An integrated circuit package includes a substrate having first and second surfaces and a plurality of conductive traces therebetween and a semiconductor die mounted on the first surface of the substrate. A plurality of wire bonds connect the semiconductor die to ones of the conductive traces of the substrate and an encapsulant encapsulates the wirebonds and the semiconductor die. A heat spreader has a cap, at least a portion of the cap extending inwardly toward and being spaced from the semiconductor die. The encapsulant fills the space between the portion of the cap and the semiconductor die. The heat spreader further has at least one sidewall extending from the cap, the at least one sidewall disposed on the substrate. A ball grid array is disposed on the second surface of the substrate, bumps of the ball grid array being in electrical connection with ones of the conductive traces.
|
9. A process for manufacturing an integrated circuit comprising:
mounting a semiconductor die to a first surface of a substrate;
wire bonding said semiconductor die to ones of conductive traces of said substrate;
mounting a ground pad on said substrate;
encapsulating the wire bonds and said semiconductor die in a glob-top encapsulant;
disposing over said glob-top encapsulant material a single piece heat spreader having a cap protruding therefrom, the single piece heat spreader having at least one sidewall extending from the cap;
embedding the cap into the glob-top encapsulant material while the glob-top encapsulant material is in an uncured state such that the cap extends inwardly from the single piece heat spreader and is spaced apart from the semiconductor die by a distance in the range of about 4 to about 16 mils, the cap and the semiconductor die defining a space disposed therebetween, the space being completely filled by the glob-top encapsulant material and an outer surface of the single piece heat spreader being exposed to the surrounding environment; and
forming a ball grid array on a second surface of said substrate, bumps of said ball grid array being electrically connected to said conductive traces.
1. A process for manufacturing an integrated circuit comprising:
mounting a semiconductor die to a first surface of a substrate;
wire bonding said semiconductor die to ones of conductive traces of said substrate;
fixing at least one ground pad to said substrate;
encapsulating the wire bonds and said semiconductor die in a glob-top encapsulant material;
disposing over said glob-top encapsulant material a heat spreader having a cap protruding therefrom, the heat spreader having at least one sidewall extending from the cap;
embedding the cap into the glob-top encapsulant material while the glob-top encapsulant is in an uncured state such that the cap extends inwardly from the heat spreader and is spaced apart from the semiconductor die, the cap and the semiconductor die defining a space disposed therebetween, the space being completely filled by the glob-top encapsulant material;
fixing said at least one sidewall to said at least one ground pad, an outer surface of the heat spreader is exposed to the surrounding environment and an inner surface of the at least one sidewall being spaced apart from the encapsulant material; and
forming a ball grid array on a second surface of said substrate, bumps of said ball grid array being electrically connected to said conductive traces.
2. The process according to
3. The process according to
4. The process according to
5. The process according to
6. The process according to
7. The process according to
8. The process according to
10. The process according to
11. The process according to
|
The present invention relates in general to integrated circuit packaging, and in particular to a ball grid array package with improved thermal dissipation and improved reliability.
High performance integrated circuit (IC) packages are well known in the art. Improvements in IC packages are driven by industry demands for increased thermal and electrical performance and decreased size and cost of manufacture.
In general, array packaging such as Plastic Ball Grid Array (PBGA) packages provide a high density of interconnects relative to the surface area of the package. However, typical PBGA packages include a convoluted signal path, giving rise to high impedance and an inefficient thermal path which results in low thermal dissipation performance. With increasing package density, the spreading of heat generated by the device is increasingly important.
Reference is made to
One method of improving heat dissipation is the addition of thermal vias in the substrate. The thermal vias connect the die 24 to some of the solder balls 28 for heat dissipation. While these thermal vias are advantageous for thermal dissipation, the thermal vias are small and increased thermal dissipation in high density packages is still desirable.
Variations to conventional BGA packages have been proposed for the purpose of increasing thermal and electrical performance.
Another example of a variation to conventional BGA packages is described in U.S. Pat. No. 5,977,626, issued Nov. 2, 1999, the contents of which are incorporated herein by reference. The '626 patent discloses a PBGA package having a metal heat spreader in contact with an upper surface of the semiconductor die and ground pads on the substrate. The heat spreader is added to dissipate heat from the semiconductor die to the surrounding environment. These packages also suffer disadvantages, however. One particular disadvantage is that the heat spreader and semiconductor die have significantly different thermo-mechanical properties causing induced stress on the semiconductor die during thermal cycling.
In applicant's own U.S. Pat. No. 6,737,755, issued May 18, 2004, the contents of which incorporated herein by reference, an improved PBGA package is disclosed in which a silicon die adapter is disposed between and fixed to both the semiconductor die and the metal heat spreader. This provides a thermal path from the semiconductor die to the heat spreader. While this package is an improvement over the prior art, further improvements in package reliability while still providing a thermal dissipation path, are still desirable. In particular, reduced interfacial delamination between elements of the package that are fixed together, is desirable.
In one aspect of the present invention, an integrated circuit package is provided. The integrated circuit package includes a substrate having first and second surfaces and a plurality of conductive traces therebetween and a semiconductor die mounted on the first surface of the substrate. A plurality of wire bonds connect the semiconductor die to ones of the conductive traces of the substrate and an encapsulant encapsulates the wirebonds and the semiconductor die. A heat spreader has a cap, at least a portion of the cap extending inwardly toward and being spaced from the semiconductor die. The encapsulant fills the space between the portion of the cap and the semiconductor die. The heat spreader further has at least one sidewall extending from the cap, the at least one sidewall disposed on the substrate. A ball grid array is disposed on the second surface of the substrate, bumps of the ball grid array being in electrical connection with ones of the conductive traces.
In another aspect of the present invention, a process for manufacturing an integrated circuit package is provided. The process includes: mounting a semiconductor die to a first surface of a substrate; wire bonding the semiconductor die to ones of conductive traces of the substrate; encapsulating the wire bonds and the semiconductor die in an encapsulant; mounting a heat spreader over the encapsulant such that at least a portion of a cap of the heat spreader extends inwardly toward and is spaced from the semiconductor die, the encapsulant filling the space between the portion of the cap and the semiconductor die, at least one sidewall of the heatspreader extending from the cap and disposed on the substrate; and forming a ball grid array on a second surface of the substrate, bumps of the ball grid array being electrically connected to the conductive traces.
In another aspect of the present invention, an integrated circuit package is provided. The integrated circuit package includes a substrate having first and second surfaces and a plurality of conductive traces therebetween and a semiconductor die mounted on the first surface of the substrate. A plurality of wire bonds connect the semiconductor die to ones of the conductive traces of the substrate and a glob-top encapsulant encapsulates the wirebonds and the semiconductor die. A heat spreader has a cap spaced from the semiconductor die. The encapsulant fills the space between the cap and the semiconductor die. The heat spreader further has at least one sidewall extending from the cap, the at least one sidewall disposed on the substrate. A ball grid array is disposed on the second surface of the substrate, bumps of the ball grid array being in electrical connection with ones of the conductive traces.
In still another aspect of the present invention, a process for manufacturing an integrated circuit package is provided. The process includes: mounting a semiconductor die to a first surface of a substrate; wire bonding the semiconductor die to ones of conductive traces of the substrate; encapsulating the wire bonds and the semiconductor die in a glob top encapsulant; mounting a heat spreader over the encapsulant such that the cap of the heat spreader is spaced from the semiconductor die, the encapsulant filling the space between the cap and the semiconductor die, at least one sidewall of the heatspreader extending from the cap and disposed on the substrate; and forming a ball grid array on a second surface of the substrate, bumps of the ball grid array being electrically connected to the conductive traces.
Advantageously, the BGA package of an aspect of the present invention has improved reliability and thermal performance. A heat dissipation path is provided by reducing the distance between the semiconductor die surface and the metal heat spreader, thereby resulting in a better thermal path. Although the metal heat spreader includes a portion that is very close to the semiconductor die, it is spaced from the die, thereby improving reliability in terms of interfacial delamination. In aspects of the invention, there are fewer fixed interfaces that are liable to interfacial delamination such as the interfaces between metal and silicon or the silicon die adapter and the semiconductor die. Further, overall package thickness can be reduced as compared to packages that include a silicon adaptor. Also, heat distribution is enhanced throughout the whole package by increasing the contact between the heat spreader and the substrate.
In another aspect, the liquid encapsulant provides a thermal path between the metal heat spreader and the substrate. In one particular aspect of the present invention, a glob-top encapsulation is used resulting in better wire sway control. Wire sway is the wire displacement during the encapsulation process. The glob-top material has a lower flow viscosity during encapsulation than the mold compound material, resulting in better wire sway control. Also, there is no phase change after the glob-top material is added.
The present invention will be better understood with reference to the drawings and the following description in which:
To simplify the description, the numerals used previously in describing
Reference is now made to
The process for fabricating the plastic ball grid array package 120 will now be described with particular reference to
A singulated semiconductor die 124 is conventionally mounted to an upper surface of the substrate 122 using a die attach epoxy (
Next, an epoxy is dispensed on the top surface of the substrate 122, around the semiconductor die 124, forming a liquid dam 146. The semiconductor die 124 and wire bonds are encapsulated using a glob-top encapsulant 148 (liquid epoxy) (
Following encapsulation, a heat spreader 132 is formed. In the present embodiment, the heat spreader 132 is formed by selectively etching a copper metal plate, followed by metal forming or bending. Reference is made to
The metal plate is then alkaline etched via full immersion etching to remove exposed portions thereof, followed by removal of the etch resist. The area of the metal plate that is covered by the etch-resist is protected from etching. Thus, the plate is selectively etched to reduce the thickness of the outer edges of the metal plate, which are later formed into sidewalls of the heat spreader. The metal plate after etching is shown in
After etching, the metal plate is formed by bending to provide the heat spreader 132 shown in
The heat spreader 132 is then fixed to the upper surface of the substrate 122 by fixing the ends of each sidewall 142 to the substrate 122 using, for example, conductive epoxy. As shown, the conductive epoxy is dispensed on the upper surface of the substrate 122, at suitable locations for fixing each sidewall 142 of the heat spreader 132 to the substrate 122 (
Next, the heat spreader 132 is located on the substrate 122 with each sidewall 142 disposed on the fixed to metal traces on the upper surface of the substrate 122 (FIG. 4J0. Using a conductive epoxy or other suitable conductive material to fix each sidewall 142 to the metal traces or to metal pads of the substrate 122, permits the grounding of the heat spreader 132 by fixing at least one sidewall 142 to a ground pad on the substrate 122. As shown, the central portion 140 of the cap 138 extends inwardly toward the semiconductor die 124 such that the central portion 140 is very close to but does not contact the semiconductor die 124. The central portion 140 is also sized and shaped such that it does not interfere with the wire bonds extending from the semiconductor die 124. The glob-top encapsulate 148 fills the space between the semiconductor die 124 and the central portion 140 of the cap 138. The heat spreader 132 thereby provides a thermal path away from the semiconductor die 124 and to the top of the package 120. After fixing the heat spreader 132 to the substrate 122, the epoxy and the encapsulant 148 are cured.
A ball grid array (BGA) of solder balls 128, also referred to as solder bumps, is formed on the bottom surface of the substrate 122 at the exposed portions 146 of the conductive traces (
Referring now to
Reference is now made to
Reference is now made to
Specific embodiments of the present invention have been shown and described herein. However, modifications and variations to these embodiments are possible. For example, other substrate materials and conductive metal or alloy traces are possible and will occur to those skilled in the art. The heat spreader material is not limited to copper as other suitable materials can be used, including. Also, other shapes of heat spreaders are possible. Rather than using epoxy to fix the heat spreader to the substrate, solder or adhesive film can be used. Further, the encapsulant is not limited to silicon glob-top material as any suitable liquid encapsulant can be used, including but not limited to an epoxy based material. Those skilled in the art may conceive of still other modifications and variations, all of which are within the scope and sphere of the present invention.
McLellan, Neil, Lam, Wing Keung, Sze, Ming Wang, Tsang, Kwok Cheung, Tam, Wai Kit
Patent | Priority | Assignee | Title |
9048209, | Aug 14 2009 | JCET SEMICONDUCTOR SHAOXING CO , LTD | Semiconductor device and method of mounting semiconductor die to heat spreader on temporary carrier and forming polymer layer and conductive layer over the die |
9209107, | Jun 14 2010 | Sharp Kabushiki Kaisha | Electronic device, display device, and television receiver |
9305889, | Mar 09 2009 | UTAC HEADQUARTERS PTE LTD | Leadless integrated circuit package having standoff contacts and die attach pad |
9379064, | Aug 14 2009 | JCET SEMICONDUCTOR SHAOXING CO , LTD | Semiconductor device and method of mounting semiconductor die to heat spreader on temporary carrier and forming polymer layer and conductive layer over the die |
9449903, | Feb 18 2005 | UTAC HEADQUARTERS PTE LTD | Ball grid array package with improved thermal characteristics |
9953904, | Oct 25 2016 | NXP USA, INC | Electronic component package with heatsink and multiple electronic components |
Patent | Priority | Assignee | Title |
4698662, | Feb 05 1985 | AMI Semiconductor, Inc | Multichip thin film module |
5172213, | May 23 1991 | AT&T Bell Laboratories | Molded circuit package having heat dissipating post |
5311060, | Dec 19 1989 | LSI Logic Corporation; LSI LOGIC CORPORATION A CORP OF DE | Heat sink for semiconductor device assembly |
5329423, | Apr 13 1993 | Hewlett-Packard Company | Compressive bump-and-socket interconnection scheme for integrated circuits |
5339216, | Mar 02 1993 | National Semiconductor Corporation | Device and method for reducing thermal cycling in a semiconductor package |
5435732, | Aug 12 1991 | International Business Machines Corporation | Flexible circuit member |
5444025, | Oct 23 1991 | Fujitsu Limited | Process for encapsulating a semiconductor package having a heat sink using a jig |
5493153, | Nov 26 1992 | TOKYO TUNGSTEN CO , LTD | Plastic-packaged semiconductor device having a heat sink matched with a plastic package |
5610442, | Mar 27 1995 | Bell Semiconductor, LLC | Semiconductor device package fabrication method and apparatus |
5639694, | Oct 07 1994 | GLOBALFOUNDRIES Inc | Method for making single layer leadframe having groundplane capability |
5650663, | Jul 03 1995 | Advanced Technology Interconnect Incorporated | Electronic package with improved thermal properties |
5679978, | Dec 06 1993 | Fujitsu Limited; Kyushu Fujitsu Electronics Limited | Semiconductor device having resin gate hole through substrate for resin encapsulation |
5705851, | Jun 28 1995 | National Semiconductor Corporation | Thermal ball lead integrated package |
5736785, | Dec 20 1996 | ACER INC | Semiconductor package for improving the capability of spreading heat |
5773362, | Jun 20 1996 | International Business Machines Corporation | Method of manufacturing an integrated ULSI heatsink |
5877552, | Jun 23 1997 | Industrial Technology Research Institute | Semiconductor package for improving the capability of spreading heat and electrical function |
5898219, | Apr 02 1997 | Intel Corporation | Custom corner attach heat sink design for a plastic ball grid array integrated circuit package |
5901043, | Mar 02 1993 | National Semiconductor Corporation | Device and method for reducing thermal cycling in a semiconductor package |
5977626, | Aug 12 1998 | ACER INC | Thermally and electrically enhanced PBGA package |
5985695, | Apr 24 1996 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Method of making a molded flex circuit ball grid array |
5986885, | Apr 08 1997 | Integrated Device Technology, Inc. | Semiconductor package with internal heatsink and assembly method |
6011304, | May 05 1997 | Bell Semiconductor, LLC | Stiffener ring attachment with holes and removable snap-in heat sink or heat spreader/lid |
6016013, | Aug 20 1996 | TESSERA ADVANCED TECHNOLOGIES, INC | Semiconductor device mounting structure |
6037658, | Oct 07 1997 | International Business Machines Corporation | Electronic package with heat transfer means |
6049125, | Dec 29 1997 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Semiconductor package with heat sink and method of fabrication |
6075712, | Jan 08 1999 | Intel Corporation | Flip-chip having electrical contact pads on the backside of the chip |
6175161, | May 23 1997 | TECHNOLOGY IP HOLDINGS | System and method for packaging integrated circuits |
6181569, | Jun 07 1999 | Low cost chip size package and method of fabricating the same | |
6236568, | Mar 20 1999 | Siliconware Precision Industries, Co., Ltd. | Heat-dissipating structure for integrated circuit package |
6251706, | Dec 31 1996 | Intel Corporation | Method for cooling the backside of a semiconductor device using an infrared transparent heat slug |
6300679, | Jun 01 1998 | DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT | Flexible substrate for packaging a semiconductor component |
6323066, | Mar 20 1999 | Siliconware Precision Industries Co., Ltd. | Heat-dissipating structure for integrated circuit package |
6388335, | Dec 14 1999 | Atmel Corporation | Integrated circuit package formed at a wafer level |
6414385, | Dec 30 1999 | Siliconware Precisionindustries Co., Ltd. | Quad flat non-lead package of semiconductor |
6462405, | Sep 13 2000 | Siliconware Precision Industries Co., Ltd. | Semiconductor package |
6525421, | May 01 2001 | Invensas Corporation | Molded integrated circuit package |
6552428, | Oct 12 1999 | Siliconware Precision Industries Co., Ltd. | Semiconductor package having an exposed heat spreader |
6631078, | Jan 10 2002 | GOOGLE LLC | Electronic package with thermally conductive standoff |
6656770, | Mar 31 1998 | International Business Machines Corporation | Thermal enhancement approach using solder compositions in the liquid state |
6737755, | Jul 19 2002 | UTAC HEADQUARTERS PTE LTD | Ball grid array package with improved thermal characteristics |
6800948, | Jul 19 2002 | UTAC HEADQUARTERS PTE LTD | Ball grid array package |
6818472, | Jul 19 2002 | UTAC HEADQUARTERS PTE LTD | Ball grid array package |
6967126, | Jul 31 2001 | STATS CHIPPAC PTE LTE | Method for manufacturing plastic ball grid array with integral heatsink |
20010015492, | |||
20020005578, | |||
20020006718, | |||
20020180035, | |||
20020185734, | |||
20030034569, | |||
20040032021, | |||
20040046241, | |||
20040164404, | |||
20050062149, | |||
20050110140, | |||
DE10915962, | |||
JP2278783, | |||
JP9232690, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 18 2005 | UTAC Hong Kong Limited | (assignment on the face of the patent) | / | |||
Mar 17 2005 | TAM, WAI KIT | ASAT Ltd | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016017 | /0194 | |
Mar 17 2005 | SZE, MING WANG | ASAT Ltd | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016017 | /0194 | |
Mar 18 2005 | LAM, WING KEUNG | ASAT Ltd | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016017 | /0194 | |
Mar 21 2005 | TSANG, KWOK CHEUNG | ASAT Ltd | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016017 | /0194 | |
Mar 22 2005 | MCLELLAN, NEIL | ASAT Ltd | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016017 | /0194 | |
Mar 25 2010 | ASAT Limited | UTAC Hong Kong Limited | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 025221 | /0771 | |
Jun 04 2010 | UTAC Hong Kong Limited | THE HONGKONG AND SHANGHAI BANKING CORPORATION LIMITED, AS SECURITY AGENT | GRANT OF SECURITY INTEREST IN PATENT RIGHTS - SECOND PRIORITY | 024611 | /0097 | |
Jun 04 2010 | UTAC Hong Kong Limited | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | GRANT OF SECURITY INTEREST IN PATENT RIGHTS - SECOND PRIORITY | 024599 | /0827 | |
Jun 04 2010 | UTAC Hong Kong Limited | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | GRANT OF SECURITY INTEREST IN PATENT RIGHTS - FIRST PRIORITY | 024599 | /0743 | |
May 08 2015 | UTAC Hong Kong Limited | UTAC HEADQUARTERS PTE LTD | CORRECTIVE ASSIGNMENT TO CORRECT THE ADD ANNEX INADVERTENTLY LEFT OUT ORIGINAL ASSIGNMENT DOCUMENT PREVIOUSLY RECORDED AT REEL: 037880 FRAME: 0534 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 039822 | /0591 | |
May 08 2015 | UTAC Hong Kong Limited | UTAC HEADQUARTERS PTE LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 037880 | /0534 |
Date | Maintenance Fee Events |
Feb 21 2017 | ASPN: Payor Number Assigned. |
Jun 07 2017 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jun 09 2021 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 17 2016 | 4 years fee payment window open |
Jun 17 2017 | 6 months grace period start (w surcharge) |
Dec 17 2017 | patent expiry (for year 4) |
Dec 17 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 17 2020 | 8 years fee payment window open |
Jun 17 2021 | 6 months grace period start (w surcharge) |
Dec 17 2021 | patent expiry (for year 8) |
Dec 17 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 17 2024 | 12 years fee payment window open |
Jun 17 2025 | 6 months grace period start (w surcharge) |
Dec 17 2025 | patent expiry (for year 12) |
Dec 17 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |