A light emitting diode (led) package includes a substrate, a first led chip and a second led chip. The substrate includes first to fourth electrodes, and an interconnection electrode. A mounting area is defined at center of a top surface of the substrate. The first to fourth electrodes are respectively in four corners of the substrate out of the mounting area. The first interconnection electrode is embedded in the substrate to electrically connect the first and the third electrodes. The first led chip and the second led chip are arranged in the mounting area. Each led chip includes an anode pad and a cathode pad. The first to fourth electrodes are respectively connected to the four pads of the first and the second led chips via a plurality of metal wires, and no metal wire connection is formed between the first and the second led chips.
|
1. A light emitting diode (led) package comprising:
a substrate comprising a first electrode, a second electrode, a third electrode, a fourth electrode, and an interconnection electrode, a mounting area defined at center of a top surface of the substrate, the first to fourth electrodes respectively positioned in four corners of the substrate out of the mounting area and exposed from the top surface of the substrate, the first interconnection electrode embedded in the substrate to electrically connect the first and the third electrodes; and
a first led chip and a second led chip arranged on the mounting area, each led chip comprising an anode pad and a cathode pad;
wherein the first to fourth electrodes are respectively connected to the four pads of the first and the second led chips via a plurality of metal wires, and no metal wire connection is formed between the first and the second led chips.
2. The led package of
3. The led package of
4. The led package of
5. The led package of
6. The led package of
7. The led package of
8. The led package of
9. The led package of
|
This patent application is a divisional application of patent application Ser. No. 13/082,406, filed on Apr. 8, 2011, entitled “LIGHT EMITTING DIODE PACKAGE HAVING INTERCONNECTION STRUCTURES”, assigned to the same assignee, and disclosure of which is incorporated herein by reference in its entirety.
1. Technical Field
The present disclosure relates to a light emitting diode (LED) package, and more particularly, to an LED package having an interconnection structure.
2. Description of Related Art
Referring to
However, when the pads of the first LED chip 11 and the second LED chip 12 are connected via the metal wires 13b, the first and the second LED chips 11, 12 may be damaged due to electrostatic discharge thereof, thereby reducing the reliability of the LED package 1. Moreover, because the pads of the first and the second LED chips 11, 12 are higher than the first electrode 101 and the second electrode 102 on the substrate 10 according to the metal wire bonding technology, the second metal wire 13b connecting between the pads of the first and the second LED chips 11, 12 needs to be higher than the first and the third metal wires 13a and 13c, as shown in
Therefore, an LED package is desired to overcome the above-described shortcomings.
The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of at least one embodiment. In the drawings, like reference numerals designate corresponding parts throughout the various views.
Reference will now be made to the drawings to describe various inventive embodiments of the present disclosure in detail, wherein like numerals refer to like units throughout.
Referring to
The substrate 20 is rectangular and includes a first electrode 201, a second electrode 202, a third electrode 203, a fourth electrode 204, an interconnection electrode 261, and a mounting area 259. The mounting area 259 is a square region defined at center of a top surface of the substrate 20. The first to fourth electrodes 201˜204 are correspondingly arranged adjacent four corners of the substrate 20 outside the mounting area 259. The first electrode 201 and the fourth electrode 204 extend downwardly from the top surface of the substrate 20 to a position beyond a bottom surface of the substrate 20. Top ends of the second electrode 202 and the third electrode 203 are exposed from the top surface of the substrate 20. The interconnection electrode 261 is embedded in the substrate 20 and configured for electrically interconnecting the second electrode 202 and the third electrode 203.
The first LED chip 21 and the second LED chip 22 are mounted on the mounting area 259 as shown in
Referring to
The mounting base 25 includes four mounting holes 251 arranged in its four corners. The mounting area 259 is defined at center of a top surface of the mounting base 25 and surrounded by the four mounting holes 251.
The first to fourth electrodes 201˜204, and the interconnection electrode 261 are formed on the layout layer 26. The first to fourth electrodes 201˜204 are correspondingly arranged in four corners of the layout layer 26 and located corresponding to the mounting holes 251. The first electrode 201 and the fourth electrode 204 are located at two opposite diagonal corners and the second electrode 202 and the third electrode 203 are located at other two opposite diagonal corners of the layout layer 26. The interconnection electrode 261 electrically connects the second electrode 202 to the third electrode 203.
The supporting base 28 includes two exposing holes 282 arranged at its two opposite diagonal corners corresponding to the first electrode 201 and the fourth electrode 204.
In assembly, the mounting base 25 is attached to the layout layer 26 in such manner that a bottom surface of the mounting base 25 aligns with and contacts a top surface of the layout layer 26 to make the first to fourth electrodes 201˜204 correspondingly pass through the mounting holes 251. Therefore, ends of the first to fourth electrodes 201˜204 are exposed at the top surface of the mounting base 25 for connecting to the pads of the first and the second LED chips 21, 22 via the metal wires 23. In this embodiment, top surfaces of the first to fourth electrodes 201˜204 are coplanar to the top surface of the mounting base 25.
Then, the layout layer 26 together with the mounting base 25 is attached to the supporting base 28 in such manner that a bottom surface of the layout base 26 aligns with and contacts a top surface of the supporting base 28. Therefore, the first electrode 201 and the fourth electrode 204 correspondingly pass through the exposing holes 282 and protrude from a bottom surface of the supporting base 28. The protruded first electrode 201 and fourth electrode 204 function as connecting terminals of the LED package 2 and electrically connect with an external circuit (not shown).
After that, the mounting base 25, the layout layer 26, and the supporting base 28 are integrated together into a single piece using low temperature cofired ceramics (LTCC) technology.
Because the pads of the first and the second LED chip 21, 22 are directly connected to corresponding electrodes 201˜204, and there has no metal wires directly connected between any two pads of the first and the second LED chips 21, 22, the LED package 2 can be manufactured with a low profile and an improved reliability than the related LED package 1 shown in
Referring to
As shown in
The mounting base 35 includes six mounting holes 351, four of which are positioned in four corners of the mounting base 35 and the other two of which are positioned at two opposite sides of the mounting base 35. A rectangular area which is surrounded by the mounting holes 351 and positioned at center of a top surface of the mounting base 35 is defined as a mounting area 359.
The first layout layer 36 includes first to fourth electrodes 301˜304, a first interconnection electrode 361, and a second interconnection electrode 362. The first to fourth electrodes 3011˜304 are positioned in four corners of the first layout layer 36 corresponding to the mounting holes 351 in the corners of the mounting base 35.
The first electrode 301 and the fourth electrode 304 are positioned at two opposite diagonal corners. The second electrode 302 and the third electrode 303 are positioned at the other two opposite diagonal corners of the first layout layer 36. The first interconnection electrode 361 connects the first electrode 301 to the third electrode 303. The second interconnection electrode 362 connects the second electrode 302 to the fourth electrode 304. In this embodiment, the first interconnection electrode 361 and the second interconnection electrode 362 are strip-shaped and parallel to each other.
The second layout layer 37 is sandwiched between the first layout layer 36 and the mounting base 35 and includes a fifth electrode 305, a sixth electrode 306, a third interconnection electrode 373 formed thereon. Four through holes 372 are defined in four corners of the second layout layer 37 corresponding to the first to fourth electrodes 301˜304. The fifth and the sixth electrodes 305, 306 are arranged corresponding to the two mounting holes 351 positioned at opposite sides of the mounting base 35. In other words, the fifth and the sixth electrodes 305, 306 are positioned at two opposite sides of the mounting area 359 corresponding to the mounting holes 351 at opposite sides of the mounting base 35. The third interconnection electrode 373 electrically connects the fifth and the sixth electrodes 305, 306. In this embodiment, the third interconnection electrode 373 is strip-shaped and electrically insulated from and perpendicular to the first and the second interconnection electrodes 361, 362.
The supporting base 38 includes two exposing holes 383 which are located at two opposite diagonal corners of the supporting base 38 corresponding to the first electrode 301 and the fourth electrode 304.
In assembly, the mounting base 35 is attached to the second layout layer 37 in such manner that a bottom surface of the mounting base 35 aligns with and contacts a top surface of the second layout layer 37. Therefore, the fifth electrode 305 and the sixth electrode 306 pass through corresponding mounting holes 351 at two opposite sides of the mounting base 35 to be exposed from the top surface of the mounting base 35.
After that, the first layout layer 36 is attached to the second layout layer 37 in such manner that a top surface of the first layout layer 36 aligns with and contacts a bottom surface of the second layout layer 37. Therefore, the first to fourth electrodes 301˜304 pass through corresponding mounting holes 351 at four corners of the mounting base 35 via the through holes 372 to expose from the top surface of the mounting base 35. In this embodiment, the first to sixth electrodes 301˜306 have top surfaces coplanar with the top surface of the mounting base 35.
Then, the supporting base 38 is attached to the first layout layer 36 to make the first electrode 301 and the fourth electrode 304 pass through the exposing holes 383 and protrude from a bottom surface of the supporting base 38. The exposed parts of first electrode 301 and the fourth electrode 304 are defined as connecting terminals of the LED package 3 for connecting an external circuit.
Finally, the mounting base 35, the first layout layer 36, the second layout layer 37, and the supporting base 38 are integrated together into a single piece, using LTCC technology. Therefore, the first interconnection electrode 316 is embedded in the substrate 30 to electrically connect the first and the third electrodes 301, 303. The second interconnection electrode 362 is embedded in the substrate 30 to electrically connect the second and the fourth electrodes 302, 304. The third interconnection electrode 373 is embedded in the substrate 30 to electrically connect the fifth and the sixth electrodes 305, 306.
In this embodiment, the first and the second LED chips 31, 32 are located in the mounting area 359 as shown in
The anode pad and the cathode pad of the first LED chip 31 respectively connect to the first electrode 301 and the second electrode 302 correspondingly via the first and the second metal wires 33a, 33b. The anode pad and the cathode pad of the second LED chip 32 respectively connect to the third electrode 303 and the fourth electrode 304 correspondingly via the third and the fourth metal wires 33c, 33d. In other words, four pads of the LED chips 31, 32 respectively connect to the first to fourth electrodes 301˜304 via the metal wires.
In such manner, the first LED chip 31 and the second LED chip 32 are electrically connected in parallel between the first electrode 301 and the fourth electrode 304.
Referring to
In such manner, the first LED chip 31 and the second LED chip 32 are electrically connected in series between the first electrode 301 and the fourth electrode 304.
It is to be understood, however, that even though numerous characteristics and advantages of certain inventive embodiments have been set out in the foregoing description, together with details of the structures and functions of the embodiments, the disclosure is illustrative only; and that changes may be made in detail, especially in matters of arrangement of parts within the principles of present invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Chang, Chao-Hsiung, Hu, Pi-Chiang
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
7176503, | Jul 02 2004 | SAMSUNG ELECTRONICS CO , LTD | Light emitting diode package and light source comprising the same |
7709946, | Jun 27 2006 | Hana Micron Co., Ltd. | Micro universal serial bus (USB) memory package |
8030670, | Jun 25 2008 | Samsung Electronics Co., Ltd. | Multi-chip package for LED chip and multi-chip package LED device including the multi-chip package |
20100117099, | |||
20100277919, | |||
20110186875, | |||
20120223343, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 21 2013 | CHANG, CHAO-HSIUNG | ADVANCED OPTOELECTRONIC TECHNOLOGY, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029901 | /0632 | |
Feb 21 2013 | HU, PI-CHIANG | ADVANCED OPTOELECTRONIC TECHNOLOGY, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029901 | /0632 | |
Mar 01 2013 | Advanced Optoelectronic Technology, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Apr 26 2017 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jun 21 2021 | REM: Maintenance Fee Reminder Mailed. |
Dec 06 2021 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Oct 29 2016 | 4 years fee payment window open |
Apr 29 2017 | 6 months grace period start (w surcharge) |
Oct 29 2017 | patent expiry (for year 4) |
Oct 29 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 29 2020 | 8 years fee payment window open |
Apr 29 2021 | 6 months grace period start (w surcharge) |
Oct 29 2021 | patent expiry (for year 8) |
Oct 29 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 29 2024 | 12 years fee payment window open |
Apr 29 2025 | 6 months grace period start (w surcharge) |
Oct 29 2025 | patent expiry (for year 12) |
Oct 29 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |