Embodiments provide a receiver and a method for receiving data transmitted via a combination of a first signal modulated at a first carrier frequency, and a second signal modulated at a second carrier frequency, different to the first carrier frequency.
In one embodiment the receiver includes a local oscillator and is configured to adaptively configure the local oscillator to operate at a first local oscillator frequency and a second local oscillator frequency, different to the first frequency, in dependence on a signal strength of the first signal relative to a signal strength of the second signal.
|
1. A receiver for receiving data transmitted via a combination of a first signal modulated at a first carrier frequency, and a second signal modulated at a second carrier frequency, different to the first carrier frequency, the receiver comprising a local oscillator and the local oscillator being configured to adaptively operate at a first local oscillator frequency and a second local oscillator frequency, different to the first frequency, in dependence on a signal strength of the first signal relative to a signal strength of the second signal, wherein said first local oscillator frequency is substantially halfway between said first carrier frequency and said second carrier frequency.
22. A method of configuring a receiver to receive data transmitted via a combination of a first signal modulated at a first carrier frequency, and a second signal modulated at a second carrier frequency, different to the first carrier frequency, the method comprising:
identifying a first signal strength corresponding to the first signal;
identifying a second signal strength corresponding to the second signal; and
configuring a local oscillator to adaptively operate at a first local oscillator frequency and a second local oscillator frequency, different to the first frequency, in dependence on the identified first signal strength relative to the identified second signal strength, wherein the first local oscillator frequency is substantially halfway between said first carrier frequency and said second carrier frequency.
2. The receiver according to
3. The receiver according to
4. The receiver according to
5. The receiver according to
6. The receiver according to
7. The receiver according to
8. The receiver according to
9. The receiver according to
10. The receiver according to
11. The receiver according to
12. The receiver according to
13. The receiver according to
14. The receiver according to
15. The receiver according to
16. The receiver according to
17. The receiver according to
18. The receiver according to
19. The receiver according to
20. The receiver according to
21. The receiver according to
|
The present invention relates to receivers for radio communication systems, and in particular to receivers for use with contiguous carrier aggregation schemes.
Long Term Evolution (LTE) Advanced is a mobile telecommunication standard proposed by the 3rd Generation Partnership Project (3GPP) and first standardised in 3GPP Release 10. In order to provide the peak bandwidth requirements of a 4th Generation system as defined by the International Telecommunication Union Radiocommunication (ITU-R) Sector, while maintaining compatibility with legacy mobile communication equipment, LTE Advanced proposes the aggregation of multiple carrier signals in order to provide a higher aggregate bandwidth than would be available if transmitting via a single carrier signal. This technique of Carrier Aggregation (CA) requires each utilised carrier signal to be demodulated at the receiver, whereafter the message data from each of the signals can be combined in order to reconstruct the original data. Carrier Aggregation can be used also in other radio communication protocols such as High Speed packet Access (HSPA).
In a first communication instance, data is transmitted to a user terminal using the aggregation of signals 102 and 104 modulated at carrier frequencies fC1 and fC2 respectively. This is an example of contiguous CA, where data is transmitted at carrier frequencies that are adjacent in the frequency spectrum. In a second communication instance, data is transmitted to a user terminal using the aggregation of signals 106 and 108 modulated at carrier frequencies fC3 and fC4 respectively. This is an example of non-contiguous CA, where data is transmitted at carrier frequencies that are separated by one or more intermediate carrier frequencies (in this case fC1 and fC2) not used in the communication instance. In some non-contiguous CA arrangements, the aggregated signals may be in entirely different frequency bands.
Several radio communication schemes, including LTE, use quadrature modulation to increase the data density of a single frequency channel by transmitting a second message which is modulated with a carrier that is 90° out of phase with respect to a first message. These two message components are termed the in-phase (I) and quadrature (Q) components respectively. A common method for processing a quadrature modulated signal uses a receiver arrangement known as a Direct Conversion Receiver (DCR).
In order to select the appropriate signal from the many signals received at antenna 200, the received input must be filtered. However, the high selectivity of the filter profile that would be required to isolate one signal at radio frequency makes filtering at this stage either unrealistic (given the manufacturing tolerances of commonly available components) or undesirably expensive. Hence, before signal selection can occur, the frequency of the desired signal must be down-converted by mixing the input signal with a signal generated by local oscillator 206. A direct conversion receiver converts the desired signal directly to baseband frequency by mixing it with a local oscillator signal of the same frequency as the carrier frequency of the desired signal. This has the effect of translating the desired signal to be centred on zero frequency, as described in further detail below with respect to
In order to extract both the I and Q components, the input signal must be mixed with both in-phase and quadrature shifted versions of the local oscillator signal, which are generated by quadrature generator 208. The exact phase of the received signal cannot be predicted due to the unknown phase shift that will occur during transmission. Hence, the local oscillator must synchronise with the received signal in order to ensure the necessary phase relationship. This synchronisation may be achieved by establishing a phase reference, for example by using a phase locked loop (PLL) or by rotating the signal after down-conversion by digital means. The input signal is mixed with the in-phase local oscillator signal by mixer 210, and with the quadrature phase local oscillator signal by mixer 212. Mixers 210 and 212 perform multiplication between the input signal and the appropriate local oscillator signal in order to achieve the required frequency down-conversion.
The desired I and Q components can then be isolated using low pass filters 214 and 216 respectively, which are used to suppress unwanted frequencies associated with signals adjacent in adjacent channels etc. Finally, Analogue to digital converters (ADCs) 218 and 220 convert the I and Q components into binary representations of the I and Q message data 222 and 224. Once in the digital domain, further processing can be performed on the I and Q data, including recombination of the components to form the original data message.
With minimal modification, a DCR can also be used to receive a specific CA configuration, defined in 3GPP TR 36.807 as Carrier Aggregation bandwidth class C, which involves the aggregation of two adjacent frequency channels. Signals 102 and 104 of
Signal 302 is translated to be centred on frequency fLO−fC1 as shown by arrow 308. Signal 304 is translated to be centred on frequency fLO−fC2 which is the same as −(fC2−fLO), where the negative sign indicates a 180° phase shift. Hence signal 304 is phase inverted and translated to be centred on frequency fC2−fLO which, due to the choice of frequency of the local oscillator signal 306, is equivalent to fLO−fC1, as shown by arrow 310. The result of these translations is to generate a composite signal 312 made up of signal 302 and a phase inverted signal 304 centred on frequency fLO−fC1. The DCR hardware then acts as a low intermediate frequency (IF) receiver for both carriers in order to produce a combined I component of both signals and a combined Q component of both signals. The individual I and Q components of each signal can then be isolated in subsequent processing due to the phase inversion between them, for example by performing a Fourier Transform operation, and the original data can be reconstructed from the four message components.
Problems arise when the signal strengths of the two signals arriving at the receiver are substantially different. This could occur for several reasons, for example due to the different propagation characteristics of the different frequency carrier waves. Further, different carrier frequencies may be associated with different cell coverage areas and different transmitter directivity. Additionally, the coverage of one of the frequencies could be augmented through the provisioning of frequency selective repeaters, thereby raising the signal strength of one signal relative to the other.
The result of these translations is to generate a composite signal 412 made up of signal 402 and a phase inverted signal 404 centred on frequency fLO−fC1. Due to imperfections such as component mismatch in the mixer and low pass filter hardware, or the quality of quadrature signals from the local oscillator, the image-reject ratio (IRR) of the receiver for isolating the I and Q components of the combined signal will not be infinite. As the signal strength imbalance between the two signals increases, a higher receiver I-Q performance is required in order to successfully isolate the signal components. Due to these imperfections, there is a limit to the signal strength imbalance between two contiguous CA carriers that can be successfully processed by a single conventional DCR receiver path, after which the translated relatively low strength signal is overpowered by the presence of the relatively higher strength one.
Due to the use of independently configurable local oscillators, this method is more commonly used for non-contiguous carrier aggregation, where the two signals may be transmitted at very different carrier frequencies and the single DCR operating as a low-IF receiver as described previously is not appropriate. However, when applied to a contiguous carrier aggregation configuration, the two local oscillators must operate at very similar frequencies. In single integrated circuit deployments, the configuration may suffer from local oscillator pulling due to difficulties in sufficiently isolating the two local oscillators from one another. The effect of this is to cause instabilities in the generated signals as the two operating frequencies tend towards each other, thereby impeding the successful operation of the receiver. Further, this arrangement has increased silicon area and power consumption costs when compared to the single DCR arrangement described with reference to
In accordance with exemplary embodiments of the present invention, there is provided a receiver, and a method for configuring a receiver, to receive data transmitted via a combination of a first signal modulated at a first carrier frequency, and a second signal modulated at a second carrier frequency, different to the first carrier frequency according to the appended claims.
In one exemplary embodiment the receiver comprises a local oscillator and is configured to adaptively configure the local oscillator to operate at a first local oscillator frequency and a second local oscillator frequency, different to the first frequency, in dependence on a signal strength of the first signal relative to a signal strength of the second signal.
In another exemplary embodiment the method comprises identifying a first signal strength corresponding to the first signal, identifying a second signal strength corresponding to the second signal, and configuring a local oscillator to adaptively operate at a first local oscillator frequency and a second local oscillator frequency, different to the first frequency, in dependence on the identified first signal strength relative to the identified second signal strength.
Further features and advantages of the invention will become apparent from the following description of preferred embodiments of the invention, given by way of example only, which is made with reference to the accompanying drawings.
Embodiments of the present invention provide a receiver capable of receiving carrier aggregated data transmitted via two carrier signals having a relative signal strength imbalance by adaptively reconfiguring a local oscillator frequency in dependence on the nature of the signal strength imbalance between the two signals.
In one exemplary embodiment the receiver comprises a local oscillator and is configured to adaptively configure the local oscillator to operate at a first local oscillator frequency and a second local oscillator frequency, different to the first frequency, in dependence on a signal strength of the first signal relative to a signal strength of the second signal.
In another exemplary embodiment the method comprises identifying a first signal strength corresponding to the first signal, identifying a second signal strength corresponding to the second signal, and configuring a local oscillator to adaptively operate at a first local oscillator frequency and a second local oscillator frequency, different to the first frequency, in dependence on the identified first signal strength relative to the identified second signal strength.
When the signal strength of the received signals is similar, the local oscillator is configured to operate at a frequency that is substantially halfway between the carrier frequencies of the two received signals. Under this mode of operation, the receiver is configured to behave as a low-IF receiver for both signals, and receive the two carrier signals as described previously with relation to
By varying the operating frequency of a local oscillator, the result of any frequency down-conversion that occurs in the receiver can be tailored to suit any difference in the signal strength of the received signals. Hence, the receiver hardware can be dynamically optimised to receive aggregated signals of differing signal strengths.
Preferably, said local oscillator is configured to operate at said first local oscillator frequency when the signal strength of said first signal and the signal strength of said second signal are relatively similar. In this way, the receiver hardware can be adaptively configured to operate as a low-IF receiver for both carriers when the signal strengths of the two signals are similar enough to allow effective reception of both signals using such an arrangement.
Preferably, said local oscillator is configured to operate at said second local oscillator frequency when the signal strength of said first signal and the signal strength of said second signal are relatively dissimilar. Hence, the receiver can be configured to change the local oscillator frequency to the carrier frequency of one of the signals when the signal strengths of the two signals are not similar enough to allow effective reception of both of the signals using a single receiver path configured to operate as a low-IF receiver for both carriers. In this case, one carrier is received using a low-IF receiver path and the other carrier is received using a direct conversion receiver path.
According to some embodiments, the receiver is further arranged to perform a comparison operation comprising comparing a difference between the signal strength of said first signal and the signal strength of said second signal to a predetermined threshold amount, whereby to generate an output indicative of a relative similarity between the signal strength of said first signal and the signal strength of said second signal. This allows the threshold level to be adapted in order to vary the level of similarity of the signal strengths required in order to configure the local oscillator between operating at the first and second local oscillator frequencies.
The predetermined threshold amount can be defined relative to the signal strength of one or both of said first signal and said second signal. When both signal strengths are low, this enables a lower absolute difference between the signal strengths of the two signals to be used to trigger a change in the frequency produced by the local oscillator, thereby providing a better reflection of the efficacy of using a single direct conversion receiver configuration to receive both signals.
According to further embodiments, the receiver comprises a first receiver path and a second receiver path, said second receiver path having a plurality of operating modes, including at least an inoperative mode. When operating in the inoperative mode, a portion of the receiver can be disabled in order to reduce the power consumption of the receiver.
The local oscillator can be directly connected to the first receiver path and to the second receiver path and configured to operate at one of said first oscillator frequency and said second oscillator frequency in dependence on the output of said comparison operation. By using a single local oscillator for both receiver paths, the effect of local oscillator pulling due to the physical proximity of more than one oscillator generating a similar frequency is avoided. Further, the complexity and silicon area cost associated with the receiver is reduced.
According to some arrangements, the receiver further comprises one or more frequency mixers, at least one said frequency mixer being shared between said first receiver path and said second receiver path. As a result of sharing a local oscillator and input signal, frequency mixers can be shared between the two receiver paths in order to further reduce complexity and silicon area costs.
The receiver may comprise a switch arranged to configure the operating mode of said second receiver path to the inoperative mode, in dependence on the output of said comparison operation. This enables selective blocking of the input signal to the second receiver path, and as a result the power consumption of the receiver can be reduced by removing transient or switching losses associated with the operation of the second path while in the inoperative mode.
According to some arrangements, the switch may be configured to selectively block the output from said shared frequency mixer to said second receiver path, whereby to configure the second receiver path into said inoperative mode. By locating the switching hardware after the output of a shared mixer, a trade off can be made between the reduced cost of the single mixer stage, and the increased cost of duplicated switching hardware.
The receiver may be configured to selectively isolate said second receiver path from an electrical power source, whereby to configure the second receiver path into the inoperative mode, in dependence on the output of said comparison operation. By removing power from the second receiver path when it is inoperative, the baseline power consumption associated with the second receiver path can be reduced. This provides further power savings.
In some embodiments, in the event that the operating mode of the second receiver path is an operative mode, the receiver is arranged to adaptively alter a first gain associated with the first receiver path, and to adaptively alter a second gain associated with the second receiver path in dependence on the signal strength of the first signal and the signal strength of the second signal. Hence the difference in the signal strength of the two signals can be compensated by the independently configurable gains of each path before subsequent signal processing is performed.
The first receiver path may comprise a low pass filter for selecting one of said first and second signals, and said second receiver path comprises a band pass filter for selecting the other of said first or second signals. By configuring the receiver to convert the frequency of the two signals to different low-frequencies, the translated signals will not overlap and the two signals can then be isolated by the first and second receiver paths using filters with different filter profiles. An appropriate band pass filters may also utilise complex signal handling to provide better I/Q performance.
Preferably, one or more of an antenna, a radio-frequency amplifier and a radio-frequency filter are shared between said first receiver path and said second receiver path. As further advantage of using the same local oscillator and input signal for both receiver paths, front end hardware which is typically optimised for a specific range of inputs and operating frequencies may be shared between the two receiver paths, thereby further reducing hardware costs.
Preferably, said first local oscillator frequency is substantially halfway between said first carrier frequency and said second carrier frequency. Hence, when the signal strengths of the two signals are similar, the signals may be reflected on top of each other when down-converted to baseband frequency without either signal substantially overpowering the other, thereby allowing both signals to be processed using a single receiver path with finite IQ performance acting as a low-IF receiver for both signals.
According to other arrangements of the disclosure, said second local oscillator frequency is determined in dependence on the signal strength of the first signal relative to the signal strength of the second signal. Preferably, said second local oscillator frequency is configured to a first second local oscillator frequency value when the signal strength of said first signal is relatively low and the signal strength of said second signal is relatively high, and a second second local oscillator frequency value when the signal strength of said first signal is relatively high and the signal strength of said second signal is relatively low. Hence, the second local oscillator frequency may be set to the carrier frequency of either the first or second signals, dependent on which of the received signals is more powerful.
According to some arrangements, said first second local oscillator frequency value is substantially the same as said first carrier frequency, and said second second local oscillator frequency value is substantially the same as said second carrier frequency. In this way, the second receiver path may be optimised to process the relatively high powered signal and relatively wide operating modes, thereby reducing the requirements that must be met when selecting the second receiver path hardware in terms of gain, filter selectivity etc. In particular, this alleviates the dependence of the second receiver path on large capacitors, further reducing the costs of the additional second receiver path circuitry.
According to alternative arrangements, said first second local oscillator frequency value is substantially the same as said second carrier frequency, and said second second local oscillator frequency value is substantially the same as said first carrier frequency. This enables the second receiver path to be optimised to process the relatively low powered signal, enabling the selection of the second receiver path hardware specifically tailored to process low powered signals.
Preferably, said first carrier frequency and said second carrier frequency are associated with adjacent channels in a communication scheme associated with one or more of said first signal and said second signal. Hence, the complexity of the receiver and any shared front end hardware can be minimised as a narrower range of radio frequencies need to be simultaneously received. In situations that require the use of a second receiver path used, the low frequency to which the associated signal is translated is also advantageously lowered.
Translated signal 612 is centred on zero frequency and hence is suitable for processing using a DCR arrangement. Advantageously, this means that the same hardware used to process both signals when the signal strength of the received CA signals is similar, can be used in this configuration to process signal 612 with minimal adaption. Translated signal 614 however is not centred on zero frequency, and hence cannot be isolated using a DCR arrangement. In order to process translated signal 614, an additional receiver path is required. Alternatively, a conventional low-pass receiver architecture with a wide bandwidth and high signal separation capabilities could perform signal isolation in the digital domain; however this would require the ADC resolution to be sufficient to receive all channels passing analog filtering at different power levels simultaneously, which would require more expensive ADC components and is a less optimised use of the provisioned hardware.
The first receiver path is configured to operate as a DCR, and in this manner is capable of processing two contiguous CA signals when the signal strengths of the signals are similar, or a single signal when the signal strengths of the signals are not similar, as described above in relation to
When the signal strengths of the two signals are not similar, the receiver of utilises the second receiver path in order to process the signal that is not translated around zero frequency (also referred to as the low IF signal). The second receiver path includes band-pass filters 736 and 738 which are used to isolate the low IF signal from any adjacent unwanted frequency components. Otherwise, the operation of the second receiver path components is equivalent to those of the first receiver path.
By sharing local oscillator 706 between both receiver paths, the problem of local oscillator pulling, which arises when synthesising two similar frequencies in close physical proximity, is advantageously avoided. Further, by using the same input signal and local oscillator frequency for both receiver paths, front end hardware such as pre-selection filter 702 and low noise amplifier 704 can be effectively shared between both receiver paths due to the equivalent front end requirements of both paths.
The two receiver paths may each include a variable amplification stage (not shown) in order to adjust the amplitude of the two signals in order to match the dynamic range of the ADC hardware and hence maximise the resolution of the conversion into the digital domain. The relative gains of these variable amplification stages may be configured to be proportional to the signal strengths of the two CA signals in order to compensate for the difference in signal strengths when received at the receiver. Such amplification may be provided by amplifier circuitry such as operational-amplifiers or the like.
A further advantage of the receiver depicted in
The similarity of the signal strengths of the received signals may be assessed in the digital domain on the basis of the received signal strength (RSS) measurements associated with each received signal. Calculating RSS measurements is a common step in known receiver architectures, and the determined value is conventionally used to calibrate amplification stages. In order to prevent signals with high peak to average signal strength ratios from causing rapid fluctuation in the determined RSS parameter, a finite integration time may be included in the calculation. The calculated RSS values may then be subtracted in order to calculate the magnitude and sign of the difference between the signal strengths.
Alternatively, the similarity of the signal strengths of the received signals may be determined by additional comparator hardware comprised within the receiver. A measured signal strength of the first signal may be subtracted from a measured signal strength of the second signal, for example using an operational amplifier comparator arranged in linear mode, in order to determine the magnitude and sign of the difference between the signal strengths. In order to determine whether the signal strengths are sufficiently dissimilar to require the use the second receiver path, the magnitude of the difference identified may be compared to a predetermined threshold level by performing a further comparison operation. This comparison operation could entail a further calculation in the digital domain in the case where signal strength is assessed in the digital domain, or for example by using a transistor switch comparator in the case of the alternative analogue arrangement, in order to determine whether the magnitude has exceeded the threshold level.
According to some embodiments, the threshold level may be adapted in order to vary the strictness of the determination of similarity. For example the threshold level may be lowered in order to reduce the difference in signal strengths required before the second receiver path is used. This advantageously allows the threshold level to be determined relative to a signal strength of one of the received CA signals. For example the threshold level may be configured to represent a certain percentage of the signal strength of the strongest signal, thereby requiring a smaller absolute signal strength difference when both of the signals are received with a relatively low signal strength, as compared to when both of the signals are received with a relatively high signal strength. Further, the threshold level may be configured to introduce hysteresis into the comparison in order to prevent rapid switching between outputs when the difference in signal strengths is fluctuating around the threshold level.
The output of this comparison can be used directly by the receiver to determine whether the local oscillator should operate at the first frequency (halfway between the first and second carrier frequencies) or at the second frequency (the carrier frequency of one of the received CA signals).
As the second receiver path is only utilised when the signal strengths of the two receiver CA signals are determined to be different, the second receiver path may be configured into an inoperative state when not required. By disabling the second receiver path in this manner, power savings may be made.
In alternative embodiments, the DCR comprises receiver power control hardware (not shown) configured to isolate the subsequent components of the second receiver path from the receiver's power supply in order to comprehensively minimise the additional power consumption attributable to the second receiver path.
The state of switch 848 and the aforementioned receiver power control hardware may be controlled by the output of the signal strength comparison calculations (or the alternative comparator hardware arrangement) described previously such that the second receiver path hardware is configured into the inoperative state automatically when the signal strengths of the two received CA signals are determined to be different.
In the embodiment shown in
As a result of using the same input and local oscillator signal for both receiver paths, further hardware can be shared between the two paths.
It is to be noted that, depending on the low-noise amplifier 804 and the subsequent down-conversion mixer topologies, the interface between these components can be configured in ways other than those shown in
Until now, the operation of the receiver has been described according to the signals illustrated in
Additionally, until now, the operation of the receiver has involved the local oscillator being configured to operate at the carrier frequency of the weaker of the two received CA signals when the signal strengths of the two received signals are determined to be relatively dissimilar. This has the advantage of ensuring that the second receiver path is always responsible for processing the signal with the relatively higher signal strength, thereby relaxing the requirements on the second path and allowing the cost of selecting components for that path to be reduced. An alternative is to ensure that the second receiver path is always responsible for dealing with the weaker signal by configuring the local oscillator to always operate at the carrier frequency of the stronger of the two received CA signals when the signal strengths of the two received signals are determined to be relatively dissimilar. This allows the second path to be optimised for receiving low strength signals, thereby providing an opportunity to increase the performance of the receiver under such conditions through careful component selection.
Alternatively, the choice of which signal to be received on each of the two receiver paths may be determined on the basis of signal interference scenarios. By optimising one of the receiver paths for the processing of signals that are received with significant interference, a careful signal analysis may result in the selection of a different carrier frequency in the case of a power imbalance that is outweighed by the effects of substantial interference.
Whilst the above embodiments relate to Carrier Aggregation for LOng Term Evolution (LTE), it will be appreciated that the invention applies to Carrier Aggregation for other, different, radio access technologies such as the aforementioned or High Speed packet Access (HSPA). Furthermore, the invention applies to intra-band Carrier Aggregation, in which a user equipment receives carrier frequencies originating from radio access nodes operating in accordance with different radio access technologies, such as is the case for intra-band HSPA-LTE Carrier Aggregation.
In various embodiments an apparatus comprising the aforementioned receiver hardware may be a user terminal, or one or more components thereof such as for example a wireless modem configured for use in a user terminal.
Reference is now made to
The UE 10 includes processing means such as at least one data processor (DP) 10A, storing means such as at least one computer-readable memory (MEM) 10B storing at least one computer program (PROG) 10C, and also communicating means such as a transmitter TX 10D and a receiver RX 10E configured according to embodiments of the invention for bidirectional wireless communications with the network access node 12 via one or more antennas 10F.
The network access node 12 similarly includes processing means such as at least one data processor (DP) 12A, storing means such as at least one computer-readable memory (MEM) 12B storing at least one computer program (PROG) 12C, and communicating means such as a transmitter TX 12D and a receiver RX 12E for bidirectional wireless communications with the UE 10 via one or more antennas 12F. The RNC 14 represents any other higher network node or serving gateway providing connectivity to a broader network (a publicly switched telephone network or the Internet for example), and some systems may not have such a higher network node between the access node 12 and the Internet.
Similarly, the RNC 14 includes processing means such as at least one data processor (DP) 14A, storing means such as at least one computer-readable memory (MEM) 14B storing at least one computer program (PROG) 14C, and communicating means such as a modem 14H for bidirectional communication with the network access node 12 via the control link.
It will be understood that the various embodiments of the receiver 10E described herein comprise circuitry that may be provided by a single chip or integrated circuit or plural chips or integrated circuits, optionally provided as a chipset, an application-specific integrated circuit (ASIC), field-programmable gate array (FPGA), etc. The chip or chips may comprise circuitry (as well as possibly firmware) for embodying at least one or more of the aforementioned components, including control circuitry, digital signal processor or processors, baseband circuitry and radio frequency circuitry, which are configurable so as to operate in accordance with the exemplary embodiments. In this regard, the exemplary embodiments may be implemented at least in part by computer software stored in memory and executable by a processor, or by hardware, or by a combination of tangibly stored software and hardware (and tangibly stored firmware).
At step 1302, the receiver apparatus identifies a first signal strength corresponding to a first signal received from the access point 12, this being a signal modulated at a first carrier frequency. At step 1304, the receiver apparatus identifies a second signal strength corresponding to a second signal also received from the access point 12, this being a signal modulated at a second carrier frequency, different to the first carrier frequency. Then, at step 1306, the receiver apparatus configures a local oscillator to adaptively operate at a first local oscillator frequency and a second local oscillator frequency, different to the first frequency, in dependence on the identified first signal strength relative to the identified second signal strength.
The above embodiments are to be understood as illustrative examples of the invention. Further embodiments of the invention are envisaged. For example, the invention could be worked with communication schemes other than LTE-A, in any scenario where two signals with similar carrier frequencies need to be received simultaneously. It is to be understood that any feature described in relation to any one embodiment may be used alone, or in combination with other features described, and may also be used in combination with one or more features of any other of the embodiments, or any combination of any other of the embodiments. Furthermore, equivalents and modifications not described above may also be employed without departing from the scope of the invention, which is defined in the accompanying claims.
Kaukovuori, Jouni Kristian, Parssinen, Aarno Tapio, Immonen, Antti Oskari
Patent | Priority | Assignee | Title |
10727800, | Mar 20 2015 | TELEFONAKTIEBOLAGET L M ERICSSON PUBL | Method for gain control and related wireless receivers and devices |
9362975, | Aug 29 2014 | Samsung Electronics Co., Ltd. | Low noise amplifier and method for carrier aggregation and non-carrier aggregation |
9379673, | May 30 2014 | Qualcomm Incorporated | Distortion cancellation for dual stage carrier-aggregation (CA) low noise amplifier (LNA) non-linear second order products |
Patent | Priority | Assignee | Title |
5222255, | Aug 05 1991 | THE BANK OF NEW YORK MELLON, AS ADMINISTRATIVE AGENT | Intermodulation controller for radio receiver |
5307515, | Aug 05 1991 | THE BANK OF NEW YORK MELLON, AS ADMINISTRATIVE AGENT | Adjacent channel controller for radio receiver |
5790587, | May 13 1991 | Intel Corporation | Multi-band, multi-mode spread-spectrum communication system |
5881369, | Jul 03 1996 | Nortel Networks Limited | Dual mode transceiver |
5983081, | Mar 29 1996 | Nokia Mobile Phones, Ltd. | Method for generating frequencies in a direct conversion transceiver of a dual band radio communication system, a direct conversion transceiver of a dual band radio communication system and the use of this method and apparatus in a mobile station |
6609010, | Nov 30 1998 | Sony International (Europe) GmbH | Dual frequency band transceiver |
7212793, | Jul 29 2003 | Kabushiki Kaisha Toshiba | Radio reception apparatus and radio reception method |
7715814, | May 13 2004 | Icera Canada ULC | Method and system for spurious signal control in receivers |
7881688, | Sep 29 2006 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Method and apparatus for controlling a local oscillator |
20080051053, | |||
20110081880, | |||
20110122972, | |||
20110122974, | |||
20110136455, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 15 2011 | Renesas Mobile Corporation | (assignment on the face of the patent) | / | |||
Aug 15 2011 | IMMONEN, ANTTI OSKARI | Renesas Mobile Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 026900 | /0693 | |
Aug 15 2011 | KAUKOVUORI, JOUNI KRISTIAN | Renesas Mobile Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 026900 | /0693 | |
Aug 16 2011 | PARSSINEN, AARNO TAPIO | Renesas Mobile Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 026900 | /0693 | |
Oct 01 2013 | BROADCOM INTERNATIONAL LIMITED | Broadcom Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 032088 | /0794 | |
Oct 01 2013 | Renesas Mobile Corporation | BROADCOM INTERNATIONAL LIMITED | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 032086 | /0389 | |
Oct 01 2013 | Renesas Electronics Corporation | BROADCOM INTERNATIONAL LIMITED | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 032086 | /0389 | |
Oct 01 2013 | Renesas Mobile Corporation | BROADCOM INTERNATIONAL LIMITED | CORRECTIVE ASSIGNMENT TO CORRECT THE CONVEYING PARTY PREVIOUSLY RECORDED ON REEL 032086 FRAME 0389 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT FROM ONE OR BOTH ASSIGNORS ACCORDING TO PRIOR AGREEMENT | 046266 | /0231 | |
Feb 01 2016 | Broadcom Corporation | BANK OF AMERICA, N A , AS COLLATERAL AGENT | PATENT SECURITY AGREEMENT | 037806 | /0001 | |
Jan 19 2017 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Broadcom Corporation | TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS | 041712 | /0001 | |
Jan 20 2017 | Broadcom Corporation | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 041706 | /0001 | |
May 09 2018 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | MERGER SEE DOCUMENT FOR DETAILS | 047230 | /0910 | |
Sep 05 2018 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | CORRECTIVE ASSIGNMENT TO CORRECT THE ERROR IN RECORDING THE MERGER IN THE INCORRECT US PATENT NO 8,876,094 PREVIOUSLY RECORDED ON REEL 047351 FRAME 0384 ASSIGNOR S HEREBY CONFIRMS THE MERGER | 049248 | /0558 | |
Sep 05 2018 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | CORRECTIVE ASSIGNMENT TO CORRECT THE EFFECTIVE DATE OF THE MERGER PREVIOUSLY RECORDED AT REEL: 047230 FRAME: 0910 ASSIGNOR S HEREBY CONFIRMS THE MERGER | 047351 | /0384 |
Date | Maintenance Fee Events |
Jun 12 2017 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jun 08 2021 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 10 2016 | 4 years fee payment window open |
Jun 10 2017 | 6 months grace period start (w surcharge) |
Dec 10 2017 | patent expiry (for year 4) |
Dec 10 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 10 2020 | 8 years fee payment window open |
Jun 10 2021 | 6 months grace period start (w surcharge) |
Dec 10 2021 | patent expiry (for year 8) |
Dec 10 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 10 2024 | 12 years fee payment window open |
Jun 10 2025 | 6 months grace period start (w surcharge) |
Dec 10 2025 | patent expiry (for year 12) |
Dec 10 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |