A lateral double-diffused metal-oxide-semiconductor (LDMOS) transistor device includes an enhancement implant region formed in a portion of an accumulation region proximate a P-N junction between body and drift drain regions. The enhancement implant region contains additional dopants of the same conductivity type as the drift drain region. There is a gap between the enhancement implant region and the P-N junction. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
|
1. A method for manufacturing a lateral double-diffused metal-oxide-semiconductor (LDMOS) transistor device, comprising:
forming a drift drain region on a semiconductor substrate of a first conductivity type, wherein the drift drain region is of a second conductivity type opposite the first conductivity type;
forming a source region, body region, and drain pickup region in the drift drain region, wherein the body region is of the first conductivity type, the source region is of the second conductivity type but more heavily doped than the drift drain region, and the drain contact pickup region is of the second conductivity type;
forming a body pickup region on the body region laterally adjacent the source region, wherein the body pickup region is of the first conductivity type but more heavily doped than the body region;
forming an active channel in the body region between the source region and a junction between the body region and the drift drain region;
forming an accumulation region in the drift drain region between the junction and the drain contact pickup region; and
forming an enhancement implant region in a portion of the accumulation region proximate the junction wherein the enhancement implant region contains additional dopants of the second conductivity type as the drift drain region, wherein there is a gap between the implant region and the junction.
2. The method of
3. The method of
4. The method of
5. The method of
6. The method of
7. The method of
8. The method of
|
Embodiments of the present invention relate to high voltage semiconductor devices and the manufacturing process thereof and, in particular, to lateral double-diffused metal-oxide-semiconductor (LDMOS) transistors with accumulation enhancement implant and thick accumulation oxide.
Lateral double-diffused metal-oxide-semiconductor (LDMOS) transistors are commonly used in high-voltage applications (20 to 500 volts) because of their high breakdown voltage characteristics and compatibility with low voltage CMOS technology. In general, an N-type LDMOS transistor includes a polysilicon gate, an N+ source region formed in a P-type body region, and an N+ drain region. The N+ drain region is separated from the channel formed in the body region under the polysilicon gate by an N drift region. It is well known that by increasing the length of the N-drift region, the breakdown voltage of the LDMOS transistor can be accordingly increased.
The existing N channel LDMOS with butting P-well body region and lightly doped N-drift drain region as described above may have poor quasi-saturation, poor hot carrier injection (HCI) performance and/or high RdsON.
It is within this context that embodiments of the present invention arise.
Other objects and advantages of the invention will become apparent upon reading the following detailed description and upon reference to the accompanying drawings in which:
In the following Detailed Description, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. In this regard, directional terminology, such as “top,” “bottom,” “front,” “back,” “leading,” “trailing,” etc., is used with reference to the orientation of the figure(s) being described. Because components of embodiments of the present invention can be positioned in a number of different orientations, the directional terminology is used for purposes of illustration and is in no way limiting. It is to be understood that other embodiments may be utilized and structural or logical changes, including changes in the order of process steps, may be made without departing from the scope of the present invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims.
According to embodiments of the present invention, quasi-saturation behavior, hot carrier injection (HCI) performance and the RdsON may improve in LDMOS devices by implantation of an enhancement portion into the accumulation region and a long bird's beak of Local Oxidation of Silicon (LOCOS) grown in the same region. The enhancement portion has the same carrier type as the epitaxial layer.
In embodiments of the present invention, additional dopants of the same conductivity type as the accumulation region may be implanted into a portion of the accumulation region to form an enhancement implant region. By way of example, and not by way of limitation, for an N-channel LDMOS, N-type dopants may be implanted at the top portion in the accumulation region 128 forming an enhancement implant region 130. The N-type implant region 130 increases the net carrier concentration in the accumulation region and reduces the resistivity in accumulation region. Thus, the quasi-saturation at high gate bias and the high RdsON are improved. It is noted that for a P-type LDMOS device, P-type dopants may be used to form the enhancement region 130.
There is a gap g between the implant region 130 and the edge of P-well body region 112 so that the threshold voltage of the FET region is not reduced. Furthermore, the implant region 130 increases potential at a bird's beak portion 132 of the field oxide 116 when high bias is applied to the drain. Therefore, a long bird's beak 132 may be grown under the gate 118 to increase the breakdown voltage between the gate and the gate oxide. The bird's beak portion 132 of the field oxide 116 is generally thinner than the main portion 116 of the field oxide.
Experiments using process and device simulation have been carried out, which simulate implantation of arsenic into an accumulation region with different accumulation lengths (Lacc) cell pitch after the field oxidation is formed as shown in Table I below and in corresponding plots in the graph depicted in
TABLE I
Lacc
Acc Imp
RdsON · A
Quasi Sat
Short
No
High
Poor
Short
Yes
Low
Poor
Medium
No
High
Good
Medium
Yes
Low
Good
Long
No
High
Good
Long
Yes
Low
Best
An LDMOS with having an accumulation enhancement implant and a long bird's beak, e.g., as shown in
In the conventional process, for an N-channel LDMOS, a starting silicon P-substrate 110 with either N-type or P-type epitaxial layer or without epitaxial layer supported on the substrate is provided. P-type implantation is carried out to form P-well body region 112 followed with an N-type implant to form N-drift drain region 114 at the top portions of the substrate 110.
A field oxide 116 is then formed on a surface of the substrate 110. The bird's beak 132 of the field oxidation may be intentionally made long. To form the bird's beak 132, a thin layer of oxide may be formed on the surface of the substrate 110 and a nitride film may be formed on the thin oxide. As is well known, the length of the bird's beak portion 132 can be controlled by optimization of thickness of the nitride film and the underlying thin oxide. As an alternative to growing the bird's beak of the field oxide, a thick insulator, e.g., a thick oxide may be grown under the gate 118.
An enhancement implant of N-type dopants is carried out, after field oxide formed, through sacrificial oxide (not shown) into the accumulation region 128 forming the enhancement implant region 130. Drain side of the implant opening overlaps with field oxide, so that the implant is self-aligned.
Next, a polysilicon gate 118 can be formed on the surface of the thin gate oxide and the field oxide 116. Source region 120 doped with the high concentration N-type dopants can be formed in a region adjacent to the P+ body contact region 124 in the surface of the P-well body region 112 and drain contact pickup region 122 also doped with the high concentration N-type dopants in the surface of the N-drift drain region 114. As a result, the source region 120 and the drain contact pickup region 122 are formed at both sides of the field oxide 116 and isolated from each other. The gate, body, source and drain electrodes are thus formed to complete the device.
In an alternative embodiment, the enhancement implantation can be carried out after the formation of the poly gate with higher implant energy, e.g., using arsenic or phosphorous implantation for an N-channel LDMOS device.
It should be noted that the above technique can be applied to both N-type and P-type LDMOS. In addition, the enhancement implantation described above can be applied to a LDMOS transistor 300 without a field oxide as shown in
While the above is a complete description of the preferred embodiments of the present invention, it is possible to use various alternatives, modifications, and equivalents. Therefore, the scope of the present invention should be determined not with reference to the above description but should, instead, be determined with reference to the appended claims, along with their full scope of equivalents. Any feature, whether preferred or not, may be combined with any other feature, whether preferred or not. In the claims that follow, the indefinite article “A” or “An” refers to a quantity of one or more of the item following the article, except where expressly stated otherwise. The appended claims are not to be interpreted as including means-plus-function limitations, unless such a limitation is explicitly recited in a given claim using the phrase “means for”. Any element in a claim that does not explicitly state “means for” performing a specified function, is not to be interpreted as a “means” or “step” clause as specified in 35 USC §112, ¶6.
Patent | Priority | Assignee | Title |
10069006, | May 19 2015 | NXP USA, INC. | Semiconductor device with vertical field floating rings and methods of fabrication thereof |
8987821, | Mar 27 2012 | Alpha and Omega Semiconductor Incorporated | LDMOS with accumulation enhancement implant |
9437693, | Dec 17 2014 | NXP USA, INC | Device having a shield plate dopant region and method of manufacturing same |
9443975, | Dec 17 2014 | NXP USA, INC | Method of manufacturing a device having a shield plate dopant region |
9472659, | Nov 19 2014 | Samsung Electronics Co., Ltd. | Semiconductor devices |
9537001, | Jul 30 2014 | Semiconductor Components Industries, LLC | Reduction of degradation due to hot carrier injection |
9543292, | Feb 27 2015 | Alpha and Omega Semiconductor Incorporated | Field effect transistor with integrated Zener diode |
9666710, | May 19 2015 | NXP USA, INC | Semiconductor devices with vertical field floating rings and methods of fabrication thereof |
9793153, | Sep 20 2011 | Alpha and Omega Semiconductor Incorporated | Low cost and mask reduction method for high voltage devices |
9935167, | Nov 19 2014 | Samsung Electronics Co., Ltd. | Semiconductor devices |
Patent | Priority | Assignee | Title |
6620697, | Sep 24 2001 | Koninklijke Philips Electronics N.V. | Silicon carbide lateral metal-oxide semiconductor field-effect transistor having a self-aligned drift region and method for forming the same |
7592683, | Mar 26 2004 | SANKEN ELECTRIC CO , LTD | Semiconductor device with improved electrostatic tolerance |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 27 2012 | Alpha and Omega Semiconductor Incorporated | (assignment on the face of the patent) | / | |||
Mar 27 2012 | TSUCHIKO, HIDEAKI | Alpha and Omega Semiconductor Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027940 | /0424 |
Date | Maintenance Fee Events |
May 02 2017 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 20 2021 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Nov 26 2016 | 4 years fee payment window open |
May 26 2017 | 6 months grace period start (w surcharge) |
Nov 26 2017 | patent expiry (for year 4) |
Nov 26 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 26 2020 | 8 years fee payment window open |
May 26 2021 | 6 months grace period start (w surcharge) |
Nov 26 2021 | patent expiry (for year 8) |
Nov 26 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 26 2024 | 12 years fee payment window open |
May 26 2025 | 6 months grace period start (w surcharge) |
Nov 26 2025 | patent expiry (for year 12) |
Nov 26 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |