapid closure mechanism
11559496, Sep 30 2010 Cilag GmbH International Tissue thickness compensator configured to redistribute compressive forces
11564679, Apr 16 2013 Cilag GmbH International Powered surgical stapler
11564682, Jun 04 2007 Cilag GmbH International Surgical stapler device
11564686, Jun 28 2017 Cilag GmbH International Surgical shaft assemblies with flexible interfaces
11564688, Dec 21 2016 Cilag GmbH International Robotic surgical tool having a retraction mechanism
11571207, Dec 18 2014 Cilag GmbH International Surgical system including lateral supports for a flexible drive member
11571210, Dec 21 2016 Cilag GmbH International Firing assembly comprising a multiple failed-state fuse
11571212, Feb 14 2008 Cilag GmbH International Surgical stapling system including an impedance sensor
11571215, Sep 30 2010 Cilag GmbH International Layer of material for a surgical end effector
11571231, Sep 29 2006 Cilag GmbH International Staple cartridge having a driver for driving multiple staples
11576668, Dec 21 2017 Cilag GmbH International Staple instrument comprising a firing path display
11576672, Dec 19 2019 Cilag GmbH International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
11576673, Aug 31 2005 Cilag GmbH International Stapling assembly for forming staples to different heights
11583274, Dec 21 2017 Cilag GmbH International Self-guiding stapling instrument
11583277, Sep 30 2010 Cilag GmbH International Layer of material for a surgical end effector
11583278, May 27 2011 Cilag GmbH International Surgical stapling system having multi-direction articulation
11583279, Oct 10 2008 Cilag GmbH International Powered surgical cutting and stapling apparatus with manually retractable firing system
11596406, Apr 16 2014 Cilag GmbH International Fastener cartridges including extensions having different configurations
11602340, Sep 30 2010 Cilag GmbH International Adhesive film laminate
11602346, Jun 28 2012 Cilag GmbH International Robotically powered surgical device with manually-actuatable reversing system
11607219, Dec 19 2019 Cilag GmbH International Staple cartridge comprising a detachable tissue cutting knife
11607239, Apr 15 2016 Cilag GmbH International Systems and methods for controlling a surgical stapling and cutting instrument
11612393, Jan 31 2006 Cilag GmbH International Robotically-controlled end effector
11612394, May 27 2011 Cilag GmbH International Automated end effector component reloading system for use with a robotic system
11612395, Feb 14 2008 Cilag GmbH International Surgical system including a control system having an RFID tag reader
11617575, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
11617576, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
11617577, Oct 29 2020 Cilag GmbH International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
11622763, Apr 16 2013 Cilag GmbH International Stapling assembly comprising a shiftable drive
11622766, Jun 28 2012 Cilag GmbH International Empty clip cartridge lockout
11622785, Sep 29 2006 Cilag GmbH International Surgical staples having attached drivers and stapling instruments for deploying the same
11627959, Jun 28 2019 Cilag GmbH International Surgical instruments including manual and powered system lockouts
11627960, Dec 02 2020 Cilag GmbH International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
11633183, Apr 16 2013 Cilag International GmbH Stapling assembly comprising a retraction drive
11638581, Apr 16 2013 Cilag GmbH International Powered surgical stapler
11638582, Jul 28 2020 Cilag GmbH International Surgical instruments with torsion spine drive arrangements
11638583, Feb 14 2008 Cilag GmbH International Motorized surgical system having a plurality of power sources
11638587, Jun 28 2019 Cilag GmbH International RFID identification systems for surgical instruments
11642125, Apr 15 2016 Cilag GmbH International Robotic surgical system including a user interface and a control circuit
11642128, Jun 28 2017 Cilag GmbH International Method for articulating a surgical instrument
11648005, Sep 23 2008 Cilag GmbH International Robotically-controlled motorized surgical instrument with an end effector
11648006, Jun 04 2007 Cilag GmbH International Robotically-controlled shaft based rotary drive systems for surgical instruments
11648008, Jan 31 2006 Cilag GmbH International Surgical instrument having force feedback capabilities
11648009, Apr 30 2019 Cilag GmbH International Rotatable jaw tip for a surgical instrument
11648024, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with position feedback
11653914, Jun 20 2017 Cilag GmbH International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
11653915, Dec 02 2020 Cilag GmbH International Surgical instruments with sled location detection and adjustment features
11653917, Dec 21 2016 Cilag GmbH International Surgical stapling systems
11653918, Sep 05 2014 Cilag GmbH International Local display of tissue parameter stabilization
11653920, Dec 02 2020 Cilag GmbH International Powered surgical instruments with communication interfaces through sterile barrier
11658519, Dec 30 2011 Analog Devices, Inc Electromagnetic connector for an Industrial Control System
11659661, Aug 06 2013 Bedrock Automation Platforms Inc. Industrial control system cable
11660090, Jul 28 2020 Cilag GmbH International Surgical instruments with segmented flexible drive arrangements
11660110, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
11660163, Jun 28 2019 Cilag GmbH International Surgical system with RFID tags for updating motor assembly parameters
11666332, Jan 10 2007 Cilag GmbH International Surgical instrument comprising a control circuit configured to adjust the operation of a motor
11672531, Jun 04 2007 Cilag GmbH International Rotary drive systems for surgical instruments
11672532, Jun 20 2017 Cilag GmbH International Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
11672536, Sep 30 2010 Cilag GmbH International Layer of material for a surgical end effector
11678877, Dec 18 2014 Cilag GmbH International Surgical instrument including a flexible support configured to support a flexible firing member
11678880, Jun 28 2017 Cilag GmbH International Surgical instrument comprising a shaft including a housing arrangement
11678882, Dec 02 2020 Cilag GmbH International Surgical instruments with interactive features to remedy incidental sled movements
11684360, Sep 30 2010 Cilag GmbH International Staple cartridge comprising a variable thickness compressible portion
11684361, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
11684365, Jul 28 2004 Cilag GmbH International Replaceable staple cartridges for surgical instruments
11684369, Jun 28 2019 Cilag GmbH International Method of using multiple RFID chips with a surgical assembly
11684434, Jun 28 2019 Cilag GmbH International Surgical RFID assemblies for instrument operational setting control
11688549, Dec 30 2011 Analog Devices, Inc Electromagnetic connector for an industrial control system
11690615, Apr 16 2013 Cilag GmbH International Surgical system including an electric motor and a surgical instrument
11690623, Sep 30 2015 Cilag GmbH International Method for applying an implantable layer to a fastener cartridge
11696757, Feb 26 2021 Cilag GmbH International Monitoring of internal systems to detect and track cartridge motion status
11696759, Jun 28 2017 Cilag GmbH International Surgical stapling instruments comprising shortened staple cartridge noses
11696761, Mar 25 2019 Cilag GmbH International Firing drive arrangements for surgical systems
11700691, Aug 06 2013 Analog Devices, Inc Industrial control system cable
11701110, Aug 23 2013 Cilag GmbH International Surgical instrument including a drive assembly movable in a non-motorized mode of operation
11701111, Dec 19 2019 Cilag GmbH International Method for operating a surgical stapling instrument
11701113, Feb 26 2021 Cilag GmbH International Stapling instrument comprising a separate power antenna and a data transfer antenna
11701114, Oct 16 2014 Cilag GmbH International Staple cartridge
11701115, Dec 21 2016 Cilag GmbH International Methods of stapling tissue
11707273, Jun 15 2012 Cilag GmbH International Articulatable surgical instrument comprising a firing drive
11712244, Sep 30 2015 Cilag GmbH International Implantable layer with spacer fibers
11717285, Feb 14 2008 Cilag GmbH International Surgical cutting and fastening instrument having RF electrodes
11717289, Oct 29 2020 Cilag GmbH International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
11717291, Mar 22 2021 Cilag GmbH International Staple cartridge comprising staples configured to apply different tissue compression
11717294, Apr 16 2014 Cilag GmbH International End effector arrangements comprising indicators
11717297, Sep 05 2014 Cilag GmbH International Smart cartridge wake up operation and data retention
11722495, Aug 06 2013 Analog Devices, Inc Operator action authentication in an industrial control system
11723657, Feb 26 2021 Cilag GmbH International Adjustable communication based on available bandwidth and power capacity
11723658, Mar 22 2021 Cilag GmbH International Staple cartridge comprising a firing lockout
11723662, May 28 2021 Cilag GmbH International Stapling instrument comprising an articulation control display
11730471, Feb 09 2016 Cilag GmbH International Articulatable surgical instruments with single articulation link arrangements
11730473, Feb 26 2021 Cilag GmbH International Monitoring of manufacturing life-cycle
11730474, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a movable cartridge and a staple driver arrangement
11730477, Oct 10 2008 Cilag GmbH International Powered surgical system with manually retractable firing system
11737748, Jul 28 2020 Cilag GmbH International Surgical instruments with double spherical articulation joints with pivotable links
11737749, Mar 22 2021 Cilag GmbH International Surgical stapling instrument comprising a retraction system
11737751, Dec 02 2020 Cilag GmbH International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
11737754, Sep 30 2010 Cilag GmbH International Surgical stapler with floating anvil
11744581, Dec 02 2020 Cilag GmbH International Powered surgical instruments with multi-phase tissue treatment
11744583, Feb 26 2021 Cilag GmbH International Distal communication array to tune frequency of RF systems
11744588, Feb 27 2015 Cilag GmbH International Surgical stapling instrument including a removably attachable battery pack
11744593, Jun 28 2019 Cilag GmbH International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
11744603, Mar 24 2021 Cilag GmbH International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
11749877, Feb 26 2021 Cilag GmbH International Stapling instrument comprising a signal antenna
11751867, Dec 21 2017 Cilag GmbH International Surgical instrument comprising sequenced systems
11751869, Feb 26 2021 Cilag GmbH International Monitoring of multiple sensors over time to detect moving characteristics of tissue
11759202, Mar 22 2021 Cilag GmbH International Staple cartridge comprising an implantable layer
11759208, Dec 30 2015 Cilag GmbH International Mechanisms for compensating for battery pack failure in powered surgical instruments
11766258, Jun 27 2017 Cilag GmbH International Surgical anvil arrangements
11766259, Dec 21 2016 Cilag GmbH International Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
11766260, Dec 21 2016 Cilag GmbH International Methods of stapling tissue
11771419, Jun 28 2019 Cilag GmbH International Packaging for a replaceable component of a surgical stapling system
11771425, Aug 31 2005 Cilag GmbH International Stapling assembly for forming staples to different formed heights
11771426, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication
11771454, Apr 15 2016 Cilag GmbH International Stapling assembly including a controller for monitoring a clamping laod
11779330, Oct 29 2020 Cilag GmbH International Surgical instrument comprising a jaw alignment system
11779336, Feb 12 2016 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
11779420, Jun 28 2012 Cilag GmbH International Robotic surgical attachments having manually-actuated retraction assemblies
11786239, Mar 24 2021 Cilag GmbH International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
11786243, Mar 24 2021 Cilag GmbH International Firing members having flexible portions for adapting to a load during a surgical firing stroke
11793509, Mar 28 2012 Cilag GmbH International Staple cartridge including an implantable layer
11793511, Nov 09 2005 Cilag GmbH International Surgical instruments
11793512, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
11793513, Jun 20 2017 Cilag GmbH International Systems and methods for controlling motor speed according to user input for a surgical instrument
11793514, Feb 26 2021 Cilag GmbH International Staple cartridge comprising sensor array which may be embedded in cartridge body
11793516, Mar 24 2021 Cilag GmbH International Surgical staple cartridge comprising longitudinal support beam
11793518, Jan 31 2006 Cilag GmbH International Powered surgical instruments with firing system lockout arrangements
11793521, Oct 10 2008 Cilag GmbH International Powered surgical cutting and stapling apparatus with manually retractable firing system
11793522, Sep 30 2015 Cilag GmbH International Staple cartridge assembly including a compressible adjunct
11801047, Feb 14 2008 Cilag GmbH International Surgical stapling system comprising a control circuit configured to selectively monitor tissue impedance and adjust control of a motor
11801051, Jan 31 2006 Cilag GmbH International Accessing data stored in a memory of a surgical instrument
11806011, Mar 22 2021 Cilag GmbH International Stapling instrument comprising tissue compression systems
11806013, Jun 28 2012 Cilag GmbH International Firing system arrangements for surgical instruments
11811253, Apr 18 2016 Cilag GmbH International Surgical robotic system with fault state detection configurations based on motor current draw
11812954, Sep 23 2008 Cilag GmbH International Robotically-controlled motorized surgical instrument with an end effector
11812958, Dec 18 2014 Cilag GmbH International Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
11812960, Jul 28 2004 Cilag GmbH International Method of segmenting the operation of a surgical stapling instrument
11812961, Jan 10 2007 Cilag GmbH International Surgical instrument including a motor control system
11812964, Feb 26 2021 Cilag GmbH International Staple cartridge comprising a power management circuit
11812965, Sep 30 2010 Cilag GmbH International Layer of material for a surgical end effector
11826012, Mar 22 2021 Cilag GmbH International Stapling instrument comprising a pulsed motor-driven firing rack
11826013, Jul 28 2020 Cilag GmbH International Surgical instruments with firing member closure features
11826042, Mar 22 2021 Cilag GmbH International Surgical instrument comprising a firing drive including a selectable leverage mechanism
11826045, Feb 12 2016 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
11826047, May 28 2021 Cilag GmbH International Stapling instrument comprising jaw mounts
11826048, Jun 28 2017 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
11826132, Mar 06 2015 Cilag GmbH International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
11832816, Mar 24 2021 Cilag GmbH International Surgical stapling assembly comprising nonplanar staples and planar staples
11839352, Jan 11 2007 Cilag GmbH International Surgical stapling device with an end effector
11839375, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising an anvil and different staple heights
11844518, Oct 29 2020 Cilag GmbH International Method for operating a surgical instrument
11844520, Dec 19 2019 Cilag GmbH International Staple cartridge comprising driver retention members
11844521, Jan 10 2007 Cilag GmbH International Surgical instrument for use with a robotic system
11849939, Dec 21 2017 Cilag GmbH International Continuous use self-propelled stapling instrument
11849941, Jun 29 2007 Cilag GmbH International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
11849943, Dec 02 2020 Cilag GmbH International Surgical instrument with cartridge release mechanisms
11849944, Mar 24 2021 Cilag GmbH International Drivers for fastener cartridge assemblies having rotary drive screws
11849945, Mar 24 2021 Cilag GmbH International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
11849946, Sep 23 2015 Cilag GmbH International Surgical stapler having downstream current-based motor control
11849947, Jan 10 2007 Cilag GmbH International Surgical system including a control circuit and a passively-powered transponder
11849948, Dec 21 2016 Cilag GmbH International Method for resetting a fuse of a surgical instrument shaft
11849952, Sep 30 2010 Cilag GmbH International Staple cartridge comprising staples positioned within a compressible portion thereof
11850310, Sep 30 2010 INTERNATIONAL, CILAG GMBH; Cilag GmbH International Staple cartridge including an adjunct
11857181, May 27 2011 Cilag GmbH International Robotically-controlled shaft based rotary drive systems for surgical instruments
11857182, Jul 28 2020 Cilag GmbH International Surgical instruments with combination function articulation joint arrangements
11857183, Mar 24 2021 Cilag GmbH International Stapling assembly components having metal substrates and plastic bodies
11857187, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising controlled release and expansion
11857189, Jun 28 2012 Cilag GmbH International Surgical instrument including first and second articulation joints
11864756, Jul 28 2020 Cilag GmbH International Surgical instruments with flexible ball chain drive arrangements
11864760, Oct 29 2014 Cilag GmbH International Staple cartridges comprising driver arrangements
11871923, Sep 23 2008 Cilag GmbH International Motorized surgical instrument
11871925, Jul 28 2020 Cilag GmbH International Surgical instruments with dual spherical articulation joint arrangements
11871939, Jun 20 2017 Cilag GmbH International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
11877745, Oct 18 2021 Cilag GmbH International Surgical stapling assembly having longitudinally-repeating staple leg clusters
11877748, May 27 2011 Cilag GmbH International Robotically-driven surgical instrument with E-beam driver
11882987, Jul 28 2004 Cilag GmbH International Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
11883019, Dec 21 2017 Cilag GmbH International Stapling instrument comprising a staple feeding system
11883020, Jan 31 2006 Cilag GmbH International Surgical instrument having a feedback system
11883024, Jul 28 2020 Cilag GmbH International Method of operating a surgical instrument
11883025, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising a plurality of layers
11883026, Apr 16 2014 Cilag GmbH International Fastener cartridge assemblies and staple retainer cover arrangements
11890005, Jun 29 2017 Cilag GmbH International Methods for closed loop velocity control for robotic surgical instrument
11890008, Jan 31 2006 Cilag GmbH International Surgical instrument with firing lockout
11890010, Dec 02 2020 Cilag GmbH International Dual-sided reinforced reload for surgical instruments
11890012, Jul 28 2004 Cilag GmbH International Staple cartridge comprising cartridge body and attached support
11890015, Sep 30 2015 Cilag GmbH International Compressible adjunct with crossing spacer fibers
11890029, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument
11896217, Oct 29 2020 Cilag GmbH International Surgical instrument comprising an articulation lock
11896218, Mar 24 2021 Cilag GmbH International; INTERNATIONAL, CILAG GMBH Method of using a powered stapling device
11896219, Mar 24 2021 Cilag GmbH International Mating features between drivers and underside of a cartridge deck
11896222, Dec 15 2017 Cilag GmbH International Methods of operating surgical end effectors
11896225, Jul 28 2004 Cilag GmbH International Staple cartridge comprising a pan
11899604, Dec 30 2011 Analog Devices, Inc Input/output module with multi-channel switching capability
11903581, Apr 30 2019 Cilag GmbH International Methods for stapling tissue using a surgical instrument
11903582, Mar 24 2021 Cilag GmbH International Leveraging surfaces for cartridge installation
11903586, Sep 30 2015 Cilag GmbH International Compressible adjunct with crossing spacer fibers
11911027, Sep 30 2010 Cilag GmbH International Adhesive film laminate
11911028, Jun 04 2007 Cilag GmbH International Surgical instruments for use with a robotic surgical system
11911032, Dec 19 2019 Cilag GmbH International Staple cartridge comprising a seating cam
9230390, Oct 30 2012 CPS Technology Holdings LLC Vehicle battery point of sale system and method
9387771, May 12 2013 Electric vehicle charging port lock
9390566, Nov 08 2013 GOGORO INC. Apparatus, method and article for providing vehicle event data
9407024, Aug 11 2014 GOGORO INC. Multidirectional electrical connector, plug and system
9637091, Dec 25 2013 NATIONAL TAIWAN NORMAL UNIVERSITY Heterogeneous energy supply system
9770996, Aug 06 2013 GOGORO INC Systems and methods for powering electric vehicles using a single or multiple power cells
9833241, Apr 16 2014 Cilag GmbH International Surgical fastener cartridges with driver stabilizing arrangements
9837842, Jan 23 2014 GOGORO INC Systems and methods for utilizing an array of power storage devices, such as batteries
D789883, Sep 04 2014 GOGORO INC Collection, charging and distribution device for portable electrical energy storage devices
D814410, Jan 04 2015 Signals IT Ltd. Recharging station for electronic devices
D851762, Jun 28 2017 Cilag GmbH International Anvil
D854151, Jun 28 2017 Cilag GmbH International Surgical instrument shaft
D869655, Jun 28 2017 Cilag GmbH International Surgical fastener cartridge
D879808, Jun 20 2017 Cilag GmbH International Display panel with graphical user interface
D879809, Jun 20 2017 Cilag GmbH International Display panel with changeable graphical user interface
D890784, Jun 20 2017 Cilag GmbH International Display panel with changeable graphical user interface
D906355, Jun 28 2017 Cilag GmbH International Display screen or portion thereof with a graphical user interface for a surgical instrument
D907647, Sep 29 2017 Cilag GmbH International Display screen or portion thereof with animated graphical user interface
D907648, Sep 29 2017 Cilag GmbH International Display screen or portion thereof with animated graphical user interface
D910847, Dec 19 2017 Cilag GmbH International Surgical instrument assembly
D914878, Aug 20 2018 Cilag GmbH International Surgical instrument anvil
D917500, Sep 29 2017 Cilag GmbH International Display screen or portion thereof with graphical user interface
D966512, Jun 02 2020 Cilag GmbH International Staple cartridge
D967421, Jun 02 2020 Cilag GmbH International Staple cartridge
D974560, Jun 02 2020 Cilag GmbH International Staple cartridge
D975278, Jun 02 2020 Cilag GmbH International Staple cartridge
D975850, Jun 02 2020 Cilag GmbH International Staple cartridge
D975851, Jun 02 2020 Cilag GmbH International Staple cartridge
D976401, Jun 02 2020 Cilag GmbH International Staple cartridge
D980425, Oct 29 2020 Cilag GmbH International Surgical instrument assembly
ER1904,
Patent Priority Assignee Title
4087895, Jun 17 1976 Automobiles Peugeot Device for rapidly exchanging an accumulator battery on an electric vehicle
4216839, Jul 20 1978 Unique Mobility Inc. Electrically powered motor vehicle
5187423, May 15 1991 System for replenishment of energy stored in a battery on an electric vehicle
5627752, Dec 24 1993 DaimlerChrysler AG Consumption-oriented driving-power limitation of a vehicle drive
5998963, Jun 11 1998 Electric vehicle service center and method for exchanging and charging vehicle batteries
6016882, Jul 31 1996 Yamaha Hatsudoki Kabushiki Kaisha Battery carrier for electric assisted vehicle
6177879, May 09 1997 Honda Giken Kogyo Kabushiki Kaisha Battery rental system and apparatus
6403251, Jan 31 2000 INSPIRED ENERGY, INC Battery pack with multiple secure modules
7948207, Feb 09 2006 Refuelable battery-powered electric vehicle
7993155, Sep 19 2008 RENAULT S A S System for electrically connecting batteries to electric vehicles
8006973, Sep 14 2007 FUJIFILM Business Innovation Corp Replaceable unit, sheet conveyance apparatus and image forming device
8013571, Sep 19 2008 CHARGE PEAK LTD Battery exchange station
8164300, Sep 19 2008 CHARGE PEAK LTD Battery exchange station
8265816, May 27 2011 General Electric Company Apparatus and methods to disable an electric vehicle
20030209375,
20090082957,
20090240575,
20100094496,
20100201482,
20110031929,
20110071932,
20110114798,
20110148346,
20110270480,
20120062361,
20120068817,
20120316671,
EP2230146,
JP10307952,
JP11049079,
JP11176487,
JP2000102102,
JP2000102103,
JP2000341868,
JP2001128301,
JP2003118397,
JP2003262525,
JP2009171646,
JP2009171647,
JP2010191636,
JP2010200405,
JP2011126452,
JP4319289,
JP7031008,
JP9119839,
KR20100012401,
KR20110004292,
KR20110041783,
TW200836452,
TW201043986,
TW201044266,
TW315116,
TW371880,
TW379269,
TW385047,
WO2010033517,
WO2013024484,
WO2010143483,
/////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 26 2012Gogoro, Inc.(assignment on the face of the patent)
Sep 12 2012TAYLOR, MATTHEW WHITINGGOGORO, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0290310624 pdf
Sep 12 2012WU, YI-TSUNGGOGORO, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0290310624 pdf
Sep 12 2012LUKE, HOK-SUM HORACEGOGORO, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0290310624 pdf
Sep 12 2012HUNG, HUANG-CHENGGOGORO, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0290310624 pdf
Sep 12 2012TAYLOR, MATTHEW WHITINGGOGORO INC CORRECTIVE ASSIGNMENT TO CORRECT THE NAME OF THE RECEIVING PARTY FROM GOGORO, INC TO GOGORO INC PREVIOUSLY RECORDED ON REEL 029031 FRAME 0624 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT OF THE ENTIRE RIGHT, TITLE AND INTEREST 0348910290 pdf
Sep 12 2012WU, YI-TSUNGGOGORO INC CORRECTIVE ASSIGNMENT TO CORRECT THE NAME OF THE RECEIVING PARTY FROM GOGORO, INC TO GOGORO INC PREVIOUSLY RECORDED ON REEL 029031 FRAME 0624 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT OF THE ENTIRE RIGHT, TITLE AND INTEREST 0348910290 pdf
Sep 12 2012LUKE, HOK-SUM HORACEGOGORO INC CORRECTIVE ASSIGNMENT TO CORRECT THE NAME OF THE RECEIVING PARTY FROM GOGORO, INC TO GOGORO INC PREVIOUSLY RECORDED ON REEL 029031 FRAME 0624 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT OF THE ENTIRE RIGHT, TITLE AND INTEREST 0348910290 pdf
Sep 12 2012HUNG, HUANG-CHENGGOGORO INC CORRECTIVE ASSIGNMENT TO CORRECT THE NAME OF THE RECEIVING PARTY FROM GOGORO, INC TO GOGORO INC PREVIOUSLY RECORDED ON REEL 029031 FRAME 0624 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT OF THE ENTIRE RIGHT, TITLE AND INTEREST 0348910290 pdf
Date Maintenance Fee Events
Jun 01 2016STOL: Pat Hldr no Longer Claims Small Ent Stat
Mar 16 2017ASPN: Payor Number Assigned.
Apr 17 2017M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Apr 15 2021M1552: Payment of Maintenance Fee, 8th Year, Large Entity.


Date Maintenance Schedule
Oct 15 20164 years fee payment window open
Apr 15 20176 months grace period start (w surcharge)
Oct 15 2017patent expiry (for year 4)
Oct 15 20192 years to revive unintentionally abandoned end. (for year 4)
Oct 15 20208 years fee payment window open
Apr 15 20216 months grace period start (w surcharge)
Oct 15 2021patent expiry (for year 8)
Oct 15 20232 years to revive unintentionally abandoned end. (for year 8)
Oct 15 202412 years fee payment window open
Apr 15 20256 months grace period start (w surcharge)
Oct 15 2025patent expiry (for year 12)
Oct 15 20272 years to revive unintentionally abandoned end. (for year 12)