A surgical access assembly is disclosed that is configured and dimensioned for positioning within an opening in tissue providing access to and internal body cavity to facilitate the passage of a surgical instrument into an internal work site. The surgical access assembly includes first and second arms and third and fourth arms. The first and second arms and the third and fourth arms are configured and dimensioned for relative movement such that the surgical access assembly is reconfigurable between a first configuration, wherein a first transverse dimension is defined, and a second configuration wherein a second transverse dimension is defined. The first transverse dimension is smaller than the second transverse dimension.
|
17. A surgical access assembly comprising:
a first member including a first pair of arms having proximal and distal ends; and
a second member including a second pair of arms having proximal and distal ends, the surgical access assembly including a passageway defining a longitudinal axis configured to receive a surgical instrument, and being reconfigurable between an initial position, wherein the proximal ends of the first pair of arms define a first distance therebetween and the distal ends of the first pair of arms define a second distance therebetween, and a subsequent position, wherein the proximal ends of the first pair of arms define a third distance therebetween and the distal ends of the first pair of arms define a fourth distance therebetween, the first distance being greater than the third distance, and the fourth distance being greater than the second distance, the access assembly further including a flexible member connected to at least one of the pair of arms, the flexible member facilitating enlargement of the opening in the tissue during movement of the access assembly from the initial position to the subsequent position.
1. A surgical access assembly configured and dimensioned for positioning within an opening in tissue providing access to an internal body cavity, the surgical access assembly comprising a passageway defining a longitudinal axis for passage of a surgical instrument into an internal work site, first and second arms, and third and fourth arms, the first and second arms and the third and fourth arms being configured and dimensioned for relative movement such that the surgical access assembly is reconfigurable between a first configuration, wherein a first transverse dimension is defined, and a second configuration, wherein a second transverse dimension is defined, the first transverse dimension being smaller than the second transverse dimension, the first and second arms being connected at a first point, and the third and fourth arms being connected at a second point such that the distance between the first and second points along the longitudinal axis remains constant during movement of the surgical access assembly between the first and second configurations, the access assembly further including a flexible member connected to at least one of the arms, the flexible member facilitating enlargement of the opening in the tissue during movement of the access assembly from the first configuration to the second configuration.
2. The surgical access assembly of
3. The surgical access assembly of
4. The surgical access assembly of
5. The surgical access assembly of
6. The surgical access assembly of
7. The surgical access assembly of
8. The surgical access assembly of
9. The surgical access assembly of
10. The surgical access assembly of
11. The surgical access assembly of
12. The surgical access assembly of
13. The surgical access assembly of
14. The surgical access assembly of
15. The surgical access assembly of
16. The surgical access assembly of
18. The surgical access assembly of
19. The surgical access assembly of
20. The surgical access assembly of
|
This application claims priority from provisional application Ser. No. 61/304,131, filed Feb. 12, 2010, the entire contents of which are incorporated herein by reference.
1. Technical Field
The present disclosure relates generally to devices and techniques for performing surgical procedures. More particularly, the present disclosure relates to an access device for minimally invasive surgery.
2. Background of the Related Art
In an effort to reduce trauma and recovery time, many surgical procedures are performed through small openings in the skin, such as an incision or a natural body orifice. For example, these procedures include laparoscopic procedures, which are generally performed within the confines of a patient's abdomen, and thoracic procedures, which are generally performed within a patient's chest cavity.
Specific surgical instruments have been developed for use during such minimally invasive surgical procedures. These surgical instruments typically include an elongated shaft with operative structure positioned at a distal end thereof, such as graspers, clip appliers, specimen retrieval bags, etc.
During minimally invasive procedures, the clinician creates an opening in the patient's body wall, oftentimes by using an obturator or trocar, and thereafter positions an access assembly within the opening. The access assembly includes a passageway extending therethrough to receive one or more of the above-mentioned surgical instruments for positioning within the internal work site, e.g. the body cavity.
During minimally invasive thoracic procedures, an access assembly is generally inserted into a space located between the patient's adjacent ribs that is known as the intercostal space, and then surgical instruments can be inserted into the internal work site therethrough through the passageway in the access assembly.
In the interests of facilitating visualization, the introduction of certain surgical instruments, and/or the removal of tissue specimens during minimally invasive thoracic procedures, it may be desirable to spread the adjacent ribs defining the intercostal space and/or retract soft tissue. Additionally, during these procedures, firm, reliable placement of the access assembly is desirable to allow the access assembly to withstand forces that are applied during manipulation of the instrument(s) inserted therethrough. However, reducing patient trauma during the procedure, discomfort during recovery, and the overall recovery time remain issues of importance. Thus, there exists a need for thoracic access ports which minimize post operative patient pain while enabling atraumatic retraction of tissue and which do not restrict access to the body cavity.
In the present disclosure, a surgical access assembly is disclosed that is configured and dimensioned for positioning within an opening in tissue providing access to an internal body cavity to facilitate the passage of a surgical instrument into an internal work site.
The surgical access assembly includes in one aspect first and second arms and third and fourth arms. The arms are configured and dimensioned for relative movement such that the surgical access assembly is reconfigurable between first and second configurations. In the first configuration, the access assembly defines a first transverse dimension, and in the second configuration, the access assembly defines a second transverse dimension, the first transverse dimension being smaller than the second transverse dimension.
The arms may each include arcuate distal portions and/or arcuate proximal portions that are configured and dimensioned to conform to a contour of the patient's tissue. In some embodiments, the arcuate distal portions and/or arcuate proximal portions curve in opposing directions.
The surgical access assembly may further include a flexible member extending between the arms, e.g., a sleeve member formed from a substantially compliant material, to facilitate enlargement of the opening in the patient's tissue during movement of the access assembly from the first configuration to the second configuration. The surgical access assembly may further include a rod extending between the first and third arms of the access assembly about which the flexible member may be positioned.
Additionally, or alternatively, the surgical access assembly may include a biasing member that is operatively associated with one of the first and second arms. The biasing member, in some embodiments, may normally bias the access assembly towards the first configuration, and in other embodiments towards the second configuration. A locking member can be provided to maintain the second configuration of the access assembly.
The access assembly may also include one or more cushioning members, preferably positioned adjacent a tissue contacting portion of the access assembly and preferably formed from a substantially compliant material.
In some embodiments, the first and second arms move in a scissor like movement and the third and fourth arms move in a scissor like movement to selectively reconfigure the access assembly between first and second configurations
In another aspect of the present disclosure, a method of obtaining a tissue sample from within an internal surgical work site is disclosed. The method includes the steps of: (i) advancing an access assembly through an opening in tissue and into the intercostal space, wherein the access assembly includes first and second sections each having first and second arms; (ii) reconfiguring the access assembly via relative movement of the arms of the first and second sections to thereby enlarge the opening in the tissue; (iii) inserting a specimen retrieval instrument into the internal work site through a passageway extending through the access assembly; and (iv) utilizing the specimen retrieval instrument to obtain the tissue sample and withdraw it through the access assembly.
The step of reconfiguring the access assembly may include separation of the arms of the first and second members via a biasing member. The method may further include the step of reconfiguring the access assembly into a first configuration prior to the step of advancing the access assembly via application of an inwardly directed force to the first and second members to overcome a bias applied by a biasing member.
The method may further reconfiguring the access assembly by separation of the arms of the first and second members in a scissor like movement.
In some embodiments, the access assembly includes a flexible member and relative movement of the arms enables the flexible member to spread tissue adjacent the opening.
Various exemplary embodiments of the present disclosure are described herein below with reference to the drawings, wherein:
Various embodiments of the presently disclosed access assembly, and methods of using the same, will now be described in detail with reference to the drawings wherein like references numerals identify similar or identical elements. In the drawings, and in the following description, the term “proximal” should be understood as referring to the end of the access assembly, or component thereof, that is closer to the clinician during proper use, while the term “distal” should be understood as referring to the end that is farther from the clinician, as is traditional and conventional in the art. Additionally, use of the term “tissue” herein below should be understood to encompass both the patient's ribs, and any surrounding tissues. It should be also be understood that the term “minimally invasive procedure” is intended to include surgical procedures through small openings/incisions performed within a confined space such as the thoracic cavity or abdominal cavity.
The access assembly 100 includes a first section 102 and a second section 104. The first section 102 includes respective proximal and distal ends 106, 108 (
The arms 110, 112 of the first section 102 are each formed from a substantially rigid, biocompatible material, including for example, metallic materials such as stainless steel and titanium alloys and non-metallic materials include polymers and co-polymers such as Acetal resin, ABS and LCP. The arms 110, 112, respectively include arcuate proximal portions 116, 118 and distal portions 120, 122. The curvature at the proximal portion 116 of the first arm 110 is opposite the curvature at the proximal portion 118 of the second arm 112, and the curvature at the distal portion 120 of the first arm 110 is opposite the curvature at the distal portion 122 of the second arm 112.
The sleeve (e.g. membrane) 114 (
The second section 104 of the access assembly 100 includes respective proximal and distal ends 134, 136 (
As with the first and second arms 110, 112 of the first section 102, the first and second arms 138, 140 of the second section 104 are each formed from a substantially rigid, biocompatible material, such as the materials listed above for arms 110, 112. The arms 138, 140, respectively include arcuate proximal portions 144, 146 and arcuate distal portions 148, 150. The curvature at the proximal portion 144 of the first arm 138 is opposite that of the proximal portion 146 of the second arm 140, and the curvature at the distal portion 148 of the first arm 138 is opposite that of the distal portion 150 of the second arm 140.
The arcuate configurations of the arms 110, 112 included at the proximal portions 116, 118 and distal portions 120, 122 and the arcuate configurations of the arms 138, 140 included at the proximal portions 144, 146 and distal portions 148, 150 thereof, respectively, allow the first and second sections 102, 104 to conform to the contour of the patient's tissue during use, thereby increasing reliability regarding placement of the access assembly 100, and the ability of the access assembly 100 to withstand forces that are applied during manipulation of any surgical instrument(s) inserted therethrough.
The sleeve (e.g. membrane) 142 (
The configuration and dimensions of the first section or member 102 (
As best seen in
In the collapsed configuration (
During the course of a thoracic surgical procedure, in the collapsed configuration, the access assembly 100 is positioned between the patient's adjacent ribs “R” (
To move the access assembly 100 from the collapsed configuration (
With continued reference to
Initially, the opening “O” (
Following placement as desired, the access assembly 100 is expanded. During expansion, the proximal portions of arms 110, 112 and arms 138, 140 are moved apart, thereby moving the respective distal portions 120, 122 (
It is noted that the access assembly 100 may be configured and dimensioned in some embodiments such that relative movement between the arms 110, 112 of the first section 102 and relative movement between the arms 138, 140 of the second section 104 may also separate the patient's ribs “R,” if necessary or desired, in order to further increase the clinician's access to the thoracic cavity “T.”
With particular reference to
The surgical instrument(s) inserted through the access assembly 100 may be any surgical instrument(s) configured and dimensioned to pass through the passageway 164 extending through the access assembly 100, and adapted to perform a surgical, diagnostic, or other desired procedure. For example, suitable surgical instruments may include endoscopic apparatus, which perform a variety of functions such as the application of surgical clips or other such fasteners, the cutting of body tissue, and/or specimen retrieval for removing an internal tissue sample.
In order to facilitate passage of the surgical instrument(s) into the thoracic cavity “T,” and/or removal of the surgical instrument(s) therefrom, as well as to facilitate withdrawal of tissue specimens therethrough, it is envisioned that surgical instrument(s), and/or the inner surfaces of the access assembly 100 defining the passageway 164 extending therethrough, may be partially, or entirely, coated with a biocompatible, lubricous material.
Following completed use of the surgical instrument(s), the instrument(s) are withdrawn from the access assembly 100, and the access assembly 100 is returned to the collapsed configuration. As mentioned above, the reduced profile of the access assembly 100 in the collapsed configuration allows for atraumatic removal of the access assembly 100 from the intercostal space.
It should be appreciated that tension in the sleeves 114, 142 can maintain the access assembly in the open position while inserted in the patient cavity. However, it should also be appreciated that locking members are also contemplated to maintain the assembly in the open position.
With reference now to
The arms 210, 212 of the first section 202, and the arms 238, 240 of the second member 204 each include one or more cushioning portions 266 on an internal surface that are formed from a material that is relatively soft and compliant when compared to the material comprising the arms 210, 212, 238, 240 themselves. The cushioning portions 266 are positioned adjacent portions of the access assembly 100 that come into contact with the patient's tissue during use in order to protect the nerves and other tissue, thereby reducing patient discomfort and post-operative pain as well as reducing tissue trauma and/or overall recovery time.
Although the cushioning portions 266 are illustrated solely in association with the arcuate distal portions 220, 222 of the first member 202 and the arcuate distal portions 248, 250 of the second member 204 in
The biasing member 368 is configured such that absent the influence of any external forces, the access assembly 300 will realize the expanded configuration (as in
Whereas the biasing member 368 of the access assembly 300 of
Upon overcoming the bias provided by the biasing member 468 to realize the expanded configuration, i.e., through the application of an external force to the respective arms of the first and second sections or members 402, 404 of the access assembly 400 to spread the arms, the locking member 472 is actuated via movement into a position whereby approximation of the first member 402 and the second member 404 is inhibited in order to maintain the expanded configuration of the access assembly 400.
In the specific embodiment of the access assembly 400 shown in
Persons skilled in the art will understand that the structures and methods specifically described herein and illustrated in the accompanying figures are non-limiting exemplary embodiments, and that the description, disclosure, and figures should be construed merely exemplary of particular embodiments. It is to be understood, therefore, that the present disclosure is not limited to the precise embodiments described, and that various other changes and modifications may be effected by one skilled in the art without departing from the scope or spirit of the disclosure. Additionally, it is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another without departing from the scope of the present disclosure, and that such modifications and variations are also intended to be included within the scope of the present disclosure. Accordingly, the subject matter of the present disclosure is not to be limited by what has been particularly shown and described.
O'Prey, Cormac, Scott, Valerie Anne, Grover, Simon Roderick
Patent | Priority | Assignee | Title |
10660630, | Jan 24 2014 | Retraction devices and methods of its use and manufacture | |
11596439, | Nov 07 2017 | PRESCIENT SURGICAL, INC | Methods and apparatus for prevention of surgical site infection |
9861349, | Sep 29 2011 | PROA MEDICAL, INC | Speculum for obstetrical and gynecological exams and related procedures |
9907544, | Sep 29 2011 | PROA MEDICAL, INC | Minimally obstructive retractor for vaginal repairs |
9999414, | Jan 24 2014 | Retraction devices and methods of its use and manufacture |
Patent | Priority | Assignee | Title |
1780912, | |||
1810466, | |||
2313164, | |||
2541516, | |||
2812758, | |||
3782370, | |||
3807393, | |||
3965890, | Oct 18 1974 | Surgical retractor | |
4130113, | Dec 15 1976 | Richards Manufacturing Co., Inc. | Retractor |
4263899, | May 01 1978 | Locking adjustable speculum | |
4328899, | Apr 01 1980 | Crockery and glassware stand | |
4553537, | Jun 09 1983 | Kimberly-Clark Worldwide, Inc | Surgical barrier |
5007900, | Oct 31 1989 | Boston Scientific Corporation | Percutaneous endoscopic gastrostomy device |
5052374, | Aug 06 1990 | Hernia retractor | |
5080088, | Nov 09 1987 | Minnesota Scientific, Inc. | Flexible retractor |
5125396, | Oct 05 1990 | Holmed Corporation | Surgical retractor |
5169387, | Apr 03 1991 | Method and apparatus for catheterization of a body cavity | |
5231974, | May 31 1991 | Self retaining retractor | |
5232451, | Nov 22 1989 | Tyco Healthcare Group LP | Locking trocar sleeve |
5269754, | Jan 31 1992 | Everest Medical Corporation | Laparoscopic cholangiogram device |
5279575, | Aug 13 1992 | BRIGHAM & WOMEN S HOSPITAL | Locking pivotal surgical orifice |
5330501, | May 30 1991 | United States Surgical Corporation | Tissue gripping device for use with a cannula and a cannula incorporating the device |
5346484, | Oct 08 1991 | Cushion-like member for abdominal operations | |
5391156, | Jun 30 1992 | Ethicon, Inc. | Flexible encoscopic surgical port |
5437683, | Oct 31 1990 | Surgical closure | |
5445615, | Nov 06 1991 | Surgical instrument stabilizer | |
5460170, | Aug 23 1994 | HEMODYNAMICS, INC | Adjustable surgical retractor |
5480410, | Mar 14 1994 | IMAGYN MEDICAL TECHNOLOGIES, INC | Extracorporeal pneumoperitoneum access bubble |
5490843, | Jun 30 1992 | Ethicon, Inc. | Flexible endoscopic surgical port |
5503617, | Jul 19 1994 | ADVANCE MICRO SURGICAL, INC | Retractor and method for direct access endoscopic surgery |
5520610, | May 31 1991 | Self retaining retractor | |
5524644, | Jun 09 1995 | MCT II, LLC | Incrementally adjustable incision liner and retractor |
5556385, | Dec 06 1994 | CORPAK MEDSYSTEMS, INC | Improved percutaneous access device |
5562677, | Jun 30 1992 | Ethicon, Inc. | Obturator for justing a flexible trocar tube |
5653705, | Oct 07 1994 | General Surgical Innovations, Inc | Laparoscopic access port for surgical instruments or the hand |
5697891, | Jan 06 1997 | VIKING SYSTEMS, INC | Surgical retractor with accessory support |
5728103, | Aug 23 1996 | Applied Medical Technology, Inc. | Implantable subcutaneous access device and method of using same |
5755660, | Oct 31 1995 | Combination surgical retractor, light source, spreader, and suction apparatus | |
5755661, | Jun 17 1993 | Planar abdominal wall retractor for laparoscopic surgery | |
5772583, | Jan 21 1994 | Sternal retractor with attachments for mitral & tricuspid valve repair | |
5776110, | Jan 26 1996 | United States Surgical Corporation | Thoracic port |
5779629, | Oct 02 1997 | Dual axis retractor | |
5788630, | Sep 25 1996 | Technology Holding Company II | Rib retractor |
5803921, | Feb 18 1994 | Gaya Limited | Access port device for use in surgery |
5810721, | Mar 04 1996 | Edwards Lifesciences, LLC | Soft tissue retractor and method for providing surgical access |
5846193, | May 01 1997 | GENESEE BIOMEDICAL, INC | Midcab retractor |
5875782, | Nov 14 1996 | Maquet Cardiovascular, LLC | Methods and devices for minimally invasive coronary artery revascularization on a beating heart without cardiopulmonary bypass |
5879291, | Oct 08 1997 | Ethicon Endo-Surgery, Inc.; Ethicon Endo-Surgery, Inc | Device used with a surgical retractor to elevate body parts |
5906577, | Apr 30 1997 | ETHICON ENDO-SURGERY INC | Device, surgical access port, and method of retracting an incision into an opening and providing a channel through the incision |
5908382, | Jul 08 1998 | Minimally invasive retractor for internal mammary artery harvesting | |
5931778, | Sep 25 1996 | Technology Holding Company II | Rib retractor |
5935107, | Oct 07 1996 | Applied Medical Resources Corporation | Apparatus and method for surgically accessing a body cavity |
5944736, | Mar 20 1996 | Maquet Cardiovascular, LLC | Access platform for internal mammary dissection |
5951466, | Apr 13 1998 | ViaMedics, LLC | Self-seating surgical access device and method of gaining surgical access to a body cavity |
5951467, | Mar 23 1999 | APPLIED MEDICAL TECHNOLOGY, INC | Reconfigurable and self-retaining surgical retractor |
5957835, | May 16 1997 | Maquet Cardiovascular, LLC | Apparatus and method for cardiac stabilization and arterial occlusion |
5967972, | Mar 28 1997 | KAPP SURGICAL INSTRUMENT, INC | Minimally invasive surgical retractor and method of operation |
5993385, | Aug 18 1997 | PACIFIC SURGICAL INNOVATIONS, INC | Self-aligning side-loading surgical retractor |
6024736, | Oct 07 1994 | General Surgical Innovations, Inc. | Laparascopic access port for surgical instruments or the hand |
6033362, | Apr 25 1997 | Beth Israel Deaconess Medical Center | Surgical retractor and method of use |
6033425, | Nov 12 1997 | Technology Holding Company II | Lifting rib retractor |
6036641, | Jan 27 1997 | Maquet Cardiovascular, LLC | Surgical instruments for stabilizing the beating heart during coronary artery bypass graft surgery |
6048309, | Mar 04 1996 | Edwards Lifesciences, LLC | Soft tissue retractor and delivery device therefor |
6074380, | Sep 15 1995 | BTG International Limited | Device and method for transcutaneous surgery |
6113535, | Jan 23 1998 | Ethicon Endo-Surgery, Inc. | Surgical retraction apparatus |
6120436, | May 16 1997 | Maquet Cardiovascular, LLC | Apparatus and method for cardiac stabilization and arterial occlusion |
6132370, | Apr 26 1996 | Technology Holding Company II | Retractor-mounted coronary stabilizer |
6142935, | Mar 04 1996 | Edwards Lifesciences, LLC | Illuminating soft tissue retractor |
6159231, | Nov 12 1997 | Technology Holding Company II | Lifting rib retractor |
6162172, | Jan 30 1998 | Edwards Lifesciences Corporation | Methods and apparatus for retracting tissue |
6231506, | May 04 1999 | Maquet Cardiovascular, LLC | Method and apparatus for creating a working opening through an incision |
6254533, | Jul 07 2000 | Dexterity Surgical, Inc. | Retractor assembly and method for surgical procedures |
6254534, | Oct 14 1999 | Atropos Limited | Retractor |
6283912, | May 04 1999 | Maquet Cardiovascular, LLC | Surgical retractor platform blade apparatus |
6309349, | Apr 10 1996 | Terumo Cardiovascular Systems Corporation | Surgical retractor and stabilizing device and method for use |
6312377, | Apr 06 2000 | ViaMedics, LLC | Soft tissue compression shield and method of retracting tissue |
6331158, | May 04 1999 | Maquet Cardiovascular, LLC | Surgical retractor apparatus for operating on the heart through an incision |
6354995, | Apr 24 1998 | Rotational lateral expander device | |
6361492, | Mar 28 1997 | KAPP SURGICAL INSTRUMENT, INC | Surgical stabilizer |
6382211, | Jul 21 1997 | MCT II, LLC | Surgical retractor liner appliance |
6443957, | Dec 11 1998 | Edwards Lifesciences Corporation | Suture-free clamp and sealing port and methods of use |
6450983, | Oct 03 2001 | MCT II, LLC | O-ring for incrementally adjustable incision liner and retractor |
6458079, | Apr 25 1997 | TELEFLEX MEDICAL INCORPORATED | Surgical retractor and method of use |
6500116, | Jan 24 1999 | Technology Holding Company II | Surgical retractor having improved blades |
6517563, | Aug 17 1998 | Coroneo, Inc. | Pericardium retraction device for positioning a beating heart |
6547725, | Aug 10 1998 | Coroneo, Inc | Surgical suture and associated anchoring mechanism for tissue retraction |
6585442, | May 03 2000 | REGENTS OF THE UNIVERSITY OF MICHIGAN, THE | Attachment mechanism |
6599240, | Dec 20 2000 | TELEFLEX MEDICAL INCORPORATED | Segmented arm assembly for use with a surgical retractor and instruments and methods related thereto |
6599292, | Jan 05 1998 | TEGEMENTA, L L C | Distraction device for vertebral disc procedures and method of distracting |
6616605, | Feb 15 2001 | GENESEE BIOMEDICAL, INC | Quadretractor and method of use |
6652454, | May 04 1999 | Maquet Cardiovascular, LLC | Method and apparatus for creating a working opening through an incision |
6723044, | Mar 14 2002 | COOPERSURGICAL, INC | Abdominal retractor |
6730021, | Nov 07 2001 | Intuitive Surgical Operations, Inc | Tissue spreader with force measurement, force indication or force limitation |
6730022, | Jan 24 1999 | Technology Holding Company II | Surgical retractor and tissue stabilization device having an adjustable sled member |
6746396, | Apr 13 1999 | ViaMedics, LLC | Self-seating surgical access device and method of use |
6746467, | Feb 20 1996 | Maquet Cardiovascular, LLC | Access platform for internal mammary dissection |
6814078, | Jul 21 1997 | MCT II, LLC | Surgical retractor and liner |
6814700, | Mar 04 1996 | Edwards Lifesciences, LLC | Soft tissue retractor and method for providing surgical access |
6840951, | Oct 07 1994 | Etheicon Endo-Surgery, Inc. | Laparoscopic access port for surgical instruments or the hand |
6846287, | Dec 01 1998 | Atropos Limited | Surgical device for retracting and/or sealing an incision |
6958037, | Oct 20 2001 | Applied Medical Resources Corporation | Wound retraction apparatus and method |
7033319, | Mar 14 2002 | COOPERSURGICAL, INC | Abdominal retractor |
7052454, | Oct 20 2001 | Applied Medical Resources Corporation | Sealed surgical access device |
7144368, | Nov 26 2003 | Synthes USA, LLC | Guided retractor and methods of use |
7147599, | Jul 03 2002 | BOSS INSTRUMENTS, LTD , INC | Surgical retractor with improved arms |
7179225, | Aug 26 2003 | ZIMMER BIOMET SPINE, INC | Access systems and methods for minimally invasive surgery |
7195592, | Jan 27 2004 | Surgical retractor apparatus for use with a surgical port | |
7220228, | May 04 1999 | Maquet Cardiovascular, LLC | Surgical retractor blade and system |
7226451, | Aug 26 2003 | ZIMMER BIOMET SPINE, INC | Minimally invasive access device and method |
7229408, | Jun 30 2004 | Edwards Lifesciences, LLC | Low profile surgical retractor |
7238154, | Oct 20 2001 | Applied Medical Resources Corporation | Wound retraction apparatus and method |
7261688, | Apr 05 2002 | Warsaw Orthopedic, Inc | Devices and methods for percutaneous tissue retraction and surgery |
7270632, | Sep 03 2004 | Surgical retractor having lifting capability | |
7300399, | Dec 01 1998 | Atropos Limited | Surgical device for retracting and/or sealing an incision |
7344495, | Jan 27 2004 | Arvik Enterprises, LLC | Surgical retractor apparatus for use with a surgical port |
7387126, | Oct 22 1996 | ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | Surgical system and procedure for treatment of medically refractory atrial fibrillation |
7393322, | Apr 05 2004 | Covidien LP | Surgical hand access apparatus |
7473222, | Jun 26 2002 | Warsaw Orthopedic, Inc | Instruments and methods for minimally invasive tissue retraction and surgery |
7507202, | May 28 2003 | KARL STORZ SE & CO KG | Retractor for performing heart and thorax surgeries |
7507235, | Jan 13 2001 | Medtronic, Inc. | Method and system for organ positioning and stabilization |
7537564, | Dec 01 1998 | Atropos Limited | Wound retractor device |
7540839, | Oct 14 1999 | Atropos Limited | Wound retractor |
7559893, | Dec 07 1998 | Atropos Limited | Wound retractor device |
7566302, | Jul 28 2005 | Synthes USA, LLC | Expandable access device |
7585277, | Feb 20 1996 | Maquet Cardiovascular, LLC | Surgical instruments and procedures for stabilizing the beating heart during coronary artery bypass graft surgery |
7594888, | Oct 29 2004 | Depuy Spine, Inc | Expandable ports and methods for minimally invasive surgery |
7650887, | Jun 05 2002 | Applied Medical Resources Corporation | Wound retractor |
20010002429, | |||
20010020121, | |||
20010041827, | |||
20020004628, | |||
20020095139, | |||
20020099269, | |||
20020099271, | |||
20020137989, | |||
20030176771, | |||
20030191371, | |||
20040049099, | |||
20040054353, | |||
20040059192, | |||
20040225195, | |||
20050096508, | |||
20050171403, | |||
20050228232, | |||
20050267336, | |||
20050283050, | |||
20060004261, | |||
20060089537, | |||
20060106416, | |||
20060129165, | |||
20060149306, | |||
20060155170, | |||
20061014913, | |||
20070027364, | |||
20070073110, | |||
20080132766, | |||
20080234550, | |||
20090204067, | |||
20090265941, | |||
20090299148, | |||
20100210916, | |||
20100234689, | |||
20100261970, | |||
DE10001695, | |||
DE102009014527, | |||
EP177177, | |||
EP2179669, | |||
EP2228014, | |||
EP2228024, | |||
EP2238931, | |||
EP2417922, | |||
GB2275420, | |||
WO108563, | |||
WO3034908, | |||
WO2005089655, | |||
WO2010136805, | |||
WO2011079374, | |||
WO9500197, | |||
WO9515715, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 13 2011 | Covidien LP | (assignment on the face of the patent) | / | |||
Jan 24 2011 | O PREY, CORMAC | Tyco Healthcare Group, LP | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025925 | /0291 | |
Jan 24 2011 | GROVER, SIMON RODERICK | Tyco Healthcare Group, LP | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025925 | /0291 | |
Feb 16 2011 | SCOTT, VALERIE ANNE | Tyco Healthcare Group, LP | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025925 | /0291 | |
Sep 28 2012 | Tyco Healthcare Group LP | Covidien LP | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 029065 | /0448 |
Date | Maintenance Fee Events |
Apr 21 2017 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jun 28 2021 | REM: Maintenance Fee Reminder Mailed. |
Dec 13 2021 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Nov 05 2016 | 4 years fee payment window open |
May 05 2017 | 6 months grace period start (w surcharge) |
Nov 05 2017 | patent expiry (for year 4) |
Nov 05 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 05 2020 | 8 years fee payment window open |
May 05 2021 | 6 months grace period start (w surcharge) |
Nov 05 2021 | patent expiry (for year 8) |
Nov 05 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 05 2024 | 12 years fee payment window open |
May 05 2025 | 6 months grace period start (w surcharge) |
Nov 05 2025 | patent expiry (for year 12) |
Nov 05 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |