A method for controlling an electrosurgical generator is contemplated by the present disclosure. The method includes applying an electrosurgical waveform to tissue through an electrode. The electrosurgical waveform includes one or more positive half-cycles one or more negative half-cycles. The method also includes measuring voltage and current of the electrosurgical waveform to detect a peak voltage of each of the positive half-cycles and the negative half-cycles and comparing the peak voltage of the positive half-cycles and the peak voltage of the negative half-cycles to determine generation of electrical discharges. The method further includes adjusting the current of the electrosurgical waveform to regulate the generation of the electrical discharges based on a comparison of the peak voltage of the positive half-cycles and the peak voltage of the negative half-cycles.
|
1. A method for controlling an electrosurgical generator, the method comprising:
applying at least one electrosurgical waveform to tissue through at least one electrode, the at least one electrosurgical waveform including a plurality of cycles, each cycle having one positive half-cycle and one negative half-cycle;
measuring a voltage and a current of the at least one electrosurgical waveform to determine a peak voltage of each of the positive half-cycle and the negative half-cycle;
comparing the peak voltage of the positive half-cycle and the peak voltage of the negative half-cycle to determine generation of electrical discharges; and
adjusting the current of the at least one electrosurgical waveform to regulate the generation of the electrical discharges during each of the cycles based on a comparison of the peak voltage of the positive half-cycle and the peak voltage of the negative half-cycle.
9. An electrosurgical generator, comprising:
an rf output stage configured to generate at least one electrosurgical waveform including a plurality of cycles, each cycle having one positive half-cycle and one negative half-cycle;
at least one sensor coupled to the rf output stage, the at least one sensor configured to measure a voltage and a current of the at least one electrosurgical waveform and to detect a peak voltage of each of the positive half-cycle and the negative half-cycle; and
a controller coupled to the at least one sensor, the controller configured to compare the peak voltage of the positive half-cycle and the peak voltage of the negative half-cycle to determine generation of electrical discharges, the controller further configured to adjust the current of the at least one electrosurgical waveform to regulate the generation of the electrical discharges during each of the cycles based on a comparison of the peak voltage of the positive half-cycle and the peak voltage of the negative half-cycle.
16. An electrosurgical system, comprising:
an electrosurgical generator including:
an rf output stage configured to generate at least one electrosurgical waveform including a plurality of cycles, each cycle having one positive half-cycle and one negative half-cycle;
at least one sensor coupled to the rf output stage, the at least one sensor configured to measure a voltage and a current of the at least one electrosurgical waveform and to detect a peak voltage of each of the positive half-cycle and the negative half-cycle; and
a controller coupled to the at least one sensor, the controller configured to compare the peak voltage of the positive half-cycle and the peak voltage of the negative half-cycle to determine generation of electrical discharges, the controller further configured to adjust the current of the at least one electrosurgical waveform to regulate the generation of the electrical discharges during each of the cycles based on a comparison of the peak voltage of the positive half-cycle and the peak voltage of the negative half-cycle; and
at least one electrosurgical instrument configured to couple to the electrosurgical generator and to supply the at least one electrosurgical waveform to a tissue.
2. The method according to
3. The method according to
4. The method according to
5. The method according to
6. The method according to
7. The method according to
8. The method according to
10. The electrosurgical generator according to
11. The electrosurgical generator according to
12. The electrosurgical generator according to
13. The electrosurgical generator according to
14. The electrosurgical generator according to
15. The electrosurgical generator according to
17. The electrosurgical system according to
18. The electrosurgical system according to
19. The electrosurgical system according to
20. The electrosurgical system according to
|
1. Technical Field
The present disclosure relates to electrosurgical generators. More particularly, the present disclosure relates to a system and method for controlling output of an electrosurgical generator. The electrosurgical generator includes a sensing feedback control system and an electrical discharge based adaptive control system that adjusts output in response to electrical discharges.
2. Background of Related Art
Energy-based tissue treatment is well known in the art. Various types of energy (e.g., electrical, ultrasonic, microwave, cryogenic, heat, laser, etc.) are applied to tissue to achieve a desired result. Electrosurgery involves application of high radio frequency electrical current to a surgical site to cut, ablate, coagulate or seal tissue.
In bipolar electrosurgery, one of the electrodes of the hand-held instrument functions as the active electrode and the other as the return electrode. The return electrode is placed in close proximity to the active electrode such that an electrical circuit is formed between the two electrodes (e.g., electrosurgical forceps). In this manner, the applied electrical current is limited to the body tissue positioned between the electrodes. When the electrodes are sufficiently separated from one another, the electrical circuit is open and thus inadvertent contact with body tissue with either of the separated electrodes does not cause current to flow.
Bipolar electrosurgical techniques and instruments can be used to coagulate blood vessels or tissue, e.g., soft tissue structures, such as lung, brain and intestine. A surgeon can either cauterize, coagulate/desiccate and/or simply reduce or slow bleeding, by controlling the intensity, frequency and duration of the electrosurgical energy applied between the electrodes and through the tissue. In order to achieve one of these desired surgical effects without causing unwanted charring of tissue at the surgical site or causing collateral damage to adjacent tissue, e.g., thermal spread, it is necessary to control the output from the electrosurgical generator, e.g., power, waveform, voltage, current, pulse rate, etc.
In monopolar electrosurgery, the active electrode is typically a part of the surgical instrument held by the surgeon that is applied to the tissue to be treated. A patient return electrode is placed remotely from the active electrode to carry the current back to the generator and safely disperse current applied by the active electrode. The return electrodes usually have a large patient contact surface area to minimize heating at that site. Heating is caused by high current densities that directly depend on the surface area. A larger surface contact area results in lower localized heat intensity. Return electrodes are typically sized based on assumptions of the maximum current utilized during a particular surgical procedure and the duty cycle (i.e., the percentage of time the generator is on).
A method for controlling an electrosurgical generator is contemplated by the present disclosure. The method includes applying an electrosurgical waveform to tissue through an electrode. The electrosurgical waveform includes one or more positive half-cycles and one or more negative half-cycles. The method also includes measuring voltage and current of the waveform including peak and zero-crossing values to determine occurrence of electrical (e.g., arc and glow) discharges. The method further includes the adjusting a current of the electrosurgical waveform to regulate the generation of the electrical discharges based on a comparison of the peak voltage of the positive half-cycles and the peak voltage of the negative half-cycles.
The present disclosure also provides for an electrosurgical generator, which includes an RF output stage configured to generate at least one electrosurgical waveform including one or more positive half-cycles and one or more negative half-cycles. The generator also includes one or more sensors coupled to the RF output stage. The sensors are configured to detect instantaneous voltage and current of each of the positive half-cycles and the negative half-cycles. The generator further includes a controller coupled to the sensors. The controller may be configured to compare the peak voltage of the positive half-cycles and the peak voltage of the negative half-cycles to determine generation of electrical (e.g., arc and glow) discharges. The controller is further configured to adjust the current of the electrosurgical waveform to regulate the generation of the electrical discharges based on a comparison of the peak voltage of the positive half-cycles and the peak voltage of the negative half-cycles.
The present disclosure also provides for an electrosurgical system. The system includes an electrosurgical generator and one or more electrosurgical instruments configured to couple to the electrosurgical generator and to supply the electrosurgical waveform to the tissue. The electrosurgical generator includes an RF output stage configured to generate at least one electrosurgical waveform including one or more positive half-cycles and one or more negative half-cycles. The generator also includes one or more sensors coupled to the RF output stage. The sensors are configured to detect an instantaneous voltage of each of the positive half-cycles and the negative half-cycles. The generator further includes a controller coupled to the sensors. The controller may be configured to compare the peak voltage of the positive half-cycles and the peak voltage of the negative half-cycles to determine generation of electrical (e.g., are and glow) discharges. The controller is further configured to adjust the current of the electrosurgical waveform to regulate the generation of the electrical discharges based on a comparison of the peak voltage of the positive half-cycles and the peak voltage of the negative half-cycles.
Various embodiments of the present disclosure are described herein with reference to the drawings wherein:
Particular embodiments of the present disclosure are described hereinbelow with reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.
During application of electrosurgical energy, electrical discharge is generated between an active electrode and the tissue. In particular, discharges are generated when an active electrode is held at a distance from the tissue. When the electrode is in direct contact with the tissue, this results in heating and subsequent desiccation of the tissue, without an electrical discharge.
Discharges can be categorized as thermal arc and glow electrical discharges. The present disclosure provides for systems and method for identifying electrical discharges and adjusting output of the electrosurgical energy to tailor generation of arc discharges or glow discharges. The type of the discharge (e.g., are or glow) depends on a variety of factors, such as current, electrode material, electrode geometry and electrode temperature. Arc discharges occur during negative half-cycle of energy delivery, while glow discharges can occur during both, negative and positive half-cycles.
Arc and glow discharges can be identified based on the differences between the discharge characteristics of the electrosurgical energy. In particular, monitoring of the voltage and current waveforms in the positive and negative polarities allows for identification of the type of discharge. Glow discharges exhibit a higher gap voltage than arc discharge. In addition, glow discharges exhibit a higher voltage at discharge termination.
The system and method according to present disclosure detect these difference and provide for control algorithms based on the detected differences. In one embodiment, the difference between the peak voltage of the negative and positive half-cycles is utilized as a detection parameter indicative of the type of electrical discharge. In another embodiment, the system may monitor for the gap voltage value reaching zero. During procedures when the electrode is in direct contact with the tissue (e.g., desiccation), current flow continues until the gap voltage reaches zero, thus, this value is a suitable indicator of the presence of discharges. Power may be decreased or increased to either cease or initiate arc or glow discharges, respectively.
In one embodiment, the discharges may be controlled by adjusting the time between pulses to control the temperature of the active electrode. This maintains the negative half-cycle in either the arc or glow regime along with its associated surgical effects. In another embodiment, electrode temperature may be controlled by adjusting the current delivered thereto (e.g., via power adjustment).
The generator according to the present disclosure can perform monopolar and bipolar electrosurgical procedures, including vessel sealing procedures. The generator may include a plurality of outputs for interfacing with various electrosurgical instruments (e.g., a monopolar active electrode, return electrode, bipolar electrosurgical forceps, footswitch, etc.). Further, the generator includes electronic circuitry configured to generate radio frequency power specifically suited for various electrosurgical modes (e.g., cutting, blending, division, etc.) and procedures (e.g., monopolar, bipolar, vessel sealing).
The system 1 may also include a bipolar electrosurgical forceps 10 having one or more electrodes for treating tissue of a patient. The electrosurgical forceps 10 includes opposing jaw members 15 and 17 having one or more active electrodes 14 and a return electrode 16 disposed therein, respectively. The active electrode 14 and the return electrode 16 are connected to the generator 20 through cable 18 that includes the supply and return lines 4, 8 coupled to the active and return terminals 30, 32, respectively. The electrosurgical forceps 10 is coupled to the generator 20 at a connector having connections to the active and return terminals 30 and 32 (e.g., pins) via a plug disposed at the end of the cable 18, wherein the plug includes contacts from the supply and return lines 4, 8.
With reference to
The generator 20 is configured to operate in a variety of modes. In one embodiment, the generator 20 may output the following modes, cut, blend, division with hemostasis, fulgurate and spray. Each of the modes operates based on a preprogrammed power curve that dictates how much power is outputted by the generator 20 at varying impedance ranges of the load (e.g., tissue). Each of the power curves includes a constant power, constant voltage and constant current ranges that are defined by the user-selected power setting and the measured minimum impedance of the load.
In the cut mode, the generator 20 supplies a continuous sine wave at a predetermined frequency (e.g., 472 kHz) having a crest factor of 1.5 or less in the impedance range of 100Ω to 2,000Ω. The cut mode power curve may include three regions: constant current into low impedance, constant power into medium impedance and constant voltage into high impedance. In the blend mode, the generator supplies bursts of a sine wave at the predetermined frequency, with the bursts reoccurring at a first predetermined rate (e.g., about 26.21 kHz). In one embodiment, the duty cycle of the bursts may be about 50%. The crest factor of one period of the sine wave may be less than 1.5. The crest factor of the burst may be about 2.7.
The division with hemostasis mode includes bursts of sine waves at a predetermined frequency (e.g., 472 kHz) reoccurring at a second predetermined rate (e.g., about 28.3 kHz). The duty cycle of the bursts may be 25%. The crest factor of one burst may be 4.3 across an impedance range of 100Ω to 2,000Ω. The fulgurate mode includes bursts of sine waves at a predetermined frequency (e.g., 472 kHz) reoccurring at a third predetermined rate (e.g., about 30.66 kHz). The duty cycle of the bursts may be 6.5% and the crest factor of one burst may be 5.55 across an impedance range of 100Ω to 2,000Ω. The spray mode may be bursts of sine wave at a predetermined frequency (e.g., 472 kHz) reoccurring at a third predetermined rate (e.g., about 21.7 kHz). The duty cycle of the bursts may be 4.6% and the crest factor of one burst may be 6.6 across the impedance range of 100Ω to 2,000 Ω.
The screen 46 controls bipolar sealing procedures performed by the forceps 10 that may be plugged into the connectors 60 and 62. The generator 20 outputs energy through the connectors 60 and 62 suitable for sealing tissue grasped by the forceps 10. The screen 42 controls monopolar output and the devices connected to the connectors 50 and 52. The connector 50 is configured to couple to the instrument 2 and the connector 52 is configured to couple to a foot switch (not shown). The foot switch provides for additional inputs (e.g., replicating inputs of the generator 20 and/or instrument 2). The screen 44 controls monopolar and bipolar output and the devices connected to the connectors 56 and 58. Connector 56 is configured to couple to the instrument 2, allowing the generator 20 to power multiple instruments 2. Connector 58 is configured to couple to a bipolar instrument (not shown). When using the generator 20 in monopolar mode (e.g., with instruments 2), the return electrode 6 is coupled to the connector 54, which is associated with the screens 42 and 44. The generator 20 is configured to output the modes discussed above through the connectors 50, 56, 58.
The controller 24 includes a microprocessor 25 operably connected to a memory 26, which may be volatile type memory (e.g., RAM) and/or non-volatile type memory (e.g., flash media, disk media, etc.). The microprocessor 25 includes an output port that is operably connected to the HVPS 27 and/or RE output stage 28 allowing the microprocessor 25 to control the output of the generator 20 according to either open and/or closed control loop schemes. Those skilled in the art will appreciate that the microprocessor 25 may be substituted by any logic processor (e.g., control circuit) adapted to perform the calculations discussed herein.
A closed loop control scheme is a feedback control loop, in which one or more sensors 23 measure a variety of tissue and/or energy properties (e.g., tissue impedance, tissue temperature, output current and/or voltage, etc.), and provide feedback to the controller 24, Such sensors may include voltage and current sensors that are coupled to the output terminals 30 and 32 of the generator 20, which are within the purview of those skilled in the art. In response to the sensor signals, the controller 24 controls the HVPS 27 and/or RF output stage 28, which then adjusts the DC and/or RF power supply, respectively. The controller 24 also receives input signals from the input controls of the generator 20, the instrument 2 or forceps 10. The controller 24 utilizes the input signals to adjust power outputted by the generator 20 and/or performs other control functions thereon.
The glow discharge regime 106 occurs after the breakdown voltage of the air is reached (e.g., at points D and/or E). The glow discharge regime 106 includes a normal glow discharge 110 between points F and G and an abnormal glow discharge 112 between the points G and H. During the normal glow discharge 110, the voltage remains constant while the current continues to increase. During the abnormal glow discharge 112, the voltage and current are increasing almost in a linear manner until the arc discharge regime 108 is reached.
During the arc discharge regime 108, the voltage decreases precipitously between points I and J, producing a non-thermal discharge 114. The voltage stabilizes between the points J and K, producing the a thermal arc 116. The arc discharge regime 108 the current is increasing continuously. As stated above, arc discharges (e.g., arc discharge regime 108) occur on the negative half-cycles, whereas glow discharges (e.g., glow discharge regime 106) can occur on either half-cycles depending on the temperature of the electrode 3. One of the characteristics of the thermal arc 116 is a relatively low voltage as illustrated by the plot 100.
The plots 200 and 300 illustrate that the arc discharge can be predicted to occur during the negative half-cycle, specifically, when the peak voltage of negative half-cycle 303 is less than the peak voltage positive half-cycle 203. The arc discharge is characterized by the current going negative and increasing in amplitude during the negative half-cycle 303 of the current waveform 304. The peak voltage of the positive half-cycle 203 is above 600 V, whereas the peak voltage of the negative half-cycle 303 is only about −500 V at the same power setting and arcing condition (e.g., electrode-to-tissue distance, tissue volume, etc.).
With respect to
The plot 350 illustrates that the arc discharge may also be predicted to occur when the current waveform 354 reaches zero crossing, namely, 0 A before the zero-crossing of the voltage waveform 352, e.g., reaches 0 V during either positive or negative half-cycles. In particular, zero-crossing of the current waveform 354 prior to zero-crossing of the voltage waveform 352 during a positive half-cycle is indicative of a glow discharge, whereas zero-crossing of the current waveform 354 prior to zero-crossing of the voltage waveform 352 during a negative half-cycle is indicative of an arc discharge. As shown in
If the electrode 3 comes in direct contact with the tissue (e.g., electrode 3 being in resistive contact without arcing forming through the air gap), the voltage and current reach 0 V and 0 A simultaneously. This condition may be utilized to distinguish between an arc-forming configuration (e.g., electrode 3 being held away from the tissue) and a contact configuration that is suitable for desiccating tissue (e.g., electrode 3 being in direct contact with the tissue).
Plot 300 also illustrates that when the voltage waveform 302 is of symmetrical shape, the arc and glow discharges exhibit different resistances. In the present example, the positive half-cycle 203a has a resistance of approximately 3,000Ω, whereas the negative half-cycle 203b has a resistance of approximately 275 Ω.
Based on the illustrated plot 200, it follows that output voltage may be utilized to determine whether the electrode 3 is in contact with the tissue and no discharges are going to produced or the electrode 3 is disposed a predetermined distance apart from the tissue and discharges may be generated. The current waveform reaching 0 A prior to the voltage waveform reaching 0 V is also indicative of electrical discharges. More specifically, zero-crossing of the current-waveform prior to that of the voltage waveform during the positive half-cycle is indicative of a glow discharge, whereas zero-crossing of the current-waveform prior to that of the voltage waveform during the negative half-cycle is indicative of an arc discharge. Output voltage may also be used to distinguish between the types of discharges. Namely, if the peak voltage of negative half-cycle 303 is less than the peak voltage positive half-cycle 203, then it may be predicted that the arc discharge is produced during the negative half-cycle 303.
Another factor that affects the formation of the arc discharges is the temperature of the electrode. Due to thermionic emission, an increased temperature of the electrode 3 results in higher incidence of arc discharges, whereas a lower temperature of the electrode 3 impedes formation of the arc discharges. In particular, higher temperature result in higher electron emission, which directly contribute to the generation of various discharges.
The relationship between output voltage at positive and negative half-cycles 203 and 303, makes it possible for the generator 20 to adjust its output in response to the detected arc discharges. Since arc discharges (e.g., thermal and non-thermal arcs) occur during a negative half-cycle of the voltage waveform due to the heating of the electrode 3, upon detecting arc discharges, the generator 20 may increase the time between pulses (e.g., lower the duty cycle) to allow the electrode 3 to cool and remain in the glow discharge regime 106. In another embodiment, the generator 20 may reduce the current to prevent the electrode 3 from overheating. Conversely, shortening the time between pulses may be used to insure that the negative half-cycles remain in the arc discharge regime 108, when arc discharges are desired (e.g., cutting). The adjustments to the generator 20 may be embodied in either hardware and/or software to be performed automatically or in response to user input (e.g., entering pulse delay). In a further embodiment, the generator 20 is configured to detect a resistive contact between the electrode 3 and the tissue (e.g., 0 V simultaneous with 0 A) and increase power and/or voltage to initiate are discharges or lower power or voltage to extinguish arc discharges.
If the electrode 3 is not in contact with the tissue, e.g., when the voltage is at a non-zero value, arc discharges are possible. The generator 20 detects such arc discharges in steps 406, 407 and 408.
In step 406, the sensors 23 measure voltage and current including peak voltage for each of the positive and negative half-cycles as well as zero-crossing of the voltage and current waveforms. In step 407, the measurements are transmitted to the controller 24, which determines whether the zero-crossing of the current-waveform prior to that of the voltage waveform during the positive half-cycle and the negative half-cycle, which is indicative of occurrence of glow and arc discharges, respectively. In step 408, the controller 24 compares the peak voltages of the positive and negative half-cycles. If the peak voltage of the negative half-cycle is less than the peak voltage of the positive half-cycle, which is indicative of occurrence the arc discharges.
If arc or glow discharges are occurring as determined in steps 407 and 408, then the method proceed to step 410. If the peak voltage of the negative half-cycle is not larger than that of the positive half-cycle and the voltage is greater than 0 while the current is about 0 A and/or the current waveform is not zero-crossing prior to that of the voltage waveform, then the method continues to monitor for electrode-to-tissue contact and measuring the peak voltage in steps 404 and 406.
In step 410, the controller 24 determines whether the arc discharges are desired based on manual (e.g., user input) or automatic input. In one embodiment, the user may specifically toggle an option for generating arc discharges. In another embodiment, the arc discharges may be toggled based on the selected mode (e.g., if cut mode is selected, arc discharges are to be maximized). If arc discharges are desired, in step 412a the controller 24 decreases the time between pulses of the electrosurgical waveform, this is applicable in situations where the duty cycle is from about 1% to about 99%, in embodiments from about 10% to about 80%. In addition, the controller 24 also increases the current in step 414a, which, in turn, increases the temperature of the electrode 3. Both of these factors contribute to generation of arc discharges for the reasons outlined above. The steps 412b and 414b have an opposite effect on arc discharge generation than the steps 412a and 414a. If arc discharge generation is undesired, then in step 412b the controller 24 increases the time between pulses and reduces the current in step 414b to reduce the temperature.
While several embodiments of the disclosure have been shown in the drawings and/or discussed herein, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
Patent | Priority | Assignee | Title |
10004558, | Jan 12 2009 | Cilag GmbH International | Electrical ablation devices |
10098527, | Feb 27 2013 | Cilag GmbH International | System for performing a minimally invasive surgical procedure |
10098691, | Dec 18 2009 | Cilag GmbH International | Surgical instrument comprising an electrode |
10105141, | Jul 14 2008 | Cilag GmbH International | Tissue apposition clip application methods |
10206709, | May 14 2012 | Cilag GmbH International | Apparatus for introducing an object into a patient |
10258406, | Feb 28 2011 | Cilag GmbH International | Electrical ablation devices and methods |
10278761, | Feb 28 2011 | Cilag GmbH International | Electrical ablation devices and methods |
10314603, | Nov 25 2008 | Cilag GmbH International | Rotational coupling device for surgical instrument with flexible actuators |
10314649, | Aug 02 2012 | Ethicon Endo-Surgery, Inc | Flexible expandable electrode and method of intraluminal delivery of pulsed power |
10342598, | Aug 15 2012 | Cilag GmbH International | Electrosurgical system for delivering a biphasic waveform |
10478248, | Feb 15 2007 | Cilag GmbH International | Electroporation ablation apparatus, system, and method |
10492880, | Jul 30 2012 | Ethicon Endo-Surgery, Inc | Needle probe guide |
10779882, | Oct 28 2009 | Cilag GmbH International | Electrical ablation devices |
11076906, | Sep 28 2011 | Covidien LP | Logarithmic amplifier, electrosurgical generator including same, and method of controlling electrosurgical generator using same |
11284918, | May 14 2012 | Cilag GmbH International | Apparatus for introducing a steerable camera assembly into a patient |
11365490, | Dec 21 2019 | Covidien LP | Thermal cutting elements, electrosurgical instruments including thermal cutting elements, and methods of manufacturing |
11399834, | Jul 14 2008 | Cilag GmbH International | Tissue apposition clip application methods |
11484191, | Feb 27 2013 | Cilag GmbH International | System for performing a minimally invasive surgical procedure |
11529186, | Jul 22 2019 | Covidien LP | Electrosurgical forceps including thermal cutting element |
9375268, | Feb 15 2007 | Cilag GmbH International | Electroporation ablation apparatus, system, and method |
9572623, | Aug 02 2012 | Ethicon Endo-Surgery, Inc | Reusable electrode and disposable sheath |
9788885, | Aug 15 2012 | Cilag GmbH International | Electrosurgical system energy source |
9788888, | Jul 03 2012 | Cilag GmbH International | Endoscopic cap electrode and method for using the same |
9883910, | Mar 17 2011 | Cilag GmbH International | Hand held surgical device for manipulating an internal magnet assembly within a patient |
9918775, | Apr 12 2011 | Covidien LP | Systems and methods for calibrating power measurements in an electrosurgical generator |
ER539, | |||
ER6465, |
Patent | Priority | Assignee | Title |
3923063, | |||
3952748, | Jul 18 1974 | Minnesota Mining and Manufacturing Company | Electrosurgical system providing a fulguration current |
3963030, | Apr 16 1973 | Valleylab, Inc. | Signal generating device and method for producing coagulation electrosurgical current |
4024467, | Jul 15 1974 | MDT CORPORATION, A DE CORP ; SANTA BARBARA RESEARCH CENTER, GOLETA, CA , A CA CORP | Method for controlling power during electrosurgery |
4188927, | Jan 12 1978 | Valleylab, Inc. | Multiple source electrosurgical generator |
4271837, | Jan 17 1978 | Aesculap-Werke Aktiengesellschaft vormals Jetter & Scheerer | Electrosurgical apparatus |
4378801, | Dec 17 1979 | Medical Research Associates Ltd. #2 | Electrosurgical generator |
4429694, | Jul 06 1981 | WELLS FARGO BANK, NATIONAL ASSOCIATION FLAIR INDUSTRIAL PARK RCBO | Electrosurgical generator |
4438766, | Sep 03 1981 | WELLS FARGO BANK, NATIONAL ASSOCIATION FLAIR INDUSTRIAL PARK RCBO | Electrosurgical generator |
4520818, | Feb 28 1983 | DePuy Orthopaedics, Inc | High dielectric output circuit for electrosurgical power source |
4559943, | Sep 03 1981 | WELLS FARGO BANK, NATIONAL ASSOCIATION FLAIR INDUSTRIAL PARK RCBO | Electrosurgical generator |
4590934, | May 18 1983 | VALLEY FORGE SCIENTIFIC CORP , 2570 BOULEVARD OF THE GENERALS, NORRISTOWN, PA 19403; MALIS, LEONARD I , 219-44 PECK AVENUE, HOLLIS, HILLS, NY, 11427; PACKAGING SERVICE CORPORATION OF KENTUCKY, 3001 WEST KENTUCKY STREET, LOUISVILLE, KY 40211, A KY CORP | Bipolar cutter/coagulator |
4818954, | Feb 15 1986 | KARL STORZ ENDOSCOPY-AMERICA, INC | High-frequency generator with automatic power-control for high-frequency surgery |
5370645, | Apr 19 1993 | Covidien AG; TYCO HEALTHCARE GROUP AG | Electrosurgical processor and method of use |
5372596, | Jul 27 1993 | Covidien AG; TYCO HEALTHCARE GROUP AG | Apparatus for leakage control and method for its use |
5451224, | Feb 27 1992 | G2 Design Limited | Apparatus for radio frequency bipolar electrosurgery |
5472443, | Jun 07 1991 | Hemostatic Surgery Corporation | Electrosurgical apparatus employing constant voltage and methods of use |
5479871, | Dec 03 1993 | General Dynamics Corporation | Emergency power system for submarines |
5827271, | Sep 19 1995 | Covidien AG; TYCO HEALTHCARE GROUP AG | Energy delivery system for vessel sealing |
5836943, | Aug 23 1996 | Microline Surgical, Inc | Electrosurgical generator |
5843019, | Jan 07 1992 | Arthrocare Corporation | Shaped electrodes and methods for electrosurgical cutting and ablation |
5849010, | Oct 31 1994 | KARL STORZ GMBH & CO KG | Electrosurgical apparatus and method for its operation |
5891142, | Dec 06 1996 | Intuitive Surgical Operations, Inc | Electrosurgical forceps |
5908444, | Jun 19 1997 | LAZURE SCIENTIFIC, INC | Complex frequency pulsed electromagnetic generator and method of use |
5954717, | Sep 25 1997 | Boston Scientific Scimed, Inc | Method and system for heating solid tissue |
5971980, | May 02 1995 | Cardiac Pacemakers, Inc | System for controlling the energy delivered to a patient for ablation |
6010499, | May 31 1995 | DIPOLAR LIMITED | Electrosurgical cutting and coagulation apparatus |
6039732, | Apr 18 1995 | Olympus Optical Co., Ltd. | Electric operation apparatus |
6056746, | Jun 23 1995 | Gyrus Medical Limited | Electrosurgical instrument |
6074386, | Dec 29 1995 | Gyrus Medical Limited | Electrosurgical instrument and an electrosurgical electrode assembly |
6093186, | Dec 20 1996 | Gyrus Medical Limited | Electrosurgical generator and system |
6142992, | May 10 1993 | Arthrocare Corporation | Power supply for limiting power in electrosurgery |
6186147, | Jul 26 1999 | DIPOLAR LIMITED | Method for electrosurgical tissue cutting and coagulation |
6228081, | May 21 1999 | Gyrus Medical Limited | Electrosurgery system and method |
6235020, | May 10 1993 | Arthrocare Corporation | Power supply and methods for fluid delivery in electrosurgery |
6238387, | Aug 23 1996 | Microline Surgical, Inc | Electrosurgical generator |
6261286, | Jun 23 1995 | Gyrus Medical Limited | Electrosurgical generator and system |
6293942, | Jun 23 1995 | Gyrus Medical Limited | Electrosurgical generator method |
6296636, | Jun 07 1995 | Arthrocare Corporation | Power supply and methods for limiting power in electrosurgery |
6306134, | Jun 23 1995 | Gyrus Medical Limited | Electrosurgical generator and system |
6364877, | Jun 23 1995 | Gyrus Medical Limited | Electrosurgical generator and system |
6398779, | Oct 23 1998 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealing system |
6398781, | Mar 05 1999 | Gyrus Medical Limited | Electrosurgery system |
6413256, | Aug 01 2000 | Relign Corporation | Voltage threshold ablation method and apparatus |
6416509, | Jun 23 1995 | Gyrus Medical Limited | Electrosurgical generator and system |
6428537, | May 22 1998 | Boston Scientific Scimed, Inc | Electrophysiological treatment methods and apparatus employing high voltage pulse to render tissue temporarily unresponsive |
6468270, | Jun 07 1995 | ArthoCare Corporation | System and method for electrosurgical treatment of intervertebral discs |
6547786, | May 21 1999 | Gyrus Medical | Electrosurgery system and instrument |
6582427, | Mar 05 1999 | Gyrus Medical Limited | Electrosurgery system |
6632193, | Nov 22 1995 | Arthrocare Corporation | Systems and methods for electrosurgical tissue treatment |
6692489, | Jul 21 1999 | Microline Surgical, Inc | Electrosurgical mode conversion system |
6723091, | Feb 22 2000 | ENERGIST LIMITED | Tissue resurfacing |
6784405, | Apr 21 1998 | The State of Oregon, acting by and through the State Board of Higher Education on Behalf of Oregon State University; Benjamin A., Flugstad | Variable frequency automated capacitive radio frequency (RF) dielectric heating system |
6796981, | Sep 30 1999 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealing system |
6837888, | Feb 09 2001 | Arthrocare Corporation | Electrosurgical probe with movable return electrode and methods related thereto |
6843789, | Oct 31 2000 | Gyrus Medical Limited | Electrosurgical system |
6893435, | Oct 31 2000 | Gyrus Medical Limited | Electrosurgical system |
6939347, | Nov 19 2002 | Conmed Corporation | Electrosurgical generator and method with voltage and frequency regulated high-voltage current mode power supply |
6942660, | Nov 19 2002 | Conmed Corporation | Electrosurgical generator and method with multiple semi-autonomously executable functions |
6974453, | May 10 1993 | Arthrocare Corporation | Dual mode electrosurgical clamping probe and related methods |
7066933, | Aug 08 2000 | ERBE ELEKTROMEDIZIN GMBH | High-frequency generator for performing high-frequency surgery having adjustable power limitation, and method for controlling the power limitation |
7175621, | Jul 21 1999 | Microline Surgical, Inc | Electrosurgical mode conversion system |
7195627, | Feb 27 2003 | Gyrus Medical Limited | Electrosurgical generator |
7211081, | Jan 09 2003 | Gyrus Medical Limited | Electrosurgical generator |
7220260, | Jun 27 2002 | Gyrus Medical Limited | Electrosurgical system |
7255694, | Dec 10 2002 | Covidien AG; TYCO HEALTHCARE GROUP AG | Variable output crest factor electrosurgical generator |
7300435, | Nov 21 2003 | Covidien AG; TYCO HEALTHCARE GROUP AG | Automatic control system for an electrosurgical generator |
7303557, | Oct 23 1998 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealing system |
7364577, | Feb 11 2002 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealing system |
7651492, | Apr 24 2006 | TYCO HEALTHCARE GROUP AG; Covidien AG | Arc based adaptive control system for an electrosurgical unit |
7678105, | Sep 16 2005 | Conmed Corporation | Method and apparatus for precursively controlling energy during coaptive tissue fusion |
7956620, | Aug 12 2009 | Covidien LP | System and method for augmented impedance sensing |
8152802, | Jan 12 2009 | Covidien LP | Energy delivery algorithm filter pre-loading |
8162932, | Jan 12 2009 | Covidien LP | Energy delivery algorithm impedance trend adaptation |
8167875, | Jan 12 2009 | Covidien LP | Energy delivery algorithm for medical devices |
8211100, | Jan 12 2009 | Covidien LP | Energy delivery algorithm for medical devices based on maintaining a fixed position on a tissue electrical conductivity v. temperature curve |
8231553, | Jan 13 2009 | Covidien LP | Method for wireless control of electrosurgery |
8235917, | Jan 13 2009 | Covidien LP | Wireless electrosurgical controller |
8262652, | Jan 12 2009 | Covidien LP | Imaginary impedance process monitoring and intelligent shut-off |
8298223, | May 01 2003 | Covidien AG | Method and system for programming and controlling an electrosurgical generator system |
8303580, | May 01 2003 | Covidien AG | Method and system for programming and controlling an electrosurgical generator system |
8333759, | Jan 12 2009 | Covidien LP | Energy delivery algorithm for medical devices |
8377054, | Sep 24 2009 | Covidien LP | Automatic control circuit for use in an electrosurgical generator |
8382751, | Sep 10 2009 | Covidien LP | System and method for power supply noise reduction |
8454590, | Feb 26 2010 | Covidien LP | Enhanced lossless current sense circuit |
20020029036, | |||
20030181898, | |||
20040167508, | |||
20050004634, | |||
20060178664, | |||
20060219682, | |||
20070250052, | |||
20070282320, | |||
20080082095, | |||
20090048595, | |||
20090082765, | |||
20090254077, | |||
20090259224, | |||
20100094275, | |||
20100217258, | |||
20100217264, | |||
20110028963, | |||
20110054460, | |||
20110071516, | |||
20110077631, | |||
20110112530, | |||
20110115562, | |||
20110144635, | |||
20110208179, | |||
20110213355, | |||
D574323, | Feb 12 2007 | Covidien LP | Generator |
DE1099658, | |||
DE1139927, | |||
DE1149832, | |||
DE1439302, | |||
DE179607, | |||
DE19506363, | |||
DE19717411, | |||
DE19848540, | |||
DE2407559, | |||
DE2439587, | |||
DE2455174, | |||
DE2504280, | |||
DE2540968, | |||
DE2602517, | |||
DE2803275, | |||
DE2820908, | |||
DE2823291, | |||
DE2946728, | |||
DE3045996, | |||
DE3120102, | |||
DE3143421, | |||
DE3510586, | |||
DE3604823, | |||
DE3904558, | |||
DE390937, | |||
DE3942998, | |||
DE4206433, | |||
DE4339049, | |||
EP1051948, | |||
EP1053720, | |||
EP1293171, | |||
EP1366724, | |||
EP1500378, | |||
EP1776929, | |||
EP1849425, | |||
EP1862137, | |||
EP2025297, | |||
EP246350, | |||
EP267403, | |||
EP296777, | |||
EP310431, | |||
EP325456, | |||
EP336742, | |||
EP390937, | |||
EP556705, | |||
EP608609, | |||
EP836868, | |||
EP880220, | |||
EP882955, | |||
FR1275415, | |||
FR1347865, | |||
FR2313708, | |||
FR2364461, | |||
FR2502935, | |||
FR2517953, | |||
FR2573301, | |||
JP63005876, | |||
RE34432, | Apr 08 1986 | Birtcher Medical Systems, Inc. | Power control technique for beam-type electrosurgical unit |
RE39358, | May 21 1999 | Gyrus Medical Limited | Electrosurgery system and method |
SU166452, | |||
SU727201, | |||
WO211634, | |||
WO245589, | |||
WO3090635, | |||
WO2005046496, | |||
WO2006050888, | |||
WO9602180, | |||
WO9710763, | |||
WO9807378, | |||
WO9827880, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 12 2010 | Covidien LP | (assignment on the face of the patent) | / | |||
Jul 12 2010 | KEPPEL, DAVID S | Tyco Healthcare Group LP | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024666 | /0680 | |
Sep 28 2012 | Tyco Healthcare Group LP | Covidien LP | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 029065 | /0403 |
Date | Maintenance Fee Events |
Jun 22 2017 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jun 23 2021 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Jan 28 2017 | 4 years fee payment window open |
Jul 28 2017 | 6 months grace period start (w surcharge) |
Jan 28 2018 | patent expiry (for year 4) |
Jan 28 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 28 2021 | 8 years fee payment window open |
Jul 28 2021 | 6 months grace period start (w surcharge) |
Jan 28 2022 | patent expiry (for year 8) |
Jan 28 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 28 2025 | 12 years fee payment window open |
Jul 28 2025 | 6 months grace period start (w surcharge) |
Jan 28 2026 | patent expiry (for year 12) |
Jan 28 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |