The invention relates to a rescue arrangement for effecting a rapid descent from a higher level to a lower level. The rescue arrangement comprises guiding means which extend between the higher level and the lower level, as well as carrying means which are connectable to the guiding means for carrying a person or another object from the higher level to the lower level along the guiding means. Magnetic braking means, which comprise a series of permanent magnets, are located on the guiding means or the carrying means for slowing down the carrying means at least near the lower end of the guiding means.
|
1. A rescue arrangement for effecting a rapid descent from a higher level to a lower level, the rescue arrangement comprising:
guiding means which extend between the higher level and the lower level,
carrying means which are connectable to the guiding means for carrying a person or another object from the higher level to the lower level along the guiding means,
magnetic braking means located on the guiding means or the carrying means for slowing down the carrying means at least near the lower end of the guiding means,
wherein the magnetic braking means comprise a series of permanent magnets,
wherein at least two substantially parallel rows of permanent magnets are arranged along the guiding means near its lower end, said rows delimiting at least one slot between them and wherein the carrying means are provided with at least one braking member, which travels within the slot between the rows of magnets at the end stage of the descent of the carrying means along the guiding means,
wherein the slot has an upper portion where the rows of magnets are positioned such that when the braking member has entered said upper portion of the slot, the brake effect gradually increases and peak loads can be mitigated, and
wherein at the upper portion of the slot the rows of magnets have an entrance curve, such that the distance between the magnets of the two rows converges from a greater distance towards a constant width of the slot, preferably with a V-shape.
2. The rescue arrangement according to
4. The rescue arrangement according to
5. The rescue arrangement according to
6. The rescue arrangement according to
7. The rescue arrangement according to
8. The rescue arrangement according to
9. The rescue arrangement according to
wherein the guiding means are provided with at least one braking member, over which the slot between the rows of magnets travels during at least part of the descent of the carrying means along the guiding means.
10. The rescue arrangement according to
11. The rescue arrangement according to
12. The rescue arrangement according to
13. The rescue arrangement according to
14. The rescue arrangement according to
15. The rescue arrangement according to
|
The present invention relates to a (mass-) rescue arrangement for effecting a rapid descent from a higher level to a lower level. Such rescue arrangements can be used for rapid descent from a high-rise building in the event of an emergency.
During an emergency situation, like for instance a fire, in a high-rise building, the persons in the building are not allowed to use the elevators to get to the ground floor and exit the building. Furthermore the use of the staircases in the building can take too long when people are on a high level or might be impassable. Therefore, rescue arrangements are necessary that facilitate persons in the building to exit and descend on the outside of the building.
From US 2006/0108177 to Monks a rescue arrangement is known for effecting a rapid descent from a higher level to a lower level. This known rescue arrangement comprises guiding means which extend between the higher level and the lower level. Furthermore it comprises carrying means which are connectable to the guiding means for carrying a person or another object from the higher level to the lower level along the guiding means. Magnetic braking means are located on the guiding means for slowing down the carrying means.
The object of the present invention is to provide an improved rescue arrangement.
According to a first aspect of the invention this object is achieved by a rescue arrangement for effecting a rapid descent from a higher level to a lower level, wherein the rescue arrangement comprises guiding means which extend between the higher level and the lower level, as well as carrying means which are connectable to the guiding means for carrying a person or another object from the higher level to the lower level along the guiding means. The rescue arrangement furthermore comprises magnetic braking means located on the guiding means or the carrying means for slowing down the carrying means at least near the lower end of the guiding means, wherein the magnetic braking means comprise a series of permanent magnets.
The use of permanent magnets for braking the carrying means and controlling the speed of descent is advantageous because its functioning is not depending on any power supply.
In a preferred embodiment at least two substantially parallel rows of permanent magnets are arranged along the guiding means near its lower end, said rows delimiting at least one slot between them, wherein the carrying means are provided with at least one braking member, which travels within the slot(s) between the rows of magnets at the end stage of the descent of the carrying means along the guiding means. The parallel rows of permanent magnets create a magnetic field in the slot. The braking member travelling through the slot(s) disturbs the magnetic field and induces eddy currents, whereby a force opposite the direction of movement of the braking member is generated. These generated braking forces eventually would lead to a residual, steady movement, i.e. a movement with a constant velocity.
In other embodiments of the invention the slot(s) between the magnets can be wider at the top than further below, because the rows of magnets converge linearly from the upper region downwardly. Next to this linear converging shape the magnets can be placed in a slight curve forwards or backwards, e.g. closer to or further away from the carrying means horizontally and/or vertically. Different combinations of these are possible also. This enables to influence the deceleration of dissimilar loads towards a desired optimum, for instance achieving a similar deceleration independent of the weight of the person/load, and to mitigate peak deceleration loads.
The braking member is preferably formed as a fin. It is preferably made from electrically conductive material(s), in particular aluminium, copper or composite versions of these. Aluminium having the advantage that it leads to a light-weight structure, copper having the advantage of a stronger braking effect due to better conductivity.
In a preferred embodiment the fin is self-aligning, which means that it accurately and precisely guides itself into the narrow slot between the magnets, by using a spring loaded connection between the fin and the carrying means and a wheel arrangement on the guiding means with at least two rows of wheels, which rows in at least their upper region converge towards each other. The spring connection provides a shock absorbing feature which makes the ride more comfortable for the person travelling down at high speed. The alignment is, which induces shocks will be absorbed, but also shocks due to irregularities in the track can be absorbed.
Another preferred embodiment has a rigid connection between the carrying means and the fin and would in a similar way enable to guide the complete carrying means simultaneously with the fin. This provides a more simple structure of the carrying means, but could possibly require a more accurate fabrication of the track, because the descent could become too uncomfortable.
In one alternative embodiment the fin is self-adjusting such that it deploys more or less of its surface area within the slot between the magnets. This self-adjustment is determined by the speed and mass of the combined carrying means and load being transported. The advantage of this self-adjustment is that the brakes can apply more or less deceleration as required to safely arrest the descent without operator intervention and thus keep a similar descent speed and duration for lighter and heavier loads. This can be achieved by allowing the fin to move away from the carriage, on a spring-loaded fixation, effectively either translating or rotating the fin further into the slot. The same effect could otherwise be achieved by allowing part of the track to move horizontally while the rows of magnets stay in their fixed position, by the braking force on the fin pulling the car further into the slot.
In a preferred embodiment each magnet in one of the rows is directed in the same direction as the corresponding magnet in the other row.
All magnets of both rows can be directed in the same direction, in particular in a direction transverse to the direction of the slot. In a more preferred embodiment however, consecutive magnets in each row are directed in a diametrically opposite direction (180° rotation), being transverse to the direction of the slot. Such a configuration of magnets is known as such for the purpose of accelerating electrons and is then called wiggler or undulator. This leads to a braking force which can be about four times higher than when all magnets of both rows are directed in the same direction.
In another preferred embodiment consecutive magnets in one of the rows are rotated clockwise by 90° relative to the previous magnet in the same row, and wherein consecutive magnets in the adjacent row are similarly rotated counter-clockwise by 90°. Such a configuration of magnets is known as a Halbach array. Preferably each magnet, directed transversely with respect to the slot in one of the rows, is directed in the same direction as the corresponding magnet in the other row. Alternatively, each magnet, directed transversely with respect to the slot, in one of the rows is directed in the opposite direction as the corresponding magnet in the other row.
Preferably the guiding means at the lower end are adapted to allow the carrying means to be dropped off. In this way the carrying means are automatically decoupled from the guiding means and the person is removed quickly from the track, thereby allowing another person to arrive at the bottom without delays consequent upon decoupling.
Preferably a chute is positioned under the lower end of the guiding means, such that the dropped-off carrying means are caught and slid out of the path of the next user in order to prevent collisions between successive users.
In a preferred embodiment the magnets are chosen and configured in such a way that the carrying means at the end of the guiding means has a residual, steady movement. This is advantageous for removing the persons quickly from the track. In another embodiment another (conventional, friction) braking member is added to make the carriage come to a full stop at the exit of the guiding means.
Additionally magnetic brakes can be arranged along most of the length of the guiding means so as to provide an intermediate braking along the track. The preferred arrangement for intermediate braking however, is to have a set of magnets on the carrying means, with similar magnet arrangements as the magnetic brakes at the end of track, which are guided along a fin element or other braking member which is integrated in the guiding means. When this magnet arrangement has a defined and self-adjusting, though limited, freedom of movement while being connected to the carrying means, this movement can be arranged in such a way that the braking force is governed by the weight of the person/load using the carrying means. The advantages to use intermediate braking include keeping the maximum velocity and acceleration within psychologically and medically acceptable limits and achieving an optimum capacity e.g. maximum number of users, because the weight regulating the braking force results in a substantially similar duration of descent for light and heavy loads (persons). Although not preferred at this moment it is conceivable to have a rescue arrangement where the only breaking means are the magnets on the carriage and the fin or the like on the guiding track.
In a preferred embodiment the guiding means comprise a track defined by rails.
The guiding means can have multiple feeding tracks from which the carrying means can be fed to the descending guiding means. An alternative embodiment could comprise a carousel which can be fed with different carrying means at the same time and will feed these, one after another, on to the descending guiding means. Thereby a number of persons can be made ready for descent simultaneously, after which they can enter the track consecutively within a small time interval, effectively increasing the total capacity of the entire system.
Another aspect of the invention relates to a rescue arrangement for effecting a rapid descent from a higher level to a lower level, the rescue arrangement comprising: guiding means which extend between the higher level and the lower level, carrying means which are connectable to the guiding means for carrying a person or another object from the higher level to the lower level along the guiding means, braking means located at the guiding means for slowing down the carrying means, wherein the carrying means comprise a carriage and a rescue suit to be worn by a person, wherein the carriage is adapted to be connected to the guiding means so as to descend along the guiding means and wherein the rescue suit is adapted to be coupled to the carriage.
In a preferred embodiment the rescue suit keeps the arms of the person wearing it close alongside his/her torso. In this manner the rescue suit keeps the person wearing it from (unintentionally or otherwise) wildly swinging his/her arms which could cause injury during the rapid descent from the building. The rescue suit also restrains items such as long hair, e.g. by a hood for covering the head, and loose clothing preventing that such might be caught inadvertently and undesirably during descent. The preferred rescue suit has means of adjustment to fit a large range of people by size, weight and shape.
An additional special rescue stretcher will carry injured or disabled people, infants, pets and others whom the suit does not fit by size, weight or shape. This can travel down the guiding means with the head up or in a horizontal lying position.
In another preferred embodiment the carriage has a head shelter for protecting the head of a person travelling with the carriage from falling debris. As the guiding means are generally positioned along the wall of the building, danger of falling debris could occur. The head shelter protects at least the head of the person travelling down with the carriage.
Preferably the carriage at its upper portion is provided with suspension brackets on each side and wherein the rescue suit is provided with coupling means for coupling the rescue suit to the suspension brackets.
In a preferred embodiment the rescue suit has a shoulder region which is provided with coupling means for coupling with the suspension bracket. The person wearing the rescue suit is in this way hanging from his shoulders to the carriage.
In a further preferred embodiment the rescue suit has an upper leg region which is provided with further coupling means for coupling with the suspension brackets, thereby keeping the legs of the person wearing the suit in a lifted position. In this manner the person wearing the suit is effectively sitting in the suit. An embodiment with lifted leg fixation only is possible as well.
Preferably the rescue arrangement comprises a number of carriages, which carriages can be stackable. The persons in the building can be all provided with a personal rescue suit, which they can put on in case of an emergency. This is comparable with an airplane where each passenger has a life vest stowed under his seat. They can then proceed towards a feed location where carriages are stacked. Trained staff can then attach each person to an individual carriage which is then be placed on a feed track. Placing the carriage on the feed track can be arranged by a carrousel feed system, which at station one is loaded with at least one carriage, which at station two (or more) can be loaded with one or more persons, and at the final station is fed towards the guiding means.
Next, the carriage can be moved to the guiding means and can be released for the rapid descent. At the lower end of the guiding means the carriages are dropped of with the persons carrying them. After the persons have moved out of the way of the next descending person the carriage can be taken off and stacked again.
In an alternative embodiment the carrying means as described above can be integrated into a single item such that the carriage is integrated into the back of the rescue suit. This integrated embodiment functions identically to the two-piece embodiment after they have been joined together thus achieving the same physical functions.
The invention will be explained further in the following detailed description with reference to the drawings:
In
In the region 3 near the lower end 4 of the descending means a series of permanent magnets 6 are arranged in row like manner in the direction of the guiding track 2. In the embodiment shown two parallel rows 5a and 5b respectively of magnets 6 are arranged, which rows 5a, 5b delimit a slot 7 between them. In
The fin 8 can be made of a magnetic material but also of an electrically conductive material such as aluminium, copper or a combination thereof.
In
The permanent magnets 6 in the rows 5a, 5b of magnets can be oriented in different ways with respect to each other as is shown in
In
In
In
In an alternative Halbach configuration (not shown), each magnet, directed transversely with respect to the slot, in one of the rows is directed in the opposite direction as the corresponding magnet. Each magnet directed upwards or downwards is then directed in the same direction as the corresponding magnet in the other row.
In
Preferably a set of springs 83 form a connection between the fin 8 and the carrying means as is shown schematically in
In
In
In
In
In
In one embodiment (
In another embodiment, which is shown in
In yet another embodiment, which is shown in
A combination of the embodiments of
In
In
In a preferred embodiment of the invention the carrying means 11 comprise a carriage and a rescue suit to be worn by a person. In
The carriage 201 has a frame 202, or is formed as an integrated structure, that is carrying four wheels 203 that are adapted to roll over or within the rails 2a of the guiding track 2. The frame can be made metal, preferably a light metal or a plastic material. A shell, preferably made of plastic material defines a backrest 204 and a headrest 205. The shell is integrated with the structure or attached to a front side of the frame. Furthermore, a braking member, in particular the fin 8 as is described in the above, is arranged to a back side of the frame 202. At the headrest 205 of the carriage a head shelter 206 is formed for protecting the head of a person travelling with the carriage 201 from falling debris.
In
The rescue suit 301 has coupling means 304 at the side of the upper leg portion 301b of the suit 301 and coupling means 305 at an arm portion 301c near the wrist region. The coupling means 304 and 305 can be coupled so as to couple the arm portion 301c to the upper leg portion 301b such that during descent the arms of the person wearing the suit 301 keeps the arms along his/her torso. In this manner the rescue suit 301 keeps the person wearing it from (unintentionally or otherwise) wildly swinging his/her arms which could cause injury during the rapid descent from the building.
The rescue suit also has a head portion 301d formed as a cap for covering the head of the person wearing the suit 301, which cap restrains items such as long hair that might otherwise be caught inadvertently and undesirably during descent.
As is shown in
As an alternative to a separate carriage 201 and rescue suit 301 to be coupled before descent, the carrying means can also comprise a carriage and a rescue suit being integrated into a single item. In this embodiment of which an example is shown in
van Dullemen, Marlies, Monks, Nicholas Paul, Maurice, Ingmar Christiaan, Den Hollander, Marte Jeane
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5277125, | Oct 28 1992 | G&T CONVEYOR COMPANY, INC | Material handling car and track assembly having opposed magnet linear motor drive and opposed permanent magnet brake assembly |
6659237, | Nov 22 1999 | EDWARD M PRIBONIC, P E , INC | Eddy current brake |
6817443, | Nov 19 2002 | High rise emergency escape apparatus | |
6830126, | Mar 20 2003 | Rapid escape system for buildings | |
6918469, | Feb 15 2000 | EDWARD M PRIBONIC, P E , INC | Curvilinear eddy current braking apparatus |
7594281, | Apr 14 2004 | SILVER NEEDLE, INC | Explosion and fire extraction safety garment |
7703576, | Oct 17 2006 | Fire escape apparatus | |
20040055836, | |||
20060108177, | |||
GB2393652, | |||
GB2437949, | |||
JP9277984, | |||
WO160654, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 27 2008 | Rapid Vertical Egress System Holding B.V. | (assignment on the face of the patent) | / | |||
Oct 11 2010 | MONKS, NICHOLAS PAUL | RAPID VERTICAL EGRESS SYSTEM HOLDING B V | CORRECTIVE ASSIGNMENT TO CORRECT THE ERROR IN THE ASSIGNEE S NAMES ON THE ORIGINAL COVER SHEET PREVIOUSLY RECORDED ON REEL 026092 FRAME 0363 ASSIGNOR S HEREBY CONFIRMS THE THE ASSIGNEE IS RAPID VERTICAL EGRESS SYSTEM HOLDING B V AND NOT RAPID VERTICAL EGRESS SYSTEM HOLDGINS B V | 028885 | /0476 | |
Oct 11 2010 | VAN DULLEMEN, MARLIES | RAPID VERTICAL EGRESS SYSTEM HOLDING B V | CORRECTIVE ASSIGNMENT TO CORRECT THE ERROR IN THE ASSIGNEE S NAMES ON THE ORIGINAL COVER SHEET PREVIOUSLY RECORDED ON REEL 026092 FRAME 0363 ASSIGNOR S HEREBY CONFIRMS THE THE ASSIGNEE IS RAPID VERTICAL EGRESS SYSTEM HOLDING B V AND NOT RAPID VERTICAL EGRESS SYSTEM HOLDGINS B V | 028885 | /0476 | |
Oct 11 2010 | MAURICE, INGMAR CHRISTIAAN | RAPID VERTICAL EGRESS SYSTEM HOLDING B V | CORRECTIVE ASSIGNMENT TO CORRECT THE ERROR IN THE ASSIGNEE S NAMES ON THE ORIGINAL COVER SHEET PREVIOUSLY RECORDED ON REEL 026092 FRAME 0363 ASSIGNOR S HEREBY CONFIRMS THE THE ASSIGNEE IS RAPID VERTICAL EGRESS SYSTEM HOLDING B V AND NOT RAPID VERTICAL EGRESS SYSTEM HOLDGINS B V | 028885 | /0476 | |
Oct 11 2010 | DEN HOLLANDER, MARTE JEANE | RAPID VERTICAL EGRESS SYSTEM HOLDING B V | CORRECTIVE ASSIGNMENT TO CORRECT THE ERROR IN THE ASSIGNEE S NAMES ON THE ORIGINAL COVER SHEET PREVIOUSLY RECORDED ON REEL 026092 FRAME 0363 ASSIGNOR S HEREBY CONFIRMS THE THE ASSIGNEE IS RAPID VERTICAL EGRESS SYSTEM HOLDING B V AND NOT RAPID VERTICAL EGRESS SYSTEM HOLDGINS B V | 028885 | /0476 | |
Oct 11 2010 | MONKS, NICHOLAS PAUL | RAPID VERTICAL EGRESS SYSTEM HOLDGINS B V | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 026092 | /0363 | |
Oct 11 2010 | VAN DULLEMEN, MARLIES | RAPID VERTICAL EGRESS SYSTEM HOLDGINS B V | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 026092 | /0363 | |
Oct 11 2010 | MAURICE, INGMAR CHRISTIAAN | RAPID VERTICAL EGRESS SYSTEM HOLDGINS B V | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 026092 | /0363 | |
Oct 11 2010 | DEN HOLLANDER, MARTE JEANE | RAPID VERTICAL EGRESS SYSTEM HOLDGINS B V | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 026092 | /0363 |
Date | Maintenance Fee Events |
Jun 02 2017 | REM: Maintenance Fee Reminder Mailed. |
Nov 20 2017 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Oct 22 2016 | 4 years fee payment window open |
Apr 22 2017 | 6 months grace period start (w surcharge) |
Oct 22 2017 | patent expiry (for year 4) |
Oct 22 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 22 2020 | 8 years fee payment window open |
Apr 22 2021 | 6 months grace period start (w surcharge) |
Oct 22 2021 | patent expiry (for year 8) |
Oct 22 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 22 2024 | 12 years fee payment window open |
Apr 22 2025 | 6 months grace period start (w surcharge) |
Oct 22 2025 | patent expiry (for year 12) |
Oct 22 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |