Described are a method and a sensor aware network for dynamic processing of sensor data. network context data are inserted into data packets from sensors or local sensor networks coupled to the sensor aware network. sensor aware nodes in the sensor aware network can read the context data and can respond by performing specific network actions. The sensor data and network context data are provided to one or more application nodes. The sensor data and network context data can be stored in a database and later searched according to the network context data. Advantageously, sensor data flows can be treated differently by the sensor aware network, the application and the user, depending on the type of sensor data and the actual data values. Thus critical responses to certain sensor data flows can be implemented more efficiently than otherwise possible using conventional network configurations.
|
1. A sensor aware network comprising:
a first sensor aware node configured to receive sensor data and to generate a data packet for transmission over the sensor aware network, the data packet having a packet header and a payload comprising network context data and the sensor data, the network context data being determined in response to at least one rule provided by an application, wherein said rule requires access approval, wherein said network context data comprises at least one tag added to said payload by said first sensor aware node in accordance with said rule; and
a second sensor aware node configured to receive the generated data packet, wherein said second sensor aware node examines said payload to determine if network context data is present, and when network context data is present then performing a network action in response to the network context data, wherein said action comprises said sensor aware node changing routing information for said data packet, wherein said changing routing information for said data packet comprises modifying header information for said data packet to a desired destination according to the applicable rule and forwarding said data packet to a network node determined according to the network context data, and when network context data is not present then routing said generated data packet according to information in said header.
9. A method of dynamic sensor network processing of a data packet, the method comprising:
receiving sensor data at a first sensor aware node; and
generating, at the first sensor network aware node, a data packet having a packet header and a data payload comprising network context data and the sensor data, the network context data being determined according to at least one rule, wherein said rule requires access approval, wherein said network context data comprises at least one tag added to said payload by said first sensor aware node in accordance with said rule;
receiving the data packet at a second sensor aware node; and
wherein said second sensor aware node examines said payload to determine if network context data is present, and if network context data is present then performing a network action in response to the network context data, wherein said network action comprises said second sensor aware node changing routing information for said data packet, wherein said changing routing information for said data packet comprises modifying header information for said data packet to a desired destination according to the applicable rule and forwarding said data packet accordingly to a network node determined according to the network context data, and when network context data is not present then routing said generated data packet according to information in said header.
3. A sensor aware network comprising:
a sensor adapted to generate sensor data in response to a sensor measurement;
a first sensor aware node configured to receive sensor data and to generate a data packet for transmission over the sensor aware network, the data packet having a packet header and a payload comprising network context data and the sensor data, the network context data being determined in response to at least one rule provided by an application, wherein said rule requires access approval, wherein said network context data comprises at least one tag added to said payload by said first sensor aware node in accordance with said rule; and
a second sensor aware node configured to receive the generated data packet, wherein said second sensor aware node examines said payload to determine if network context data is present, and when network context data is present then performing a network action in response to the network context data, wherein said action comprises said second sensor aware node changing routing information for said data packet, wherein said changing routing information for said data packet comprises modifying header information for said data packet to a desired destination according to the applicable rule and forwarding said data packet to a network node determined according to the network context data, and when network context data is not present then routing said generated data packet according to information in said header.
2. The sensor aware network of
4. The sensor aware network of
7. The sensor aware network of
8. The sensor aware network of
13. The method of
14. The method of
15. The method of
16. The method of
17. The method of
|
This application claims the benefit of U.S. Provisional Application No. 60/720,837, filed Sep. 27, 2005, titled “Sensor Flow Tagging and Interpretation by Network Elements,” the entirety of which provisional application is incorporated by reference herein.
The invention relates generally to network processing of sensor measurements. More particularly, the invention relates to a method of network processing based on the insertion of network context information into data packets comprising sensor measurement data and the interpretation of the network context information by sensor aware nodes.
Advancements in computing technology have led to the production of sensors capable of observing and reporting various real-world phenomena in a time-sensitive manner. Additionally, the growth in distributed communication technology (e.g., the Internet) has led to the development of sensor networks. Sensor networks have been proposed for use in numerous applications, including military and civilian applications. Generally, sensors are adapted to detect or monitor certain events or conditions. Sensors may be simple, such as a device that monitors temperature, or more complex, such as a video camera. Data generated at the sensor is transmitted in data packets over a sensor network to one or more end-points. An end-point can include an application software instantiation that can react to the sensor data or can be a user interface that presents the sensor data in numerical or graphical form to a user. Network traffic comprising sensor data are referred to herein as a sensor data flow. As the number of sensors increases, the probability of congestion in the sensor data flow increases which can lead to sub-optimal routing performance. Data packets can be dropped and the overall response time of the application or the user can increase.
Data aggregation is a technique known in the art that attempts to alleviate localized congestion problems. Generally, data aggregation is used to determine what data are useful and then to transmit only the useful data to the end-point, thereby reducing congestion and other associated problems. Various aggregation techniques have been proposed in the art. Although current data aggregation techniques have resulted in reduced congestion in sensor data flows, there is still a need for improved control of sensor data flows. As an increasing number of sensors get deployed over increasingly wider geographies and are networked to sets of applications over different access and IP networks, localization aspects, Quality of Service (“QoS”) aspects, and the relationship between the kind of event detected or condition monitored and an appropriate response to the event or condition become increasingly difficult to maintain.
In one aspect, the invention features a sensor aware network. The sensor aware network includes a sensor aware node configured to receive sensor data and to generate a data packet for transmission over the sensor aware network. The data packet has a payload comprising network context data and the sensor data. The network context data is determined in response to at least one rule provided by an application. In one embodiment, the sensor aware network also includes a sensor aware node configured to receive the generated data packet and to perform a network action in response to the network context data.
In another aspect, the invention features a sensor aware network that includes a sensor, a first sensor aware node and a second sensor aware node. The sensor is adapted to generate sensor data in response to a sensor measurement. The first sensor aware node is configured to receive the sensor data and to generate a data packet having a data payload that includes network context data and the sensor data. The second sensor aware node is configured to receive the data packet from the first sensor aware node and to perform an action in response to the network context data. In one embodiment, the sensor aware network also includes a network command module to provide a policy to the first sensor network aware node. The policy has at least one rule used to determine the network context data.
In yet another aspect, the invention features a method of dynamic sensor network processing of a data packet. Sensor data is received at a sensor aware node. A data packet having a data payload that includes network context data and the sensor data is generated at the sensor aware node. The network context data is determined according to at least one rule. In one embodiment, the data packet is received at another sensor aware node and a network action is performed in response to the network context data.
The above and further advantages of this invention may be better understood by referring to the following description in conjunction with the accompanying drawings, in which like numerals indicate like structural elements and features in the various figures. For clarity, not every element may be labeled in every figure. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
In brief overview, the invention relates to a sensor aware network in which network context data are inserted into data packets that include sensor data. Network context data as used herein means context data that can be interpreted by sensor aware nodes in the network as well as by applications executed at one or more application nodes in the network. Sensor aware nodes can read the context data and can respond by performing specific network actions including, for example, managing the sensor data flow through the network. The sensor data and network context data are provided to one or more application nodes. Sensor data and context data can be stored in a database and later searched according to various search parameters, including searches based on the network context data. Advantageously, the method of the invention permits sensor data flows to be treated differently by the sensor aware network, the application and the user, depending on the type of sensor data and the actual data values. Thus critical responses to certain sensor data flows can be implemented more efficiently than otherwise possible using conventional network configurations.
Referring to
The network 10 also includes packet-based sensor networks 16A and wireless sensor networks 16B (generally 16). The sensors 14 and packet-based sensor networks 16A are coupled to a sensor aware network (indicated by the region above the horizontal dashed line in
The sensor aware network includes aggregation nodes 22 which aggregate sensor data from two or more access nodes 18. Although not shown in the illustrated embodiment, an aggregation node 22 can aggregate data received from other aggregation nodes 22. An application node 26 directly communicates with the aggregation nodes 22 and a network control module 28. The illustrated network 10 includes only one application node 26 although generally any number of application nodes 26 can be in communication with the aggregation nodes 22 and the network control module 28.
The application node 26 executes one or more applications. By way of example, applications include tracking, image recognition, analytics, public safety/surveillance and alarm notification applications. The application node 26 generates one or more rules (i.e., a policy) for sensor data and network situational context. The rules may be dynamic in that the application node 26 can modify, add or delete rules over time according to the specific application.
Administrative rules can be established and distributed (step 150) by the network control module 28 to the sensor aware nodes. Administrative rules are generally application-independent. For example, the network control module 28 can set administrative rules to require that all network context data inserted into data packets include a node timestamp and node IP address, regardless of which application nodes 26 are to receive the sensor data packets.
Rules are used to define network situational contexts for which various types of tags are added to data packets at access nodes 18 as described below with respect to
Rules are not limited to sensor data provided from a single access node 18. In one embodiment, sensor data received at an aggregation node 22 from one access node 18 can trigger a network context data change to sensor data received from another access node 18 linked to the aggregation node 22. For example, if a fire is sensed according to sensor data received at one access node 18, data from video sensors received at another access node 18 can be tagged as high priority.
Advantageously, the intentions of the application node 26 are implemented in a distributed manner as the sensor data enters the sensor aware network and are routed through the sensor aware network. Rules applied at sensor aware nodes can assist in sensor data traffic management and indicate how the sensor data are to be interpreted. In contrast, conventional sensor data networks simply forward all sensor data to the application nodes which perform all the sensor data processing.
The IP header contains information such as the data packet source and destination. Generally, the sensor aware network routes the data packet 30 to the destination node according to the IP header. Network nodes having only routing and transport capabilities do not see the network context data and therefore forward the data packet 30 according to the IP header information. Sensor aware nodes, such as aggregation nodes 22 having sensor awareness capability, examine the data payload to determine whether network context data are present. If no network context data are present, the data packet 30 is routed according to standard routing processes based on the information in the IP header. However, if network context data are present in the data payload, the sensor aware node can act on, i.e., respond to, the network context data according to one or more rules. For example, the network action can be to change the routing information for the data packet 30. The IP header can be modified to indicate the desired destinations according to the applicable rule and the data packet 30 is forwarded accordingly. In another example, the network context data can indicate that the associated sensor data should be treated as high priority data and the sensor aware node responds by changing the type of service rate in the IP header to correspond to high priority. In another example, the packet can be duplicated and sent to multiple applications or multicast and sent as data over a dynamic multimedia connection to a mobile user. Preferably, the network context data includes an indication that the priority has changed so that later analysis of the sensor data will show that the sensor data was actually process as priority data by the sensor aware network. Although routing and traffic management can be affected by the network context data, it should be noted that none of the actions implemented by the sensor aware nodes in response to network context data result in any change to the sensor data contained in the data packet 30.
The data packet is received by an aggregation node 22 which “snoops” the data packet to read and interpret the network context data inside the data payload. The aggregation node 22 sees the network context data and responds by performing (step 250) a network action. Examples of network actions include modifying the routing information, copying and forwarding the data packet to another application node, multicasting the data packet, making multiple copies for multiple applications, and sending the data packet to remote personnel using a VOIP/Multimedia session. The data packet can be received at other sensor aware nodes in the sensor aware network before being received and processed (step 260) by the application node 26. In one embodiment, the sensor data are stored (step 270) with the associated network context data in a database. A later search can be performed to retrieve specific data from the database. For example, a search can be requested for a pressure data stored with a priority tag during a certain time interval.
While the invention has been shown and described with reference to specific embodiments, it should be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
6016310, | Jun 30 1997 | Oracle America, Inc | Trunking support in a high performance network device |
6505086, | Aug 13 2001 | SENSOR-TECH INNOVATIONS LLC | XML sensor system |
6629133, | Sep 11 1998 | RPX Corporation | Interactive doll |
6650779, | Mar 26 1999 | Georgia Tech Research Corporation | Method and apparatus for analyzing an image to detect and identify patterns |
6687247, | Oct 27 1999 | Cisco Technology, Inc.; Cisco Technology, Inc | Architecture for high speed class of service enabled linecard |
6801528, | Jul 03 2002 | Ericsson Inc. | System and method for dynamic simultaneous connection to multiple service providers |
7116643, | Apr 30 2002 | ARRIS ENTERPRISES LLC | Method and system for data in a collection and route discovery communication network |
7181192, | Mar 16 2004 | Texas Instruments Incorporated | Handheld portable automatic emergency alert system and method |
7242294, | Sep 17 2003 | Keysight Technologies, Inc | System and method for using mobile collectors for accessing a wireless sensor network |
7340770, | May 15 2002 | CHECK POINT SOFTWARE TECHNOLOGIES, INC | System and methodology for providing community-based security policies |
7400594, | May 03 2005 | EATON INTELLIGENT POWER LIMITED | Method and system for automated distributed pairing of wireless nodes of a communication network |
7590098, | Oct 27 2004 | Honeywell International Inc. | Publish/subscribe model in a wireless sensor network |
7610621, | Mar 10 2004 | NETSKOPE, INC | System and method for behavior-based firewall modeling |
7631184, | May 14 2002 | Intellectual Ventures I LLC | System and method for imposing security on copies of secured items |
7710961, | Jan 19 1995 | HANGER SOLUTIONS, LLC | System and method for sending packets over a computer network |
7719980, | Feb 19 2002 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Method and apparatus for flexible frame processing and classification engine |
20030154339, | |||
20050249215, | |||
20060026678, | |||
20060149905, | |||
20060161645, | |||
20060167634, | |||
20060187866, | |||
20060224619, | |||
20060280181, | |||
20060282498, | |||
20070019641, | |||
20070115116, | |||
20080259919, | |||
20090222541, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 22 2006 | MONGA, INDERMOHAN | Nortel Networks Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018508 | /0941 | |
Sep 25 2006 | Avaya, Inc. | (assignment on the face of the patent) | / | |||
Dec 18 2009 | Nortel Networks Limited | AVAYA Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023998 | /0878 | |
Jan 29 2010 | AVAYA Inc | CITIBANK, N A , AS ADMINISTRATIVE AGENT | SECURITY AGREEMENT | 023892 | /0500 | |
Jan 29 2010 | AVAYA Inc | CITICORP USA, INC , AS ADMINISTRATIVE AGENT | SECURITY AGREEMENT | 023905 | /0001 | |
Feb 11 2011 | AVAYA INC , A DELAWARE CORPORATION | BANK OF NEW YORK MELLON TRUST, NA, AS NOTES COLLATERAL AGENT, THE | SECURITY AGREEMENT | 025863 | /0535 | |
Dec 21 2012 | Avaya, Inc | THE BANK OF NEW YORK MELLON TRUST COMPANY, N A | SECURITY AGREEMENT | 029608 | /0256 | |
Mar 07 2013 | Avaya, Inc | BANK OF NEW YORK MELLON TRUST COMPANY, N A , THE | SECURITY AGREEMENT | 030083 | /0639 | |
Jan 24 2017 | Octel Communications Corporation | CITIBANK, N A , AS ADMINISTRATIVE AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 041576 | /0001 | |
Jan 24 2017 | VPNET TECHNOLOGIES, INC | CITIBANK, N A , AS ADMINISTRATIVE AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 041576 | /0001 | |
Jan 24 2017 | AVAYA INTEGRATED CABINET SOLUTIONS INC | CITIBANK, N A , AS ADMINISTRATIVE AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 041576 | /0001 | |
Jan 24 2017 | AVAYA Inc | CITIBANK, N A , AS ADMINISTRATIVE AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 041576 | /0001 | |
Nov 28 2017 | CITIBANK, N A | AVAYA Inc | BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL FRAME 041576 0001 | 044893 | /0531 | |
Nov 28 2017 | THE BANK OF NEW YORK MELLON TRUST, NA | AVAYA Inc | BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL FRAME 025863 0535 | 044892 | /0001 | |
Nov 28 2017 | THE BANK OF NEW YORK MELLON TRUST COMPANY, N A | AVAYA Inc | BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL FRAME 030083 0639 | 045012 | /0666 | |
Nov 28 2017 | THE BANK OF NEW YORK MELLON TRUST COMPANY, N A | AVAYA Inc | BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL FRAME 029608 0256 | 044891 | /0801 | |
Nov 28 2017 | CITIBANK, N A | AVAYA Inc | BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL FRAME 023892 0500 | 044891 | /0564 | |
Nov 28 2017 | CITIBANK, N A | AVAYA INTEGRATED CABINET SOLUTIONS INC | BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL FRAME 041576 0001 | 044893 | /0531 | |
Nov 28 2017 | CITIBANK, N A | OCTEL COMMUNICATIONS LLC FORMERLY KNOWN AS OCTEL COMMUNICATIONS CORPORATION | BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL FRAME 041576 0001 | 044893 | /0531 | |
Nov 28 2017 | CITIBANK, N A | VPNET TECHNOLOGIES, INC | BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL FRAME 041576 0001 | 044893 | /0531 | |
Dec 15 2017 | ZANG, INC | GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 045034 | /0001 | |
Dec 15 2017 | CITICORP USA, INC | SIERRA HOLDINGS CORP | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 045045 | /0564 | |
Dec 15 2017 | AVAYA INTEGRATED CABINET SOLUTIONS LLC | GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 045034 | /0001 | |
Dec 15 2017 | VPNET TECHNOLOGIES, INC | CITIBANK, N A , AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 045124 | /0026 | |
Dec 15 2017 | AVAYA INTEGRATED CABINET SOLUTIONS LLC | CITIBANK, N A , AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 045124 | /0026 | |
Dec 15 2017 | ZANG, INC | CITIBANK, N A , AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 045124 | /0026 | |
Dec 15 2017 | AVAYA Inc | CITIBANK, N A , AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 045124 | /0026 | |
Dec 15 2017 | VPNET TECHNOLOGIES, INC | GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 045034 | /0001 | |
Dec 15 2017 | OCTEL COMMUNICATIONS LLC | GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 045034 | /0001 | |
Dec 15 2017 | CITICORP USA, INC | Avaya, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 045045 | /0564 | |
Dec 15 2017 | AVAYA Inc | GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 045034 | /0001 | |
Dec 15 2017 | OCTEL COMMUNICATIONS LLC | CITIBANK, N A , AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 045124 | /0026 | |
Sep 25 2020 | AVAYA MANAGEMENT L P | WILMINGTON TRUST, NATIONAL ASSOCIATION | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053955 | /0436 | |
Sep 25 2020 | AVAYA INTEGRATED CABINET SOLUTIONS LLC | WILMINGTON TRUST, NATIONAL ASSOCIATION | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053955 | /0436 | |
Sep 25 2020 | AVAYA Inc | WILMINGTON TRUST, NATIONAL ASSOCIATION | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053955 | /0436 | |
Sep 25 2020 | INTELLISIST, INC | WILMINGTON TRUST, NATIONAL ASSOCIATION | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053955 | /0436 | |
Jul 12 2022 | AVAYA Inc | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT | 061087 | /0386 | |
Jul 12 2022 | INTELLISIST, INC | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT | 061087 | /0386 | |
Jul 12 2022 | AVAYA CABINET SOLUTIONS LLC | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT | 061087 | /0386 | |
Jul 12 2022 | AVAYA MANAGEMENT L P | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT | 061087 | /0386 | |
Apr 03 2023 | CITIBANK, N A , AS COLLATERAL AGENT | AVAYA INTEGRATED CABINET SOLUTIONS LLC | RELEASE OF SECURITY INTEREST IN PATENTS AT REEL 45124 FRAME 0026 | 063457 | /0001 | |
Apr 03 2023 | CITIBANK, N A , AS COLLATERAL AGENT | AVAYA MANAGEMENT L P | RELEASE OF SECURITY INTEREST IN PATENTS AT REEL 45124 FRAME 0026 | 063457 | /0001 | |
Apr 03 2023 | CITIBANK, N A , AS COLLATERAL AGENT | AVAYA Inc | RELEASE OF SECURITY INTEREST IN PATENTS AT REEL 45124 FRAME 0026 | 063457 | /0001 | |
Apr 03 2023 | CITIBANK, N A , AS COLLATERAL AGENT | AVAYA HOLDINGS CORP | RELEASE OF SECURITY INTEREST IN PATENTS AT REEL 45124 FRAME 0026 | 063457 | /0001 | |
May 01 2023 | GOLDMAN SACHS BANK USA , AS COLLATERAL AGENT | HYPERQUALITY, INC | RELEASE OF SECURITY INTEREST IN PATENTS REEL FRAME 045034 0001 | 063779 | /0622 | |
May 01 2023 | GOLDMAN SACHS BANK USA , AS COLLATERAL AGENT | HYPERQUALITY II, LLC | RELEASE OF SECURITY INTEREST IN PATENTS REEL FRAME 045034 0001 | 063779 | /0622 | |
May 01 2023 | GOLDMAN SACHS BANK USA , AS COLLATERAL AGENT | CAAS TECHNOLOGIES, LLC | RELEASE OF SECURITY INTEREST IN PATENTS REEL FRAME 045034 0001 | 063779 | /0622 | |
May 01 2023 | GOLDMAN SACHS BANK USA , AS COLLATERAL AGENT | AVAYA MANAGEMENT L P | RELEASE OF SECURITY INTEREST IN PATENTS REEL FRAME 045034 0001 | 063779 | /0622 | |
May 01 2023 | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT | AVAYA Inc | RELEASE OF SECURITY INTEREST IN PATENTS REEL FRAME 53955 0436 | 063705 | /0023 | |
May 01 2023 | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT | INTELLISIST, INC | RELEASE OF SECURITY INTEREST IN PATENTS REEL FRAME 53955 0436 | 063705 | /0023 | |
May 01 2023 | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT | AVAYA INTEGRATED CABINET SOLUTIONS LLC | RELEASE OF SECURITY INTEREST IN PATENTS REEL FRAME 53955 0436 | 063705 | /0023 | |
May 01 2023 | GOLDMAN SACHS BANK USA , AS COLLATERAL AGENT | VPNET TECHNOLOGIES, INC | RELEASE OF SECURITY INTEREST IN PATENTS REEL FRAME 045034 0001 | 063779 | /0622 | |
May 01 2023 | AVAYA Inc | AVAYA LLC | SECURITY INTEREST GRANTOR S NAME CHANGE | 065019 | /0231 | |
May 01 2023 | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT | AVAYA MANAGEMENT L P | RELEASE OF SECURITY INTEREST IN PATENTS REEL FRAME 53955 0436 | 063705 | /0023 | |
May 01 2023 | GOLDMAN SACHS BANK USA , AS COLLATERAL AGENT | ZANG, INC FORMER NAME OF AVAYA CLOUD INC | RELEASE OF SECURITY INTEREST IN PATENTS REEL FRAME 045034 0001 | 063779 | /0622 | |
May 01 2023 | GOLDMAN SACHS BANK USA , AS COLLATERAL AGENT | OCTEL COMMUNICATIONS LLC | RELEASE OF SECURITY INTEREST IN PATENTS REEL FRAME 045034 0001 | 063779 | /0622 | |
May 01 2023 | INTELLISIST, INC | WILMINGTON SAVINGS FUND SOCIETY, FSB [COLLATERAL AGENT] | INTELLECTUAL PROPERTY SECURITY AGREEMENT | 063742 | /0001 | |
May 01 2023 | KNOAHSOFT INC | WILMINGTON SAVINGS FUND SOCIETY, FSB [COLLATERAL AGENT] | INTELLECTUAL PROPERTY SECURITY AGREEMENT | 063742 | /0001 | |
May 01 2023 | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT | AVAYA MANAGEMENT L P | RELEASE OF SECURITY INTEREST IN PATENTS REEL FRAME 61087 0386 | 063690 | /0359 | |
May 01 2023 | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT | AVAYA Inc | RELEASE OF SECURITY INTEREST IN PATENTS REEL FRAME 61087 0386 | 063690 | /0359 | |
May 01 2023 | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT | INTELLISIST, INC | RELEASE OF SECURITY INTEREST IN PATENTS REEL FRAME 61087 0386 | 063690 | /0359 | |
May 01 2023 | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT | AVAYA INTEGRATED CABINET SOLUTIONS LLC | RELEASE OF SECURITY INTEREST IN PATENTS REEL FRAME 61087 0386 | 063690 | /0359 | |
May 01 2023 | AVAYA Inc | CITIBANK, N A , AS COLLATERAL AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT | 063542 | /0662 | |
May 01 2023 | AVAYA MANAGEMENT L P | CITIBANK, N A , AS COLLATERAL AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT | 063542 | /0662 | |
May 01 2023 | INTELLISIST, INC | CITIBANK, N A , AS COLLATERAL AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT | 063542 | /0662 | |
May 01 2023 | AVAYA MANAGEMENT L P | WILMINGTON SAVINGS FUND SOCIETY, FSB [COLLATERAL AGENT] | INTELLECTUAL PROPERTY SECURITY AGREEMENT | 063742 | /0001 | |
May 01 2023 | GOLDMAN SACHS BANK USA , AS COLLATERAL AGENT | AVAYA Inc | RELEASE OF SECURITY INTEREST IN PATENTS REEL FRAME 045034 0001 | 063779 | /0622 | |
May 01 2023 | GOLDMAN SACHS BANK USA , AS COLLATERAL AGENT | INTELLISIST, INC | RELEASE OF SECURITY INTEREST IN PATENTS REEL FRAME 045034 0001 | 063779 | /0622 | |
May 01 2023 | GOLDMAN SACHS BANK USA , AS COLLATERAL AGENT | AVAYA INTEGRATED CABINET SOLUTIONS LLC | RELEASE OF SECURITY INTEREST IN PATENTS REEL FRAME 045034 0001 | 063779 | /0622 | |
May 01 2023 | AVAYA Inc | WILMINGTON SAVINGS FUND SOCIETY, FSB [COLLATERAL AGENT] | INTELLECTUAL PROPERTY SECURITY AGREEMENT | 063742 | /0001 |
Date | Maintenance Fee Events |
Dec 06 2013 | ASPN: Payor Number Assigned. |
Oct 25 2016 | ASPN: Payor Number Assigned. |
Oct 25 2016 | RMPN: Payer Number De-assigned. |
Jun 20 2017 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jun 30 2021 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 31 2016 | 4 years fee payment window open |
Jul 01 2017 | 6 months grace period start (w surcharge) |
Dec 31 2017 | patent expiry (for year 4) |
Dec 31 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 31 2020 | 8 years fee payment window open |
Jul 01 2021 | 6 months grace period start (w surcharge) |
Dec 31 2021 | patent expiry (for year 8) |
Dec 31 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 31 2024 | 12 years fee payment window open |
Jul 01 2025 | 6 months grace period start (w surcharge) |
Dec 31 2025 | patent expiry (for year 12) |
Dec 31 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |