Provided is a method of forming a semiconductor package. In the method, a first package including a first chip on a first substrate is formed, a second package including a second chip on a second substrate is formed, a molding cap provided with a via hole and a recess structure configured to receive the first chip is formed, and the second package is provided on the first package with the molding cap being therebetween such that the recess receives the first chip. The via hole and the recess structure are simultaneously formed.
|
1. A method of forming a semiconductor package, the method comprising:
forming a first package including a first chip on a first substrate;
forming a second package including a second chip on a second substrate;
forming a moulding cap provided with a via hole and a recess structure configured to receive the first chip, wherein the via hole and the recess structure are simultaneously formed and wherein the moulding cap is formed separately from the first package and the second package;
providing the second package on the first package with the moulding cap being therebetween such that the recess structure receives the first chip; and
providing a contact in the via hole connecting the first package and the second package, wherein the contact is in direct physical contact with the moulding cap.
10. A method of forming a semiconductor package, the method comprising:
forming a first package including a first chip on a first substrate by mounting the first chip on the first substrate, electrically connecting the first substrate to the first chip through bonding bumps or bonding wires and forming a passivation material between the first substrate and the first chip and on a sidewall of the first chip;
forming a second package including a second chip on a second substrate by mounting the second chip on the second substrate, electrically connecting the second substrate to the second chip through bonding bumps or bonding wires and forming a passivation material on the second substrate to mould the second chip;
forming a moulding cap provided with via holes and a recess structure configured to receive the first chip, wherein the molding cap is formed using a mould comprising an upper mould and a lower mould and by injecting an epoxy moulding compound (EMC) into a formation region between the upper mould and the lower mould and then curing the EMC, wherein the lower mould is provided with a first projection for forming the recess structure and the upper mold is provided with a second projection for forming the via holes, and wherein the moulding cap is formed separately from the first package and the second package;
adhering the moulding cap to an upper surface of the first package by an adhesive such that the recess structure receives the first chip therein;
providing the second package on a top surface of the moulding cap adhered to the first package such that the moulding cap is disposed between the first package and the second package;
providing a solder ball into at least one of the via holes of the moulding cap; and
forming a contact in the at least one of the via holes of the moulding cap by performing a reflow process on the solder ball, thereby connecting the first package and the second package, wherein the contact is in direct physical contact with the moulding cap.
2. The method of
3. The method of
forming a first pad at the first package to correspond to the via hole; and
forming a second pad at the second package to correspond to the via hole.
4. The method of
providing a solder ball on at least one of the first pad and the second pad; and
providing the solder ball into the via hole.
5. The method of
6. The method of
7. The method of
8. The method of
11. The method of
12. The method of
13. The method of
14. The method of
15. The method of
16. The method of
17. The method of
18. The method of
|
This U.S. non-provisional patent application claims priority under 35 U.S.C. §119 to Korean Patent Application No. 10-2009-0048214, filed on Jun. 1, 2009, the entire disclosure of which is hereby incorporated by reference herein in its entirety.
The present disclosure herein relates to a method of forming a semiconductor device package, and more particularly, to formation of a moulding cap of a semiconductor device package.
As the performances of electronic appliances are being improved, the operational speeds of semiconductor chips are likewise also being improved. In addition, as electronic appliances are miniaturized, compactness, slimness and lightweight trends in semiconductor packages may also increase. One of interconnection technologies for addressing these trends is the flip chip bonding technology. The flip chip bonding technology is a technology that may attach and mount each semiconductor chip obtained by cutting a wafer onto a printed circuit board without packaging the semiconductor chip. The term “flip chip” has been adopted as a chip is flipped over. A semiconductor chip may be mounted on a substrate by forming bumps on pads disposed in the upper portion of the semiconductor chip, and by connecting connection pads printed on the substrate to the bumps in a soldering manner. According to the flip chip bonding technology, as a chip can be mounted in its size on a substrate, the flip chip bonding technology is a representative chip scale package (CSP). The flip chip bonding technology is called a semiconductor mounting technology without using a lead frame, that is, a wireless semiconductor mounting technology. The flip chip bonding technology may improve electrical characteristics as a connection distance between a chip and a pad may be small, and may improves thermal characteristics as the back side of a chip may be exposed to the outside. Furthermore, the flip chip bonding technology can facilitate the attaching of solder balls using self-alignment characteristics of solder balls.
Recently, as semiconductor devices and electronic appliances including semiconductor devices grow in capacity, and are slimmed and miniaturized, various package technologies for addressing these trends are being increasingly introduced. According to one of these package technologies, various semiconductor chips can be vertically stacked to achieve high density chip stacking. This technology can integrate semiconductor chips having various functions in a smaller area than that of a typical package configured by a single semiconductor chip.
However, a package technology of stacking a plurality of semiconductor chips may be less in yield than a package technology using a single semiconductor chip. To prevent yield reduction and achieve high density chip stacking, the so-called package on package (POP) technology, which stacks a package on a package, has been suggested. As the POP technology uses semiconductor packages which passed a test, defects of final products can be reduced.
Nevertheless, there is still a need in the art for a more reliable structure in stacking semiconductor packages.
The present disclosure may provide a more reliable structure in stacking semiconductor packages.
Embodiments of the inventive concept may provide methods of forming a semiconductor package. The methods include forming a first package including a first chip on a first substrate, forming a second package including a second chip on a second substrate, forming a moulding cap provided with a via hole and a recess structure configured to receive the first chip and providing the second package on the first package with the moulding cap being therebetween such that the recess structure receives the first chip. The via hole and the recess structure are simultaneously formed.
The moulding cap may be formed using a mould providing the via hole.
The forming of the contact in the via hole may include: providing a solder ball on at least one of the first and second pads and providing the solder ball into the via hole.
A middle portion of the contact may have a cross section that is less than those of upper and lower portions of the contact.
In accordance with another embodiment, a method of forming a semiconductor package is provided. The method includes forming a first package including a first chip on a first substrate by mounting the first chip on the first substrate, electrically connecting the first substrate to the first chip through bonding bumps or bonding wires, forming a passivation material between the first substrate and the first chip and on a sidewall of the first chip, forming a second package including a second chip on a second substrate by mounting the second chip on the second substrate, electrically connecting the second substrate to the second chip through bonding bumps or bonding wires and forming a passivation material on the second substrate to mould the second chip, forming a moulding cap provided with via holes and a recess structure configured to receive the first chip. The molding cap is formed using a mold comprising an upper mould and a lower mould and by injecting an epoxy moulding compound (EMC) into a formation region between the upper mould and the lower mould and then curing the EMC. The lower mould is provided with a first projection for forming the recess structure and the upper mold is provided with a second projection for forming the via holes. The method further includes adhering the moulding cap to an upper surface of the first package by an adhesive such that the recess structure receives the first chip therein and providing the second package on a top surface of the moulding cap adhered to the first package such that the moulding cap is disposed between the first package and the second package.
The accompanying figures are included to provide a further understanding of the inventive concept, and are incorporated in and constitute a part of this specification. The drawings illustrate exemplary embodiments of the inventive concept and, together with the description, serve to explain principles of the inventive concept. In the figures:
Exemplary embodiments of the inventive concept will be described below in more detail with reference to the accompanying drawings. The inventive concept may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the inventive concept to those skilled in the art. Like reference numerals refer to like elements throughout.
In the specification, it will be understood that when a layer (or film) is referred to as being ‘on’ another layer or substrate, it can be directly on the other layer or substrate, or intervening layers may also be present. In the figures, the dimensions of layers and regions are exaggerated for clarity of illustration. Also, though terms like a first, a second, and a third are used to describe various regions and layers in various embodiments of the inventive concept, the regions and the layers are not limited to these terms. These terms are used only to discriminate one region or layer from another region or layer. Therefore, a layer referred to as a first layer in one embodiment can be referred to as a second layer in another embodiment. An embodiment described and exemplified herein includes a complementary embodiment thereof.
In the following description, the technical terms are used only for explain a specific exemplary embodiment while not limiting the inventive concept. The meaning of “include,” “comprise,” “including,” or “comprising,” specifies a property, a region, a fixed number, a step, a process, an element and/or a component but does not exclude other properties, regions, fixed numbers, steps, processes, elements and/or components.
Additionally, the embodiment in the detailed description will be described with sectional views as ideal exemplary views of the inventive concept. In the figures, the dimensions of layers and regions are exaggerated for clarity of illustration. Accordingly, shapes of the exemplary views may be modified according to manufacturing techniques and/or allowable errors. Therefore, the embodiments of the inventive concept are not limited to the specific shape illustrated in the exemplary views, but may include other shapes that may be created according to manufacturing processes. For example, although an etch region is illustrated as a right-angled region, the etch region may be actually round or have a predetermined curvature. Areas exemplified in the drawings have general properties, and are used to illustrate a specific shape of a device region. Thus, this should not be construed as limited to the scope of the inventive concept.
Hereinafter, exemplary embodiments of the inventive concept will be described in detail with reference to the accompanying drawings.
Referring to
The upper portion of the first substrate 101 may be provided with first pads 104 for an electrical connection. In the current embodiment, first bumps 105 are disposed on the first pads 104. The first bumps 105 may be used as members for electrically connecting to a second package to be described later.
Referring to
When the via holes 121 are mechanically formed using a member such as, for example, a laser, a punch, or a drill, contaminants may be formed in the inner and upper portions of the via holes 121. Such contaminants may cause a stack defect when an upper package is stacked. For example, when a laser is used to form the via holes 121, the laser may damage the first substrate 101 and the first pads 104 provided at the lower side.
Referring to
The lower portion of the second substrate 141 may be provided with second pads 144 for an electrical connection. In the current embodiment, second bumps 145 are disposed on the second pads 144. The second bumps 145 may be used as members for electrically connecting to the first package 100. The second bumps 145 may be disposed at positions corresponding to the positions of the via holes 121. In the current embodiment, the second package 140 may be adhered to the moulding cap 120 through, for example, an epoxy.
Referring to
A method of forming a semiconductor package will now be described according to another embodiment of the inventive concept. The current embodiment is similar to the previous one except for a contact forming method, the shape of a via hole, and the structure of a moulding cap. Thus, descriptions of the same technical characteristics to those of the previous embodiment will be omitted for convenience.
Referring to
The upper portion of the first substrate 201 may be provided with first pads 204 for an electrical connection. In the current embodiment, first bumps 205 are disposed on the first pads 204. The first bumps 205 may be used as members for electrically connecting to a second package to be described later.
A moulding cap 220 is disposed on the first package 200. The moulding cap 220 may include via holes 221 as passages for electrically connecting the first package 200 to the second package to be described later. The via holes 221 may be disposed at positions corresponding to those of the first bumps 205. In the current embodiment, the via holes 221 may have an upper cross section that is less than a lower cross section of the via holes 221. In the current embodiment, the moulding cap 220 may include a recess structure in the form of a structure having an open portion or opening 223 corresponding to the shape of the first chip 202 and the shape of the passivation material 206. The opening 223 is formed to reduce the height and weight of an entire package. The moulding cap 220 may be adhered to the first package 200, e.g., through an adhesive. In the current embodiment, the moulding cap 220 may be adhered to the first package 200 through an epoxy.
Referring to
Referring to
A method of forming a semiconductor package will now be described according to another embodiment of the inventive concept. The current embodiment is similar to the previous embodiment of
Referring to
The upper portion of the first substrate 301 may be provided with first pads 304 for an electrical connection. In the current embodiment, bumps are not disposed on the first pads 304.
A moulding cap 320 is disposed on the first package 300. The moulding cap 320 includes via holes 321 as passages for electrically connecting the first package 300 to a second package to be described later. The via holes 321 may be disposed at positions corresponding to those of the first pads 304. In the current embodiment, the via holes 321 may have a lower cross section that is less than the upper cross section of the via holes 321. In the current embodiment, the moulding cap 320 may include an opening 323 greater than a region corresponding to the upper portion of the first package 300. The opening 323 is formed to reduce the height and weight of an entire package. The moulding cap 320 may be adhered to the first package 300, e.g., through an adhesive. In the current embodiment, the moulding cap 320 may be adhered to the first package 300 through, for example, an epoxy.
Referring to
Referring to
A method of forming a semiconductor package will now be described according to another embodiment of the inventive concept. The current embodiment is similar to the previous embodiment of
Referring to
The upper portion of the first substrate 401 may be provided with first pads 404 for an electrical connection. In the current embodiment, first bumps 405 are disposed on the first pads 404. The first bumps 405 may be used as members for electrically connecting to a second package to be described later.
A moulding cap 420 is disposed on the first package 400. The moulding cap 420 includes via holes 421 as passages for electrically connecting the first package 400 to the second package to be described later. The via holes 421 may be disposed at positions corresponding to those of the first bumps 405. In the current embodiment, a portion of the via hole 421, which contacts a pad, may have a greater cross section than that of a portion of the via hole 421, which does not contact the pad. That is, the via holes 421 may include great upper and lower openings and small middle openings. In the current embodiment, the lower portion of the moulding cap 420 may have a recess structure 423 corresponding to the first package 400. The moulding cap 420 may be adhered to the first package 400, e.g., through an adhesive. In the current embodiment, the moulding cap 420 may be adhered to the first package 400 through, for example, an epoxy.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
The memory card system 800 may be, for example, a multimedia card (MMC), a secure digital card (SD), or a portable data storage device.
Referring to
The electronic device 1000 can be applied to, for example, computer systems, wireless communication devices including PDAs, laptop computers, portable computers, web tablets, wireless telephones, mobile phones, digital music players, MP3 players, navigation systems, solid state disks (SSDs), and household appliances, and any devices used for data transmission in a wireless environment.
According to the embodiments of the inventive concept, the moulding cap is disposed between the packages, and the moulding cap is formed using a mould to address a limitation occurring when a via hole is formed using a member such as, for example, a laser. Furthermore, the shape of the via hole can be modified to form a more reliable package structure.
Having described the exemplary embodiments of the inventive concept, it is further noted that various modifications can be made herein without departing from the spirit and scope of the invention as defined by the metes and bounds of the appended claims.
The above-disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments, which fall within the true spirit and scope of the inventive concept. Thus, to the maximum extent allowed by law, the scope of the inventive concept is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.
Park, Jin-Woo, Yim, Choongbin, Kim, Mi-yeon, Kim, Donghan, Mok, Seungkon, Lee, PaLan
Patent | Priority | Assignee | Title |
9287478, | Oct 06 2011 | EPISTAR CORPORATION | Method and apparatus for accurate die-to-wafer bonding |
Patent | Priority | Assignee | Title |
7429501, | Aug 25 2003 | XILINX, Inc. | Lid and method of employing a lid on an integrated circuit |
8097489, | Mar 23 2009 | STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD | Semiconductor device and method of mounting pre-fabricated shielding frame over semiconductor die |
20080293189, | |||
20090027860, | |||
JP2005026469, | |||
JP2008171904, | |||
JP2008263121, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 18 2010 | MOK, SEUNGKON | SAMSUNG ELECTRONICS CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024451 | /0366 | |
May 18 2010 | KIM, DONGHAN | SAMSUNG ELECTRONICS CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024451 | /0366 | |
May 18 2010 | LEE, PALAN | SAMSUNG ELECTRONICS CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024451 | /0366 | |
May 18 2010 | KIM, MI-YEON | SAMSUNG ELECTRONICS CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024451 | /0366 | |
May 19 2010 | YIM, CHOONGBIN | SAMSUNG ELECTRONICS CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024451 | /0366 | |
May 19 2010 | PARK, JIN-WOO | SAMSUNG ELECTRONICS CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024451 | /0366 | |
May 27 2010 | Samsung Electronics Co. Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Mar 21 2017 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 14 2021 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Oct 29 2016 | 4 years fee payment window open |
Apr 29 2017 | 6 months grace period start (w surcharge) |
Oct 29 2017 | patent expiry (for year 4) |
Oct 29 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 29 2020 | 8 years fee payment window open |
Apr 29 2021 | 6 months grace period start (w surcharge) |
Oct 29 2021 | patent expiry (for year 8) |
Oct 29 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 29 2024 | 12 years fee payment window open |
Apr 29 2025 | 6 months grace period start (w surcharge) |
Oct 29 2025 | patent expiry (for year 12) |
Oct 29 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |