An under-bump metallization (UBM) structure in a semiconductor device includes a copper layer, a nickel layer, and a Cu—Ni—Sn intermetallic compound (IMC) layer between the copper layer and the nickel layer.
|
1. A semiconductor device, comprising:
a semiconductor substrate;
an under-bump metallization (UBM) structure overlying the semiconductor substrate; and
a solder bump overlying and electrically connected to the UBM structure;
wherein the UBM structure comprises a copper-containing metallization layer, a nickel-containing metallization layer and a first intermetallic compound (IMC) layer between the copper-containing metallization layer and the nickel-containing metallization layer.
9. A method of forming a semiconductor device, said method comprising:
forming a mask layer with an opening overlying a semiconductor substrate;
forming a first metallization layer in the opening of the mask layer, wherein the first metallization layer comprises copper (Cu);
forming a second metallization layer overlying the first metallization layer, wherein the second metallization layer comprises tin (Sn);
forming a third metallization layer overlying the second metallization layer, wherein the third metallization layer comprises nickel (ni);
forming a solder layer overlying the third metallization layer;
removing the mask layer; and
performing a thermal reflow process on the solder layer.
18. A method of forming a semiconductor device, said method comprising:
providing a semiconductor substrate comprising a pad region;
forming a passivation layer overlying the semiconductor substrate, while exposing a portion of the pad region;
forming a metallization layer overlying the passivation layer and the exposed portion of the pad region;
forming a mask layer with an opening overlying the metallization layer;
forming a copper (Cu) layer in the opening of the mask layer;
forming a tin (Sn) layer on the Cu layer;
forming a nickel (ni) layer on the Sn layer;
forming a solder layer on the ni layer;
removing the mask layer to expose a portion of the metallization layer;
removing the exposed portion of the metallization layer; and
performing a thermal reflow process on the solder layer.
3. The semiconductor device of
5. The semiconductor device of
6. The semiconductor device of
7. The semiconductor device of
10. The method of
12. The method of
14. The method of
15. The method of
16. The method of
19. The method of
20. The method of
|
The present application claims priority of U.S. Provisional Patent Application Ser. No. 61/394,192, filed on Oct. 18, 2010, which is incorporated herein by reference in its entirety.
This disclosure relates to the fabrication of semiconductor devices, and more particularly, to the fabrication of under-bump metallization (UBM) structures in semiconductor devices.
Modern integrated circuits are made up of literally millions of active and/or passive devices such as transistors and capacitors. These devices are initially isolated from each other, but are later interconnected together to form functional circuits. Typical interconnect structures include lateral interconnections, such as metal lines (wirings), and vertical interconnections, such as vias and contacts. Interconnections are increasingly determining the limits of performance and the density of modern integrated circuits. On top of the interconnect structures, bond pads are formed and exposed on the surface of the respective chip. Electrical connections are made through bond pads to connect the chip to a package substrate or another die. Bond pads can be used for wire bonding or flip-chip bonding. In a typical bumping process, interconnect structures are formed on metallization layers, followed by the formation of under-bump metallization (UBM) and solder balls. Flip-chip packaging utilizes bumps to establish electrical contact between a chip's I/O pads and the substrate or lead frame of the package. Structurally, a bump actually contains the bump itself and the UBM located between the bump and an I/O pad. An UBM generally contains an adhesion layer, a barrier layer and a wetting layer, arranged in that order, on the I/O pad. The bumps themselves, based on the material used, are classified as solder bumps, gold bumps, copper pillar bumps and bumps with mixed metals. Usually, a material used for the solder bump is so-called Sn—Pb eutectic solder. Recently the semiconductor industry has been moving to “lead (Pb) free” packaging and lead-free device connector technology. This trend increasingly results in the use of lead free solder bumps and lead free solder balls to form connections with integrated circuits and packages. The use of lead free solder is safer for the environment, safer for workers in the industry and safer for consumers than lead based solder bumps or solder balls. Failure analysis revealed that Electromigration (EM) is a reliability concern in flip chip solder joints, which is initiated by the formation of intermetallic compounds (IMC) at the interface between UBM and solder alloys. Under EM, the continued growth of IMC accelerates the dissolution of UBM materials into solder alloys. This rapid dissolution and migration will cause an open circuit failure and interfacial cracks, which will degrade the joint strength and device lifetime.
This disclosure provides UBM formation processes used in semiconductor devices applied to flip-chip assembly, wafer-level chip scale package (WLCSP), three-dimensional integrated circuit (3D-IC) stack, and/or any advanced package technology fields. Embodiments described herein relate to methods of forming solder bumps for use with semiconductor devices. Reference will now be made in detail to exemplary embodiments illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts. In the drawings, the shape and thickness may be exaggerated for clarity and convenience. This description will be directed in particular to elements forming part of, or cooperating more directly with, apparatus in accordance with the present disclosure. It is to be understood that elements not specifically shown or described may take various forms well known to those skilled in the art. Further, when a layer is referred to as being on another layer or “on” a substrate, it may be directly on the other layer or on the substrate, or intervening layers may also be present. Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. It should be appreciated that the following figures are not drawn to scale; rather, these figures are merely intended for illustration.
Referring to
With reference to
The semiconductor substrate 10 further includes inter-layer dielectric layers and a metallization structure overlying the integrated circuits. The inter-layer dielectric layers in the metallization structure include low-k dielectric materials, un-doped silicate glass (USG), silicon nitride, silicon oxynitride, or other commonly used materials. The dielectric constants (k value) of the low-k dielectric materials may be less than about 3.9, or less than about 2.8. Metal lines in the metallization structure may be formed of copper or copper alloys. One skilled in the art will realize the formation details of the metallization layers.
Next, as shown in
The second metallization layer 22 comprises tin. In one embodiment, the second metallization layer 22 is a tin layer. In some embodiments, the second metallization layer 22 is a tin alloy layer. The second metallization layer 22 has a thickness less than ¾ of the thickness of the first metallization layer 20, although the thickness may be greater or smaller. In some embodiments, the second metallization layer is less than about 10 μm thick, for example, 1˜5 μm thickness. The formation method of second metallization layer 22 includes an electroplating or an immersion process.
The third metallization layer 24 comprises nickel. In one embodiment, the third metallization layer 24 is a nickel layer. In some embodiments, the third metallization layer 24 is a nickel alloy layer, for example nickel-palladium-gold (NiPdAu), nickel-gold (NiAu), nickel-palladium (NiPd) or other similar alloys. The third metallization layer 24 has a thickness less than 10 μm. In some embodiments, the third metallization layer 24 has a thickness less than 5 μm, for example about 0.02˜5 μm, although the thickness may be greater or smaller. The third metallization layer 24 can be deposited by electroless or immersion metal deposition process.
The solder layer 26 is made of Sn, SnAg, Sn—Pb, SnAgCu, SnAgZn, SnZn, SnBi—In, Sn—In, Sn—Au, SnPb, SnCu, SnZnIn, or SnAgSb, etc. In one embodiment, the solder layer 26 is a lead-free solder material layer. The solder layer 26 has a thickness greater than 30 μm. In some embodiments, the solder layer 26 has a thickness about 40˜70 μm, although the thickness may be greater or smaller.
Next, as shown in
Referring to
During the thermal reflow process, the tin (Sn) in the second metallization layer 22 tends to react with nickel (Ni) in the third metallization layer 24 and the copper (Cu) in the first metallization layer 20 to form an intermetallic compound (IMC) layer therebetween. In one embodiment, the second metallization layer 22 is consumed during the IMC formation, resulting in a Cu—Ni—Sn IMC layer 28 between the first metallization layer 20 and the third metallization layer 24. Also, the nickel (Ni) in the third metallization layer 24 tends to react with tin (Sn) in the solder layer 26 to form another intermetallic compound (IMC) layer therebetween. In one embodiment, the third metallization layer 24 is partially consumed during the IMC formation, resulting in a Ni—Sn IMC layer 30 between the solder bump 26a and the third metallization layer 24. For example, the IMC layer 30 is a Ni3Sn4 layer 30.
This completes an under-bump metallization (UBM) structure 32 underlying the solder bump 26a. The UBM structure 32 includes the bottom metallization layer 16, the first metallization layer 20, the Cu—Ni—Sn IMC layer 28, and the third metallization layer 24. The Ni—Sn IMC layer 30 is formed between the UBM structure 32 and the solder bump 26a. The Cu—Ni—Sn IMC layer 28 can act as a diffusion barrier to prevent the Cu atoms in the first metallization layer 20 from being consumed during Electro-migration (EM) test. Also, the Cu—Ni—Sn IMC layer 28 can slow down or restrict the UBM dissolution so as to mitigate the EM early failure.
Referring to
With reference to
The second metallization layer 22 comprises tin. In one embodiment, the second metallization layer 22 is a tin layer. In some embodiments, the second metallization layer 22 is a tin alloy layer. The second metallization layer 22 has a thickness less than ¾ of the thickness of the first metallization layer 20, although the thickness may be greater or smaller. In some embodiments, the second metallization layer is less than about 10 μm thick, for example, 1˜5 μm thickness. The formation method of second metallization layer 22 includes an electroplating or an immersion process.
Next, as shown in
Next, as shown in
Next, as shown in
During the thermal reflow process, interaction and interdiffusion behaviors between the third metallization layer 24 and the first IMC layer 22a occur so that the first IMC layer 22a is further formed into a second IMC layer 22b. In one embodiment, the nickel (Ni) in the third metallization layer 24 tends to migrate into the first IMC layer 22a, resulting in a Cu—Ni—Sn IMC layer 22b between the first metallization layer 20 and the third metallization layer 24. For example, the IMC layer 22b is a (Cu, Ni)3Sn or (Cu,Ni)6Sn5 layer.
Also, the nickel (Ni) in the third metallization layer 24 tends to react with tin (Sn) in the solder layer 26 to form another intermetallic compound (IMC) layer 30 therebetween. In one embodiment, the third metallization layer 24 is partially consumed during the IMC formation, resulting in a Ni—Sn IMC layer 30 between the solder bump 26a and the third metallization layer 24. For example, the IMC layer 30 is a Ni3Sn4 layer 30.
This completes an under-bump metallization (UBM) structure 34 underlying the solder bump 26a. The UBM structure 34 includes the bottom metallization layer 16, the first metallization layer 20, the Cu—Ni—Sn IMC layer 22b, and the third metallization layer 24. The Ni—Sn IMC layer 30 is formed between the UBM structure 34 and the solder bump 26a. The Cu—Ni—Sn IMC layer 22b can act as a diffusion barrier to prevent the Cu atoms in the first metallization layer 20 from being consumed during Electro-migration (EM) test. Also, the Cu—Ni—Sn IMC layer 22b can slow down or restrict the UBM dissolution so as to mitigate the EM early failure.
In the preceding detailed description, the disclosure is described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications, structures, processes, and changes may be made thereto without departing from the broader spirit and scope of the disclosure. The specification and drawings are, accordingly, to be regarded as illustrative and not restrictive. It is understood that the disclosure is capable of using various other combinations and environments and is capable of changes or modifications within the scope of the concepts as expressed herein.
Tsai, Tsung-Fu, Chang, Chih-Horng, Kuo, Yian-Liang
Patent | Priority | Assignee | Title |
10910331, | Nov 07 2017 | Lapis Semiconductor Co., Ltd. | Semiconductor device bonding area including fused solder film and manufacturing method |
11107783, | Nov 15 2018 | Samsung Electronics Co., Ltd. | Wafer-level package including under bump metal layer |
11532582, | Aug 25 2020 | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | Semiconductor device package and method of manufacture |
11545452, | Nov 07 2017 | Lapis Semiconductor Co., Ltd. | Semiconductor device bonding area including fused solder film and manufacturing method |
11810878, | Nov 15 2018 | Samsung Electronics Co., Ltd. | Wafer-level package including under bump metal layer |
11862589, | Nov 15 2018 | Samsung Electronics Co., Ltd. | Wafer-level package including under bump metal layer |
8803338, | Oct 18 2010 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device having under-bump metallization (UBM) structure and method of forming the same |
8952537, | Jul 09 2012 | Siliconware Precision Industries Co., Ltd. | Conductive bump structure with a plurality of metal layers |
9059158, | Oct 18 2010 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device having under-bump metallization (UBM) structure and method of forming the same |
9177929, | May 16 2013 | National Center for Advanced Packaging Co., Ltd. | Techniques for fabricating fine-pitch micro-bumps |
9349705, | Jul 09 2012 | Siliconware Precision Industries Co., Ltd. | Method of fabricating a semiconductor structure having conductive bumps with a plurality of metal layers |
9406635, | Aug 20 2014 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device and semiconductor light emitting device package using the same |
Patent | Priority | Assignee | Title |
7030492, | Aug 07 2003 | Advanced Semiconductor Engineering, Inc. | Under bump metallurgic layer |
7446422, | Apr 26 2005 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Wafer level chip scale package and manufacturing method for the same |
20060027933, | |||
20070158391, | |||
20090174052, | |||
20100258335, | |||
20110001250, | |||
20120187558, | |||
CN101075595, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 13 2011 | TSAI, TSUNG-FU | Taiwan Semiconductor Manufacturing Company, Ltd | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025767 | /0510 | |
Jan 13 2011 | KUO, YIAN-LIANG | Taiwan Semiconductor Manufacturing Company, Ltd | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025767 | /0510 | |
Jan 13 2011 | CHANG, CHIH-HORNG | Taiwan Semiconductor Manufacturing Company, Ltd | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025767 | /0510 | |
Jan 19 2011 | Taiwan Semiconductor Manufacturing Company, Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Apr 27 2017 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 28 2021 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Nov 12 2016 | 4 years fee payment window open |
May 12 2017 | 6 months grace period start (w surcharge) |
Nov 12 2017 | patent expiry (for year 4) |
Nov 12 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 12 2020 | 8 years fee payment window open |
May 12 2021 | 6 months grace period start (w surcharge) |
Nov 12 2021 | patent expiry (for year 8) |
Nov 12 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 12 2024 | 12 years fee payment window open |
May 12 2025 | 6 months grace period start (w surcharge) |
Nov 12 2025 | patent expiry (for year 12) |
Nov 12 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |