There is provided an angle sensor and angle detection device of high output and high accuracy with a wide operating temperature range. first through eighth sensor units 511, 522, 523, 514, 531, 542, 543 and 534 are produced from spin valve magnetoresistive films that use a self-pinned type ferromagnetic pinned layer comprising two layers of ferromagnetic films that are strongly and anti-ferromagnetically coupled. The respective sensor units are produced via the formation and patterning of thin-films magnetized at angles that differ by 90°, and the formation of insulation films. By using, for the ferromagnetic films, CoFe and FeCo films that have similar Curie temperatures to make the difference in magnetization amount be zero, high immunity to external magnetic fields, a broad adaptive temperature range, and high output are realized.
|
1. An angle sensor having a layered structure in which a plurality of magnetoresistive sensor units are stacked in a film thickness direction with interposed insulation films, wherein
each sensor unit comprises: a self-pinned type ferromagnetic pinned layer in which a first ferromagnetic film and a second ferromagnetic film are anti-ferromagnetically coupled with an interposed anti-parallel coupling film; a nonmagnetic intermediate layer; and a soft magnetic free layer, wherein the first ferromagnetic film and the second ferromagnetic film have substantially the same Curie temperature and the difference in magnetization amount therebetween is substantially zero,
magnetizations of the ferromagnetic pinned layers of the sensor units belonging to different layers are respectively oriented in different directions,
a bridge circuit that outputs a signal corresponding to an external magnetic field is built by the plurality of sensor units, and
induced anisotropy of the soft magnetic free layers of the sensor units is made isotropic.
16. A magnetic sensor, comprising:
a layered structure in which a plurality of magnetoresistive sensor units are stacked in a film thickness direction with interposed insulation films, wherein
each sensor unit comprises: a self-pinned type ferromagnetic pinned layer in which a first ferromagnetic film and a second ferromagnetic film are anti-ferromagnetically coupled with an interposed anti-parallel coupling film; a nonmagnetic intermediate layer; and a soft magnetic free layer, wherein the first ferromagnetic film and the second ferromagnetic film have substantially the same Curie temperature and the difference in magnetization amount therebetween is substantially zero,
magnetizations of the ferromagnetic pinned layers of the sensor units belonging to different layers are respectively oriented in different directions,
a bridge circuit that outputs a signal corresponding to an external magnetic field is built by the plurality of sensor units, and
induced anisotropy of the soft magnetic free layers of the sensor units is made isotropic.
11. An angle sensor manufacturing method, comprising:
a step of forming a sensor unit of a first layer on a substrate;
a step of forming an insulation film of the first layer;
a step of forming a sensor unit of a second layer;
a step of forming an insulation film of the second layer;
a step of forming a sensor unit of a third layer;
a step of forming an insulation film of the third layer;
a step of forming a sensor unit of a fourth layer;
a step of forming an insulation film of the fourth layer; and
a step of performing a heat treatment at a temperature of 200° C. or above but 300° C. or below, wherein
each of the steps of forming the sensor units of the respective layers includes: a step of forming a first ferromagnetic film while applying a predetermined magnetic field; a step of forming an anti-parallel coupling layer on the first ferromagnetic film; a step of forming a second ferromagnetic film on the anti-parallel coupling layer; a step of forming a nonmagnetic intermediate layer on the second ferromagnetic film; a step of forming a soft magnetic free layer on the nonmagnetic intermediate layer; and a step of patterning the sensor unit,
a direction of the magnetic field applied in the steps of forming the sensor units is different from layer to layer; and
the heat treatment is an induced anisotropy vanishing heat treatment for the soft magnetic free layer.
15. An angle detection device, comprising:
an angle sensor comprising a layered structure in which a plurality of magnetoresistive sensor units are stacked in a film thickness direction with interposed insulation films, wherein each sensor unit comprises: ferromagnetic pinned layer in which a first ferromagnetic film and a second ferromagnetic film are anti-ferromagnetically coupled with an interposed anti-parallel coupling film; a nonmagnetic intermediate layer; and a soft magnetic free layer, wherein the first ferromagnetic film and the second ferromagnetic film have substantially the same Curie temperature and the difference in magnetization amount therebetween is substantially zero, magnetizations of the ferromagnetic pinned layers of the sensor units belonging to the same layer are oriented in the same direction, magnetizations of the ferromagnetic pinned layers of the sensor units belonging to different layers are respectively oriented in different directions, and a bridge circuit that outputs a signal corresponding to an external magnetic field is built by the plurality of sensor units;
a magnet that performs a relative rotary motion relative to the angle sensor;
a rotary shaft which is provided with the angle sensor and which is for performing the rotary motion;
a rotary mechanism in which the magnet rotates around the rotary shaft, and
induced anisotropy of the soft magnetic free layers of the sensor units is made isotropic.
2. The angle sensor according to
a first bridge circuit into which are built a sensor unit whose direction of magnetization of the ferromagnetic pinned layer is in a first direction, and a sensor unit whose direction of magnetization of the ferromagnetic pinned layer is in the opposite direction thereof; and
a second bridge circuit into which are built a sensor unit whose direction of magnetization of the ferromagnetic pinned layer is in a second direction that is orthogonal to the first direction, and a sensor unit whose direction of the magnetization of the ferromagnetic pinned layer is in the opposite direction thereof.
3. The angle sensor according to
4. The angle sensor according to
5. The angle sensor according to
6. The angle sensor according to
7. The angle sensor according to
8. The angle sensor according to
9. The angle sensor according to
10. The angle sensor according to
12. The angle sensor manufacturing method according to
13. The angle sensor manufacturing method according to
14. The angle sensor manufacturing method according to
|
The present application is based on Japanese application JP 2008-19647 filed on Jan. 30, 2008, the content of which is hereby incorporated by reference into this application.
The present invention relates to an angle sensor that uses a magnetoresistive sensor and a manufacturing method thereof, as well as a non-contact angle detection device that uses such an angle sensor.
Magnetic non-contact angle detection devices are a technology that is used for measuring the angle of a driving body or a rotating body using magnets, magnetic sensors, etc. As magnetoresistive films used in magnetic sensor parts, magnetic thin films having anisotropic magnetoresistive effects, and so-called giant resistance of multilayer films in which ferromagnetic metal layers are stacked with interposed non-magnetic metal layers, or tunnel magnetoresistive effects, etc., are known. As a similar technology used as read sensors of magnetic heads, there is the spin valve film, and this is known as a technology with which giant magnetoresistive effects can be achieved with good sensitivity. A spin valve film comprises a ferromagnetic pinned layer whose magnetization is substantially pinned relative to the magnetic field to be detected, and a soft magnetic free layer whose magnetization rotates smoothly relative to the magnetization to be detected, wherein an electrical signal corresponding to the relative angle between both magnetizations is outputted.
Patent Document 1: JP 2002-303536 A
Patent Document 2: JP 2003-502674 A
Patent Document 3: JP 2002-519873 A
Patent Document 4: JP 8-7235 A
Patent Document 5: JP 2004-296000 A
Non-Patent Document 1: Appl. Phys., vol. 83, pp. 3720-3723
Sensors that use the magnetoresistive effect have been considered as angle sensors for use in angle detection devices. However, with conventional technology, it was difficult to realize stable operation at high temperatures and high accuracy which have been demanded of angle detection devices in recent years.
The drawback in trying to realize stability at high temperatures and high accuracy with magnetoresistive sensors in relation to conventional angle detection devices lies in the fact that they are limited to the stability at high temperatures of the spin valve film. While spin valve films are an important technology for angle detection devices in realizing high output, one essential factor for their application as angle sensors is the pinning of the magnetization of the ferromagnetic pinned layer thereof. In order for a spin valve film to detect the angle of a magnetic field that is applied, an output relative to the direction in which the magnetization of the ferromagnetic pinned layer is pinned is necessary. Generally, in technology that is referred to as spin valve films, this pinning of the magnetization of a ferromagnetic pinned layer is performed by stacking an anti-ferromagnetic film on the ferromagnetic pinned layer, and pinning the magnetization direction with the generated exchange coupling. Patent Document 1 discloses a rotation angle detection sensor in which a pinned magnetic layer has its magnetization pinned by an anti-ferromagnetic film.
Such pinning of the magnetization direction by an anti-ferromagnetic film is a well-known method for the above-mentioned spin valve films, and for tunnel magnetoresistive elements using similar principles. Just as there is the Néel temperature for an anti-ferromagnet, there is an upper limit temperature for the above-mentioned exchange coupling which is called the blocking temperature, and once this temperature is reached, the exchange coupling in effect vanishes. Further, the exchange coupling decreases as the temperature approaches the blocking temperature. Even below the blocking temperature, at temperatures close thereto, the exchange coupling becomes insufficient, and the function of the spin valve film as an angle sensor becomes lost, being unable to exhibit sufficient accuracy. This phenomenon applies not only to cases where a spin valve film is used for an angle sensor, but also to cases where a tunnel magnetoresistive film or a CPP-GMR (current-perpendicular-to-plane giant magnetoresistive) film is used as long as an exchange coupling caused by an anti-ferromagnetic film is applied. Examples of anti-ferromagnetic films widely in application include MnPt films and MnIr films, but their blocking temperatures are approximately 320° C. and 250° C., respectively, and they do not allow for application in angle detection devices at such high temperatures as 200° C., for example. This is because even if the blocking temperature is not reached, if a condition is sustained for extended periods where a magnetic field is applied under a 200° C. environment, the exchange coupling caused by the anti-ferromagnetic film will gradually lose the one directional anisotropy that had been set.
On the other hand, as other methods of pinning magnetization that have similar effects to those of cases where an anti-ferromagnetic film is used, there are a method that uses a magnetic film that is magnetized in the manner in Patent Document 2, and a method that is referred to as an AAF system (Artificial Anti-Ferromagnetic system) as disclosed in Patent Document 3 where there are used stacked magnetic films that create a state in which coercive force is substantively enhanced by anti-ferromagnetic coupling. With regard to sensors that use the above-mentioned anti-ferromagnetically coupled magnetic films, Patent Documents 4 and 5 contain descriptions on magnetic sensors and magnetic heads. These methods are achieved basically by performing a magnetizing treatment with respect to a thin film of a ferromagnetic material, and by taking the direction of the remanence magnetization as a reference for the operating angle of the sensor. Patent Document 3 discloses a technology that uses a ferromagnetic layer for which a magnetic field is applied at the time of a sensor's thin film formation, and which is pinned in this direction.
For spin valve films for application in magnetic heads, the technologies disclosed in Patent Documents 4 and 5 and Non-Patent Document 1 (also referred to as self-pinned type, artificial anti-ferromagnetic system, etc.) are known as technologies for pinning the magnetization direction without relying on an anti-ferromagnetic film. These are technologies that apply the fact that when, for example, a stacked structure of Co/Ru/Co is formed in and through an appropriate thickness and production method, the two Co layers anti-ferromagnetically and strongly form exchange coupling and, as a result, the magnetizations of the two Co layers in an anti-parallel alignment become less susceptible to change by an external magnetic field. Such systems shall herein be referred to as self-pinned type. The Curie temperature of a ferromagnetic metal is generally higher than the blocking temperature of an anti-ferromagnetic film. In Non-Patent Document 1, it is mentioned that magnetoresistive effects were observed even at 275° C. The maximum temperature that would allow for extended use in reality aside, it can be seen that there is potential for realizing high thermal stability.
Thus, thin film configurations of magnetoresistive sensors for realizing angle sensors may be categorized broadly into those that use an anti-ferromagnetic film, those that use a magnetized ferromagnetic film, and those that use anti-ferromagnetically coupled and magnetized stacked magnetic films. On the other hand, while the magnetic anisotropy of the thin films that constitute such angle sensors is determined by the direction of magnetization of the magnetized ferromagnetic film, several methods for such magnetization are known. In Patent Document 1, it is mentioned that the pinning of the magnetization of a pinned magnetic layer is performed through a magnetizing step in which a high-temperature heat treatment is performed over several hours with a magnet block in close proximity. In Patent Document 3, it is mentioned that heaters are provided in close proximity to sensors, certain heat sensors are heated and an external magnetic field is applied, thereby magnetizing those certain sensors. Patent Document 2 discloses a method of pinning by applying a magnetic field at the time of sensor film formation. Further, Patent Document 5 discloses a magnetic field application process at an appropriate room temperature at which the magnetization direction of a pinned layer can be restored to a desired direction.
Further, as a major indicator for placement of the performance of angle sensors, there is angle error. A magnetoresistive angle sensor converts the direction of a magnetic field applied to the sensor into an electric signal, but there exist factors that cause an angle error of a certain magnitude such that the direction of the applied magnetic field is not accurately converted into an electric signal. One such factor that cannot be ignored is the induced magnetic anisotropy of a soft magnetic free layer. The induced magnetic anisotropy of a soft magnetic film generally is such that uniaxial anisotropy is caused so that the direction in which a magnetic field is applied during thin film formation becomes the magnetic easy axis. Further, with extremely thin soft magnetic films in particular, such as spin valve films, it is known that the direction of the induced magnetic anisotropy changes to the direction of magnetization during heat treatment. The magnetization of the soft magnetic free layer stabilizes in a direction that minimizes static magnetic energy with respect to the magnetic field to be detected and the induced magnetic anisotropy. Therefore, when the induced magnetic anisotropy of the soft magnetic free layer is not zero, such magnetic anisotropy that is present in the soft magnetic free layer becomes an impediment for the magnetization of the soft magnetic free layer to become completely parallel with the magnetic field to be detected. The magnetic anisotropy of a ferromagnetic thin film is a material-specific physical property. To put it simply, by virtue of the presence of the induced magnetic anisotropy of the soft magnetic free layer, the electric output of the angle sensor is misaligned with the direction of the actual magnetic field to be detected by a certain angle error.
What is even more difficult is that, with respect to magnetoresistive angle sensors, the fact that it is necessary to set the anisotropy of the ferromagnetic pinned layer and the fact that it is better that there be no induced magnetic anisotropy of the soft magnetic free layer are mutually incompatible. In other words, when, as in Patent Document 2, a ferromagnetic pinned layer of a magnetoresistive film that forms an angle sensor is magnetized and formed by applying a uniform magnetic field to a substrate at the time of thin film formation, because the same magnetic field is also applied to a soft magnetic free layer, induced magnetic anisotropy whose magnetic easy axis is in the same direction is caused in the soft magnetic free layer. Similarly, when, as in Patent Document 3, a ferromagnetic pinned layer is magnetized for a desired sensor unit that is heated by a heater, the induced magnetic anisotropy of the soft magnetic free layer is simultaneously heat treated within a magnetic field and rotates in the same direction. Thus, there is appropriate anisotropy for each of the ferromagnetic pinned layer and the soft magnetic free layer, and independent control thereof could not be realized with conventional technology.
An object of the present invention is to provide a magnetoresistive angle sensor that is capable of realizing high magnetoresistive effects, broad operational temperatures, and a small angle error, as well as an angle detection device using the same.
In the present invention, an angle sensor that detects the direction of a magnetic field comprises plural sensor units comprising a self-pinned type spin valve film. The plural sensor units constitute a bridge circuit, and the plural sensor units are formed on the same substrate with varied magnetization directions for the self-pinned type ferromagnetic pinned layer so that they would perform detections of mutually differing phases, that is, relative angles, with respect to a given magnetic field direction. The self-pinned type ferromagnetic pinned layer comprises first and second ferromagnetic films, and an anti-parallel coupling layer that anti-ferromagnetically couples the two, and the first and second ferromagnetic films are composed of materials having roughly the same Curie temperature and which exhibit roughly the same magnetization amount and increase/decrease behavior thereof with respect to changes in temperature of from −50° C. to 150° C., namely, a Fe—Co alloy and a Co—Fe alloy. The magnetization amounts of the first and second ferromagnetic films, that is, the product of saturation magnetization and thickness, are set so as to be substantially the same and so that the difference between the magnetization amounts of the two would be zero. The angle sensor has a layered structure of insulation films that are stacked several times in the film thickness direction on the substrate, and the plural sensor units are each disposed on a different layer.
More specifically, an angle sensor of the present invention has a layered structure in which plural magnetoresistive sensor units are stacked in the film thickness direction with interposed insulation films. Each sensor unit comprises: a ferromagnetic pinned layer, wherein a first ferromagnetic film and a second ferromagnetic film are anti-ferromagnetically coupled via an anti-parallel coupling film; a nonmagnetic intermediate layer; and a soft magnetic free layer. The first ferromagnetic film and the second ferromagnetic film have substantially the same Curie temperature, and the difference in their magnetization amounts is effectively zero. The magnetizations of the ferromagnetic pinned layers of the sensor units belonging to different layers are oriented in mutually differing directions. A bridge circuit that outputs a signal corresponding to an external magnetic field by way of plural sensor units is built. If plural sensor units are provided on one layer, the magnetizations of the ferromagnetic pinned layers of the sensor units belonging to the same layer are oriented in the same direction.
As bridge circuits, there are: a first bridge circuit into which are built a sensor unit whose direction of magnetization of the ferromagnetic pinned layer is in a first direction and a sensor unit whose direction of magnetization of the ferromagnetic pinned layer is in the antiparallel direction thereto; and a second bridge circuit into which are built a sensor unit whose direction of magnetization of the ferromagnetic pinned layer is in a second direction that is orthogonal to the first direction and a sensor unit whose direction of magnetization of the ferromagnetic pinned layer is in the antiparallel direction thereto.
The induced magnetic anisotropy of the soft magnetic free layers of the plural sensor units is, in effect, caused to vanish. The induced magnetic anisotropy is caused to vanish by, for example, performing a heat treatment at and over a predetermined temperature and period within a rotating magnetic field or within zero magnetic field after the bridge circuits of the angle sensor are formed.
According to the present invention, it is possible to realize an angle sensor having a high magnetoresistive effect, a wide operating temperature, and a small angle error. By using this in an angle detection device, it is possible to realize an angle detection device with high sensitivity, high accuracy and a wide operating temperature range.
Thin films that form a giant magnetoresistive film stack of a magnetic sensor of a magnetic encoder device of the present invention were produced in the following manner with a DC magnetron sputtering device. They were produced by successively stacking the following materials on a substrate within a 0.2- to 3-mTorr atmosphere of argon. As sputtering targets, targets of tantalum, a nickel-iron-chromium alloy, a nickel-iron alloy, copper, Co, Fe, and ruthenium were used. The film stack is such that each layer was successively formed by generating plasmas within the device in advance by applying a DC power to each cathode at which each target was disposed, and opening/closing a shutter disposed at each cathode.
At the time of film formation, a magnetic field of approximately 6 kA/m (80 Oe) was applied parallel to the substrate using a permanent magnet to magnetize a ferromagnetic pinned layer, and the induced magnetic anisotropy of a soft magnetic free layer was applied. The magnetic easy axis of the induced magnetic anisotropy of the soft magnetic free layer was made to be orthogonal to the magnetization direction of the ferromagnetic pinned layer. The formation of elements on the substrate was done by patterning through a photoresist process. A plurality of sensor units were produced in layers with the formation of insulation films therebetween. After the formation of an angle sensor element, in order to cause the induced magnetic anisotropy of the soft magnetic free layer to vanish, a heat process at 200 to 250° C. and over three hours was performed within a rotating magnetic field or within a zero magnetic field.
A configuration example of the basic structure of a sensor unit forming an angle sensor of the present invention is shown in
A conceptual view of the stack configuration of an angle sensor of the present invention is shown in
In the diagram on the right in
A schematic view of the cross-sectional structure is shown on the left in
One feature of the configuration of the present invention lies in the fact that the area surrounding each sensor unit is occupied by the magnetoresistive film pattern wiring itself that forms the sensor unit, the electrode terminal and the insulation film 41. Unlike a case where, as in Patent Document 3, the configuration is such that, adjacent above/below (in the thickness direction) or in the width direction to the magnetoresistive film wiring that forms a sensor unit, there is disposed a heater, whose purpose is to heat and magnetize the sensor unit, or a magnet film that applies a magnetic field, in the present invention, there are no excess features besides the requisite magnetoresistive films, electrodes and insulation films. Thus, a magnetic sensor of the present invention has advantages in that it is simple in structure and easy to produce, occurrences of such anomalies as surface corrosion of metal films/insulation films are suppressed, and it can be manufactured at low costs.
The structure of a representative angle sensor of the present invention is shown in
Through the above-mentioned layered configuration, it is possible to form each sensor unit as an isolated circuit that is electrically insulated, and the formation process for each sensor unit can be performed separately in stages, thereby making it possible to define independent magnetization directions.
The diagram on the right side of
In the configuration example in
A circuit example of an angle sensor of the present invention is shown in
Another circuit example of an angle sensor of the present invention is shown in
In the above-mentioned
The configuration of a magnetoresistive film stack 10 of a representative sensor unit of the present invention is shown in
Next, a more detailed configuration of a magnetoresistive film stack of a sensor unit of the present invention is discussed.
As can be seen from
From
Another reason for using a first ferromagnetic film and a second ferromagnetic film of such compositions for a magnetoresistive film for use in a sensor unit of the present invention is the property of temperature dependence for achieving the functionality of being operational across a wide temperature range, which is an object of an angle sensor of the present invention. In general, the magnetization of a ferromagnet decreases due to thermal fluctuation caused by a rise in temperature, and the thermal properties thereof are determined by the Curie temperature of that material. As is well-known, the Curie temperature is 770° C. for Fe, 1120° C. for Co, and 358° C. for Ni. If, hypothetically, a self-pinned type ferromagnetic pinned layer were produced with layers of Fe and Co, the saturation magnetic flux densities at room temperature would respectively be approximately 2.1 T, and 1.6 T. Therefore, by setting the thickness of the Fe layer and the thickness of the Co layer so as to be 1.6:2.1 so that the difference in magnetization amount therebetween would be zero, the difference in magnetization amount can be made more or less zero. However, because the Curie temperatures are different between Fe and Co, as temperature rises, their magnetization amounts decrease in a Brillouin function-like manner and, consequently, the difference in magnetization amount between the magnetizations gradually shifts away from zero.
A diagram that conceptually indicates the temperature dependence of magnetization amount is shown in
When ferromagnetic films with differing Curie temperatures are used, as shown in
Remanence magnetization amount Mr and magnetization amount M1600 at a magnetic field of 1600 kA/m (20 kOe) in a case where Ru is used as the anti-parallel coupling layer for the ferromagnetic pinned layer are shown in
Magnetization amount difference ΔM between the second ferromagnetic film and the first ferromagnetic film is shown in relation to the thickness of the first ferromagnetic film in
The relationship between the magnetoresistance ratio of a magnetoresistive film for use in a sensor unit and the maximum applied magnetic field when magnetization amount difference ΔM is varied is shown in
When magnetization amount difference ΔM is −0.1 to 0.06 (nm·T), high MR ratios are maintained even when the maximum applied magnetic field exceeds 160 kA/m (2000 Oe). However, when magnetization amount difference ΔM reaches −0.17, the MR ratio at a maximum applied magnetic field of 160 kA/m (2000 Oe) is 10%, and it can be seen that there has occurred a drop in MR ratio by approximately 1%. Further, when magnetization amount difference ΔM is −0.24, a further drop is observed where the MR ratio at a maximum applied magnetic field of 160 kA/m (2000 Oe) is 8.5%. This drop in MR ratio after the maximum applied magnetic field is applied does not restore itself to the original value even when measured again with a lower magnetic field. This signifies the fact that unless magnetization amount difference ΔM is appropriately kept in the vicinity of zero, the magnetization direction of the ferromagnetic pinned layer changes due to external magnetic fields, and a predetermined performance cannot be maintained.
The magnetic field angle dependence of the electrical resistance of a magnetoresistive film for use in a sensor unit is shown in
The relationship between the magnetization direction misalignment of the ferromagnetic pinned layer of a magnetoresistive film for use in a sensor unit and maximum applied magnetic field when magnetization amount difference ΔM is varied is shown in
The angle misalignment shown in
The relationship between magnetization amount difference ΔM and the magnetization direction misalignment of the ferromagnetic pinned layer after applying 175 kA/m (2.2 kOe) is shown summarized in
The temperature dependence of the MR ratio of a magnetoresistive film for use in a sensor unit of the present invention is shown in
The relationship between the maximum applied magnetic field and the magnetization direction of the ferromagnetic pinned layer with respect to four sensor units that were thin-film formed on an angle sensor of the present invention by changing the magnetic field application direction by 90° each is shown in
As described above, by applying a magnetic field in an appropriate direction during the formation of the magnetoresistive films of a sensor unit, it is possible to obtain a sensor unit whose ferromagnetic pinned layer is magnetized. The magnetic anisotropy of the soft magnetic free layer will be described below. The magnetization direction of the ferromagnetic pinned layer can be determined by forming it while applying a magnetic field. On the other hand, when the soft magnetic free layer is formed, there occurs uniaxial anisotropy where the magnetization direction thereof becomes the magnetis easy axis. A manufacturing method that is most easily understood is a case where a magnetic field is applied during the formation of a soft magnetic free layer in the same direction as the magnetic field application direction for the ferromagnetic pinned layer, and anisotropy is induced.
There is shown in
In order to clarify the cause of such output errors, a static magnetic field magnetization behavior analysis of an angle sensor was conducted. In addition to the magnetization angle, electrical resistance, and magnetoresistance ratio of the four sensor units, the interlayer coupling magnetic field and the uniaxial anisotropy constant of each were also included in the analysis. Here, the term interlayer coupling magnetic field refers to the magnetic coupling field between the ferromagnetic pinned layer and the soft magnetic free layer, and actual measurement values of the produced magnetoresistive film for use in a sensor unit were used. Because it is difficult to measure the uniaxial anisotropy constant with thin films, it was derived by fitting it with measurement results since it is ordinarily on the order of several hundreds of A/m (several Oe). Further, an angle setting misalignment of the ferromagnetic pinned layers was assumed between the X-side sensor unit and the Y-side sensor unit, and this was also taken to be a fitting parameter.
The magnetic field application angle dependence of output error and angle misalignment by an analytical model is shown in
Sensor unit 1: Hk 6, Hint 4.42
Sensor unit 2: Hk 6, Hint 0.54
Sensor unit 3: Hk 5, Hint 4.42
Sensor unit 4: Hk 5, Hint 0.54 (in units of Oe)
Angle setting misalignment −0.2°
As can be seen from
The output error of the X-component bridge in a case where interlayer coupling magnetic field Hint is made to be zero with respect to all sensor units is shown in
On the other hand,
It can thus be seen that reducing the uniaxial anisotropy of the soft magnetic free layer is effective in reducing the angle error of an angle sensor. The angle error in the case in
A method of reducing Hk is discussed in further detail. The uniaxial anisotropy of the soft magnetic free layer can be controlled after thin film formation and after element formation by performing a heat treatment on a magnetoresistive film for use in sensor units. This is because when a heat treatment of 200° C. or above is performed, the uniaxial anisotropy of extremely thin soft magnetic free layers, including generally available spin valve films, shifts in a heat activated manner to uniaxial anisotropy having a magnetic easy axis in the direction of the magnetic field or in the magnetization direction of the soft magnetic free layer. In other words, by performing a heat treatment on an angle sensor within a rotating magnetic field, thereby making the uniaxial anisotropy of the soft magnetic free layer, in a sense, isotropic, it is possible to obtain an angle sensor whose angle error is reduced as shown in
Here, what becomes problematic with conventional angle sensors is that when a heat treatment is performed where the uniaxial anisotropy of the soft magnetic free layer is made isotropic as mentioned above, the exchange coupling anisotropy of the anti-ferromagnetic film is reduced, made isotropic, or an increase in dispersion is caused, and functions as an angle sensor are lost. On the other hand, an angle sensor of the present invention, as has been described up to this point, comprises sensor units that operate stably even with respect to external magnetic fields up to high temperatures, and does not apply the exchange coupling magnetic field of the anti-ferromagnetic film. The above-mentioned heat treatment for making the uniaxial anisotropy of the soft magnetic free layer isotropic becomes an extremely effective method only in connection with a highly stable sensor unit of the present invention.
The heat treatment for causing isotropy is capable of achieving homogenization of the directionality of uniaxial anisotropy by applying a magnetic field of a level that is sufficient for magnetizing the magnetization of the soft magnetic free layer in a predetermined direction, and performing a heat treatment and cooling while rotating in an in-plane direction of the substrate. The magnetization direction of the soft magnetic free layer can be temporally equalized by rotating application of a magnetic field of an appropriate size, namely, a magnetic field of approximately 4 to 40 kA/m (50 to 500 Oe), during a rotary heat treatment and during cooling so that there would be no such influences during the heat treatment as the magnetic field from nearby equipment of a ferromagnetic material, geomagnetism, and the like. This appropriate size of the magnetic field is greater than the shape anisotropic magnetic field caused by the induced magnetic anisotropy of the magnetic film and by patterning in the form of a strip, and must be selected so as not to generate such misalignment of the ferromagnetic pinned layer as those shown in
By producing an angle sensor with reduced Hk by the method mentioned above and taking measurements, it was confirmed that an angle sensor of the present invention is capable of realizing an angle error of 0.8° or less in peak width. With respect to the method of heat treatment, similar effects as those of a heat treatment in a rotating magnetic field can be attained by switching the magnetic field direction, for example, a switching heat treatment between 0° and 90°, instead of a rotating magnetic field. If the magnetization direction of the soft magnetic free layer during the heat treatment does not orient itself in a particular direction due to such factors as geomagnetism, etc., it is also possible to reduce the directionality of the uniaxial anisotropy of the soft magnetic free layer through a heat treatment in zero magnetic field. Here, for the heat treatment in zero magnetic field, since it is a requisite that the external magnetic field be in a range that effectively does not saturate the magnetization state of the magnetic film, it should be equal to or less than 0.8 kA/m (10 oersteds), which is smaller than the size of the coercive force of a magnetic film that is generally identified as soft magnetic.
The appropriate temperature range for a heat treatment for creating isotropy is, in one aspect, temperatures at which the induced magnetic anisotropy (uniaxial anisotropy) of the soft magnetic free layer becomes thermally alterable, and are greater than approximately 200° C. On the other hand, the upper limit on the high temperature side is determined by the heat resistance of an angle sensor of the present invention. Magnetoresistive curves of sensor units of the present invention after heat treatment are shown in
A flow example of a manufacturing method for an angle sensor of the present invention is shown in
An example of a manufacturing method for an angle sensor of the present invention is shown in
Next, as shown in
Thus, in the steps for forming the magnetoresistive films for the first, second, third and fourth layers, the magnetic field application direction is changed as indicated with the arrows in
A configuration example of an angle detection device using an angle sensor of the present invention is shown in
By configuring an angle sensor and angle detection device of the present invention with such structures, it is possible to obtain an angle sensor and angle detection device whose output is large and angle misalignment is small over a wide temperature range.
Abe, Yasunori, Nakamoto, Kazuhiro, Hoshiya, Hiroyuki, Meguroo, Kenichi
Patent | Priority | Assignee | Title |
11047926, | Dec 16 2016 | MELEXIS TECHNOLOGIES SA | Magnetic sensor |
8760158, | Mar 12 2010 | ALPS ALPINE CO , LTD | Current sensor |
8952689, | Mar 12 2010 | ALPS ALPINE CO , LTD | Magnetic sensor and magnetic balance type current sensor utilizing same |
9915710, | Apr 24 2015 | ALPS ALPINE CO , LTD | Magnetic sensor, method of manufacturing magnetic sensor, and method of designing magnetic sensor |
Patent | Priority | Assignee | Title |
5545985, | Mar 16 1994 | PRINCETON ELECTRO-TECHNOLOGY, INC | Magnetoresistive position sensor including an encoder wherein the magnetization extends greater than 0.5 times the pole pitch below the surface |
5545986, | Jun 18 1991 | Mitsubishi Denki Kabushiki Kaisha | Magnetic sensor having a ferromagnetic resistive element, a frame and a bias magnet integrally mounted to the frame |
6465053, | Jun 18 1999 | Koninklijke Philips Electronics N V | Method for manufacturing a magnetic device |
6493196, | Mar 26 1999 | Fujitsu Ltd. | Spin-valve magnetoresistive sensor and magnetic head having such a spin-valve magnetoresistive sensor |
7852070, | Oct 30 2006 | Hitachi, Ltd.; Hitachi, LTD | GMR sensor device having AC power supply |
20010020847, | |||
20020006019, | |||
20040246632, | |||
20050254289, | |||
20060012922, | |||
20070058301, | |||
20070070556, | |||
20070090831, | |||
20070253122, | |||
JP2001332780, | |||
JP2002303536, | |||
JP2002519873, | |||
JP2003502674, | |||
JP200429007, | |||
JP2004296000, | |||
JP200613181, | |||
JP200629900, | |||
JP2007299880, | |||
JP200781126, | |||
JP200788483, | |||
JP87235, | |||
WO79297, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 03 2008 | Hitachi Metals, Ltd. | (assignment on the face of the patent) | / | |||
Jun 07 2010 | HOSHIYA, HIROYUKI | Hitachi Metals, Ltd | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024753 | /0591 | |
Jun 07 2010 | MEGURO, KENICHI | Hitachi Metals, Ltd | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024753 | /0591 | |
Jun 08 2010 | NAKAMOTO, KAZUHIRO | Hitachi Metals, Ltd | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024753 | /0591 | |
Jun 21 2010 | ABE, YASUNORI | Hitachi Metals, Ltd | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024753 | /0591 |
Date | Maintenance Fee Events |
Apr 06 2017 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jun 14 2021 | REM: Maintenance Fee Reminder Mailed. |
Nov 29 2021 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Oct 22 2016 | 4 years fee payment window open |
Apr 22 2017 | 6 months grace period start (w surcharge) |
Oct 22 2017 | patent expiry (for year 4) |
Oct 22 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 22 2020 | 8 years fee payment window open |
Apr 22 2021 | 6 months grace period start (w surcharge) |
Oct 22 2021 | patent expiry (for year 8) |
Oct 22 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 22 2024 | 12 years fee payment window open |
Apr 22 2025 | 6 months grace period start (w surcharge) |
Oct 22 2025 | patent expiry (for year 12) |
Oct 22 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |