A diffractive multifocal design for ocular implant is provided. This ocular implant includes a diffractive multifocal intraocular lens (IOL) and a number of haptics. The diffractive multifocal IOL passes optical energy to distance, intermediate and near foci. The haptics mechanically couple to the diffractive multifocal IOL in order to position and secure the diffractive multifocal IOL within the eye. The diffractive multifocal IOL may include both a diffractive region and a refractive region, the diffractive multifocal IOL operable to phase shift optical energy such that constructive interference occurs within the diffractive region and the refractive region.
|
1. An ocular implant, comprising:
a diffractive multifocal intraocular lens (IOL) operable to provide a distance, a near and an intermediate focus, the diffractive multifocal IOL having a thin edge operable to support a smaller incision, wherein the diffractive multifocal IOL comprises a bifocal diffractive region providing only the distance and near foci, a center-distance refractive region and an outer refractive region, the phase of the outer refractive region matching the phase of the bifocal diffractive region and the phase of the center-distance refractive region shifted out of phase from the bifocal diffractive region by between ⅛ and 1/16 of a wave to phase-shift optical energy such that constructive interference between the center-distance refractive region and the bifocal diffractive region occurs at both the distance and intermediate foci; and
a plurality of haptics coupled to the diffractive multifocal IOL operable to position the diffractive multifocal IOL within an eye.
5. A method to correct visual impairment of aphakia comprising:
removing a natural lens from an eye;
inserting a diffractive multifocal intraocular lens (IOL) within the eye, the diffractive multifocal IOL operable to provide a near focus, an intermediate focus and a distance focus, the diffractive multifocal IOL comprises:
a center-distance refractive region,
a central bifocal diffractive region providing only the distance and near foci; and
an outer refractive region, the phase of the outer refractive region matching the phase of the central bifocal diffractive region to phase shift optical energy and the phase of the center-distance refractive region shifted out of phase from the bifocal diffractive region by between ⅛ and 1/16 of a wave such that constructive interference between the center-distance refractive region and the bifocal diffractive region occurs with the central bifocal diffractive region and the refractive region at both the intermediate and the distance foci;
positioning and securing the diffractive multifocal IOL within the eye with a plurality of haptics coupled to the diffractive multifocal IOL.
2. The ocular implant of
the diffractive region is operable to pass optical energy simultaneously to the distance, intermediate and near foci in bright optical conditions; and
the refractive region is operable to pass optical energy to distance vision in dim optical conditions.
3. The ocular implant of
4. The ocular implant of
a plurality of concentric steps of varying step heights that allocate energy based on lighting conditions and activity to produce a full range (near to distant) of quality vision.
7. The method of
a plurality of concentric steps of varying step heights that allocate energy based on lighting conditions and activity to produce a full range (near to distant) of quality vision.
|
This application claims priority to U.S. Provisional Application Ser. No. 61/254,938 filed on Oct. 26, 2009.
The present invention relates generally to multifocal ophthalmic lenses, and, more particularly, to multifocal intraocular lenses that can provide refractive and diffractive optical focusing powers.
The human eye in its simplest terms functions to provide vision by transmitting light through a clear outer portion called the cornea, and focusing the image by way of a lens onto a retina. The quality of the focused image depends on many factors including the size and shape of the eye, and the transparency of the cornea and lens. Age and/or disease often cause the lens to become less transparent. Thus, vision deteriorates because of the diminished light which can be transmitted to the retina. This deficiency in the lens of the eye is medically known as a cataract.
Intraocular lenses (IOLs) are routinely implanted in patients' eyes during cataract surgery to replace a natural crystalline lens. Some IOLs employ diffractive structures to provide a patient with not only a far-focus power but also a near-focus power. In other words, such multifocal IOLs provide the patient with a degree of accommodation (sometimes referred to as “pseudo-accommodation”). Although patients having such IOLs generally enjoy the versatile focusing properties of these lenses, a small percentage make observations about the quality of their intermediate vision.
Various multifocal ophthalmic lens designs generally fall into one of two categories, refractive lenses and diffractive lenses. Diffractive lenses use nearly periodic microscopic structures on the lens to diffract light into several directions simultaneously. This is similar to a diffraction grating and the multiple diffraction orders focus the light into various images corresponding to different focal lengths of the lens. Diffractive multifocal contact lenses and IOLs are more fully discussed in U.S. Pat. Nos. 4,162,122, 4,210,391, 4,338,005, 4,340,283, 4,995,714, 4,995,715, 4,881,804, 4,881,805, 5,017,000, 5,054,905, 5,056,908, 5,120,120, 5,121,979, 5,121,980, 5,144,483, 5,117,306 (Cohen), U.S. Pat. Nos. 5,076,684, 5,116,111 (Simpson, et al.), U.S. Pat. No. 5,129,718 (Futhey, et al.) and U.S. Pat. Nos. 4,637,697, 4,641,934 and 4,655,565 (Freeman), the entire contents of which are incorporated herein by reference.
While a diffractive IOL may have a number of focal lengths, generally, IOLs with only two focal lengths (far and near) are the most common. As with any simultaneous vision multifocal lens, a defocused image (or images) is superimposed on the focused component because of the second lens power, but the defocused image is rarely observed by the user, who concentrates on the detail of interest.
Accordingly, there is a need for enhanced ophthalmic lenses for correcting vision, and more particularly, for such lenses that can be employed to compensate for the lost optical power of a removed natural lens. In particular, a need exists for an IOL with the ability to restore vision across a range of object distances following removal of a natural lens.
Embodiments of the present disclosure provide an improved diffractive multifocal design for ocular implant. This ocular implant includes a diffractive multifocal intraocular lens (IOL) and a number of haptics. The diffractive multifocal IOL passes optical energy in distance, intermediate and near conditions. The haptics mechanically couple to the diffractive multifocal IOL in order to position and secure the diffractive multifocal IOL within the eye. The diffractive multifocal IOL may include both a diffractive region and a refractive region. The diffractive region may be a central region or optic zone of the lens that includes concentric steps of gradually varying step heights in order to allocate energy based on lighting conditions and activity in order to create a full range of quality vision, i.e. near, intermediate and distant for the patient. This allows conditions where the natural lens of the eye must be replaced to be corrected.
Other embodiments of the present disclosure provide a method to correct for visual impairment of aphakia. In one embodiment this involves removing a natural lens from an eye when the lens may be diseased or damaged through accident. Next a diffractive multifocal IOL may be inserted within the eye and then secured and positioned with a number of haptics. The diffractive region of the diffractive multifocal IOL may simultaneously pass optical energy to distant, intermediate and near focal points in bright optical conditions while the outer refractive region may pass optical energy to distance vision in dim optical conditions. Yet another embodiment of the present disclosure provides a method to correct visual impairment. This method involves passing optical energy to the retina wherein the optical energy may be imaged. This optical energy is passed with a diffractive multifocal IOL typically located within the eye and used to replace the natural lens. The diffractive multifocal IOL passes optical energy in distance, intermediate and near conditions. The diffractive multifocal IOL can have a central diffractive region and an outer refractive region.
Embodiments of the present disclosure allow patients having visual impairment to have clear distance vision at smaller pupil conditions, i.e. photopic conditions, and have improved vision at larger pupil, i.e. mesopic conditions.
Other advantages of the present disclosure will become more apparent to one skilled in the art upon reading and understanding the detailed description of the preferred embodiments described herein with reference to the following drawings.
For a more complete understanding of the present disclosure and the advantages thereof, reference is now made to the following description taken in conjunction with the accompanying drawings in which like reference numerals indicate like features and wherein:
Preferred embodiments of the present disclosure are illustrated in the FIGs., like numerals being used to refer to like and corresponding parts of the various drawings.
An improved diffractive multifocal design for ocular implant is provided. This ocular implant includes a diffractive multifocal intraocular lens (IOL) and a number of haptics. The diffractive multifocal IOL passes optical energy in distance, intermediate and near conditions. The haptics mechanically couple to the diffractive multifocal IOL in order to position and secure the diffractive multifocal IOL within the eye. The diffractive multifocal IOL may include both a diffractive region and a refractive region, the diffractive multifocal IOL operable to phase shift optical energy such that constructive interference occurs within the diffractive region and the refractive region.
Sight is, by far, one of our most valuable senses. Without our vision, everyday tasks like driving and reading books would be impossible. Our eyes are complex machines that deliver a clear picture of the world around us—communicating the simplest of colors, shapes and textures.
Diffractive Optic IOL 200 may be positioned in the posterior chamber of the eye, replacing the natural lens. This position allows Diffractive Optic IOL 200 to correct the visual impairment of aphakia (absence of the natural lens). Diffractive Optic IOL 200 may have a biconvex optic that is shaped using a process called apodized diffraction to provide increased depth of focus. The Diffractive Optic IOL 200 may be used in adult patients with and without presbyopia, who desire near, intermediate and distance vision with increased independence from glasses following cataract surgery. Diffractive Optic IOL 200 provides good near, intermediate and distance vision with increased independence from glasses in patients who have undergone cataract surgery. Diffractive Optic IOL 2 delivers quality vision for various lighting situations. In brightly lit conditions, the central diffractive portion 204 sends light waves simultaneously to distant, intermediate and near focal points, while, in dimly lit conditions, the surrounding refractive area 206 sends greater energy to distance vision.
The process for determining these annular zones is described in U.S. Pat. No. 5,699,142 (Lee et al.), the entire contents of which are incorporated herein by reference. The boundary of each zone with respect to the optical axis is calculated. Steps 302 are placed at the radial zone boundaries between the various individual echelettes. Progressively reducing the step height of a selected group of individual echelettes 304 by a predetermined amount can reduce the unwanted effects of glare perceived as a halo or rings around a distant, discrete light source. The selected group of individual echelettes to be reduced in step height is all contained in what is termed an apodization zone.
Note that the step height of the echelettes 304 surrounding the optical axis (OA) remains constant over several echelettes 304 before beginning to reduce in size. Then, as the distance of each individual echelette from the optical axis OA increases the step height of each echelette 304 approaches zero. In other embodiments the height of the echelettes 304 surrounding the optical axis OA begins diminishing with the increase in the distance of the echelette 304 from the optical axis OA. These echettes may be further radially segmented as shown in
Embodiments of the present disclosure provide an improved apodized multi-focal design for an ocular implant, such as, intraocular lens (IOL) that utilizes a profile to provide improved distance vision for smaller pupils, such as photopic conditions, and improved near vision at larger pupils compared to previously available apodized diffractive multi-focal lenses.
Some patients need clearer distance vision at smaller pupil, that is, at photopic condition. Likewise, some patients require better vision at larger pupil, that is, at mesopic condition. For example, some patients have difficulty reading menus in restaurants with dim light where the pupil could be 4 mm or larger. Embodiments of the present disclosure utilize the energy distribution of a multi-focal design and are optimized to achieve higher energy for distance vision at 2.75 mm or smaller pupils. At the same time, it achieves higher energy for near vision compared to previously available ocular implants at 3.5 mm or larger pupil.
Embodiments also provide other features of an ocular implant of that include a thin edge for aiding in smaller incision during the implantation surgery; an about 5 to 10% or greater improvement in MTF values at 2 and 2.5 mm or smaller pupil as compare to previously available apodized multi-focal designs; and an about 15% or higher improvement in MTF values at 3.5 mm or larger pupil for near vision as compare to previously available apodized multi-focal designs. The 5 to 10% or greater improvement for smaller pupils allows for better distance vision at photopic conditions. Similarly the 15% improvement for larger pupils allows for improved near vision at mesopic or dim light condition. Embodiments of the present disclosure have demonstrated that one can reduce the energy to near, and use a larger lens region that directs light to near while providing good visual performance. Embodiments may optimize the area for design improvements that allow for better vision at all lighting conditions, such as, photopic and mesopic conditions for certain pupils. Visual disturbances will not be increased at night within some embodiments of the present disclosure.
As shown in these FIGs., embodiments of the present disclosure may provide clearer distance vision at smaller pupil, that is, at photopic condition and better vision at larger pupil, that is, at mesopic conditions.
In summary, embodiments of the present disclosure provide an improved diffractive multifocal design for ocular implant. This ocular implant includes a diffractive multifocal intraocular lens (IOL) and a number of haptics. The diffractive multifocal IOL passes optical energy in distance, intermediate and near conditions. The haptics mechanically couple to the diffractive multifocal IOL in order to position and secure the diffractive multifocal IOL within the eye. The diffractive multifocal IOL may include both a diffractive region and a refractive region. The diffractive region may be a central region or optic zone of the lens that includes concentric steps of gradually varying step heights in order to allocate energy based on lighting conditions and activity in order to create a full range of quality vision, i.e. near to distant or the patient. This allows conditions where the natural lens of the eye must be replaced to be corrected.
Other embodiments of the present disclosure provide a method to correct for visual impairment of aphakia. In one embodiment this involves removing a natural lens from an eye when the lens may be diseased or damaged through accident. Next a diffractive multifocal IOL may be inserted within the eye and then secured and positioned with a number of haptics. The diffractive region of the diffractive multifocal IOL may simultaneously pass optical energy to distant, intermediate and near focal points in bright optical conditions while the outer refractive region may pass optical energy to distance vision in dim optical conditions. Yet another embodiment of the present disclosure provides a method to correct visual impairment. This method involves passing optical energy to the retina wherein the optical energy may be imaged. This optical energy is passed with a diffractive multifocal IOL typically located within the eye and used to replace the natural lens. The diffractive multifocal IOL passes optical energy in distance, intermediate and near conditions. The diffractive multifocal IOL can have a central diffractive region and an outer refractive region.
Embodiments of the present disclosure allow patients having visual impairment to have clear distance vision at smaller pupil conditions, i.e. photopic conditions, and have improved vision at larger pupil, i.e. mesopic conditions.
As one of average skill in the art will appreciate, the term “substantially” or “approximately”, as may be used herein, provides an industry-accepted tolerance to its corresponding term. As one of average skill in the art will further appreciate, the term “operably coupled”, as may be used herein, includes direct coupling and indirect coupling via another component, element, circuit, or module. As one of average skill in the art will also appreciate, inferred coupling (i.e., where one element is coupled to another element by inference) includes direct and indirect coupling between two elements in the same manner as “operably coupled”. As one of average skill in the art will further appreciate, the term “compares favorably”, as may be used herein, indicates that a comparison between two or more elements, items, signals, etc., provides a desired relationship.
Although the present disclosure is described in detail, it should be understood that various changes, substitutions and alterations can be made hereto without departing from the spirit and scope of the disclosure as described by the appended claims.
Hong, Xin, Karakelle, Mutlu, Zhang, Xioaxioa
Patent | Priority | Assignee | Title |
10203522, | Apr 05 2012 | Brien Holden Vision Institute | Lenses, devices, methods and systems for refractive error |
10209535, | Apr 05 2012 | Brien Holden Vision Institute | Lenses, devices and methods for ocular refractive error |
10466507, | Apr 05 2012 | Brien Holden Vision Institute Limited | Lenses, devices and methods for ocular refractive error |
10520754, | Oct 17 2012 | Brien Holden Vision Institute Limited | Lenses, devices, systems and methods for refractive error |
10534198, | Oct 17 2012 | Brien Holden Vision Institute Limited | Lenses, devices, methods and systems for refractive error |
10838235, | Apr 05 2012 | Brien Holden Vision Institute Limited | Lenses, devices, and methods for ocular refractive error |
10948743, | Apr 05 2012 | Brien Holden Vision Institute Limited | Lenses, devices, methods and systems for refractive error |
11022815, | Aug 31 2012 | AMO GRONINGEN B.V. | Multi-ring lens, systems and methods for extended depth of focus |
11129707, | Aug 12 2015 | PHYSIOL S A | Trifocal intraocular lens with extended range of vision and correction of longitudinal chromatic aberration |
11156853, | Jun 28 2017 | AMO GRONINGEN B.V. | Extended range and related intraocular lenses for presbyopia treatment |
11262598, | Jun 28 2017 | AMO Groningen, B.V. | Diffractive lenses and related intraocular lenses for presbyopia treatment |
11320672, | Oct 07 2012 | Brien Holden Vision Institute Limited | Lenses, devices, systems and methods for refractive error |
11327210, | Jun 30 2017 | AMO GRONINGEN B.V. | Non-repeating echelettes and related intraocular lenses for presbyopia treatment |
11333903, | Oct 17 2012 | Brien Holden Vision Institute Limited | Lenses, devices, methods and systems for refractive error |
11497599, | Mar 17 2017 | AMO GRONINGEN B.V. | Diffractive intraocular lenses for extended range of vision |
11523897, | Jun 23 2017 | AMO GRONINGEN B.V. | Intraocular lenses for presbyopia treatment |
11573433, | Jun 28 2017 | AMO GRONINGEN B.V. | Extended range and related intraocular lenses for presbyopia treatment |
11644688, | Apr 05 2012 | Brien Holden Vision Institute Limited | Lenses, devices and methods for ocular refractive error |
11809024, | Apr 05 2012 | Brien Holden Vision Institute Limited | Lenses, devices, methods and systems for refractive error |
11844689, | Dec 30 2019 | AMO GRONINGEN B V | Achromatic lenses and lenses having diffractive profiles with irregular width for vision treatment |
11914229, | Jun 28 2017 | AMO GRONINGEN B.V. | Diffractive lenses and related intraocular lenses for presbyopia treatment |
9195074, | Apr 05 2012 | Brien Holden Vision Institute | Lenses, devices and methods for ocular refractive error |
9201250, | Oct 17 2012 | Brien Holden Vision Institute | Lenses, devices, methods and systems for refractive error |
9535263, | Apr 05 2012 | Brien Holden Vision Institute | Lenses, devices, methods and systems for refractive error |
9541773, | Oct 17 2012 | Brien Holden Vision Institute | Lenses, devices, methods and systems for refractive error |
9575334, | Apr 05 2012 | Brien Holden Vision Institute | Lenses, devices and methods of ocular refractive error |
9759930, | Oct 17 2012 | Brien Holden Vision Institute | Lenses, devices, systems and methods for refractive error |
Patent | Priority | Assignee | Title |
4162122, | Sep 14 1977 | Zonal bifocal contact lens | |
4210391, | Sep 14 1977 | Multifocal zone plate | |
4338005, | Dec 18 1978 | Multifocal phase place | |
4340283, | Dec 18 1978 | Phase shift multifocal zone plate | |
4637697, | Oct 27 1982 | Novartis AG | Multifocal contact lenses utilizing diffraction and refraction |
4641934, | Apr 14 1982 | Novartis AG | Ophthalmic lens with diffractive power |
4642112, | Apr 29 1981 | Novartis AG | Artificial eye lenses |
4655565, | Apr 14 1982 | Novartis AG | Ophthalmic lenses with diffractive power |
4881804, | Nov 12 1987 | Multifocal phase plate with a pure refractive portion | |
4881805, | Nov 12 1987 | Progressive intensity phase bifocal | |
4888012, | Jan 14 1988 | Intraocular lens assemblies | |
4995714, | Aug 26 1988 | CooperVision International Holding Company, LP | Multifocal optical device with novel phase zone plate and method for making |
4995715, | May 14 1986 | Coopervision, Inc | Diffractive multifocal optical device |
5017000, | May 14 1986 | Multifocals using phase shifting | |
5054905, | Nov 12 1987 | Progressive intensity phase bifocal | |
5056908, | Nov 12 1987 | Optic zone phase channels | |
5076684, | Apr 01 1988 | Minnesota Mining and Manufacturing Company | Multi-focal diffractive ophthalmic lenses |
5096285, | May 14 1990 | Iolab Corporation | Multifocal multizone diffractive ophthalmic lenses |
5116111, | Apr 01 1988 | Minnesota Mining and Manufacturing Company | Multi-focal diffractive ophthalmic lenses |
5117306, | Jul 17 1990 | Diffraction bifocal with adjusted chromaticity | |
5120120, | Jul 27 1990 | Multifocal optical device with spurious order suppression and method for manufacture of same | |
5121979, | May 14 1986 | COOPERVISION INTERNATIONAL LIMITED | Diffractive multifocal optical device |
5121980, | Apr 19 1989 | Small aperture multifocal | |
5129718, | Apr 01 1988 | Minnesota Mining and Manufacturing Company | Multi-focal diffractive ophthalmic lenses |
5144483, | May 14 1986 | COOPERVISION INTERNATIONAL LIMITED | Diffractive multifocal optical device |
5217489, | Apr 05 1991 | Alcon Research, Ltd | Bifocal intraocular lens |
5257132, | Sep 25 1990 | UNITED STATES OF AMERICA, AS REPRESENTED BY THE DEPARTMENT OF ENERGY, THE | Broadband diffractive lens or imaging element |
5470932, | Oct 18 1993 | Alcon Research, Ltd | Polymerizable yellow dyes and their use in opthalmic lenses |
5528322, | Oct 18 1993 | Alcon Research, Ltd | Polymerizable yellow dyes and their use in ophthalmic lenses |
5543504, | Oct 18 1993 | Alcon Research, Ltd | Polymerizable yellow dyes and their use in ophthalmic lenses |
5662707, | Oct 18 1993 | Alcon Research, Ltd | Polymerizable yellow dyes and their use in ophthalmic lenses |
5699142, | Sep 01 1994 | Alcon Research, Ltd | Diffractive multifocal ophthalmic lens |
5800532, | Jun 06 1995 | Scientific Optics, Inc. | Asymmetric intraocular lens |
5895422, | Jun 17 1993 | Mixed optics intraocular achromatic lens | |
6432246, | Oct 26 1988 | Abbott Medical Optics Inc | Fabrication of an intraocular lens |
6536899, | Jul 14 1999 | ACRI TEC GMBH; *ACRI TEC GMBH | Multifocal lens exhibiting diffractive and refractive powers |
6596026, | Nov 27 2000 | VOT FUNDING LLC, A DELAWARE LIMITED LIABILITY COMPANY VOT ; VISIONCARE, INC | Telescopic intraocular lens |
6599317, | Sep 17 1999 | JOHNSON & JOHNSON SURGICAL VISION, INC | Intraocular lens with a translational zone |
6638305, | May 15 2001 | JOHNSON & JOHNSON SURGICAL VISION, INC | Monofocal intraocular lens convertible to multifocal intraocular lens |
6685315, | Sep 03 1999 | Bifocal lenses | |
6695881, | Apr 29 2002 | Alcon Inc | Accommodative intraocular lens |
6800091, | Aug 20 1997 | THINOPTX, INC | Method of using a small incision lens |
6923540, | Jul 31 2002 | Alcon Inc | Toric multifocal contact lenses |
6951391, | Jun 16 2003 | APOLLO OPTICAL SYSTEMS, INC | Bifocal multiorder diffractive lenses for vision correction |
6969403, | Apr 29 2002 | Alcon Inc | Accommodative intraocular lens |
7073906, | May 12 2005 | VISION ADVANCEMENT LLC | Aspherical diffractive ophthalmic lens |
7150760, | Mar 22 2004 | Alcon Inc | Accommodative intraocular lens system |
7156516, | Aug 20 2004 | APOLLO OPTICAL SYSTEMS, INC | Diffractive lenses for vision correction |
7188949, | Oct 25 2004 | JOHNSON & JOHNSON SURGICAL VISION, INC | Ophthalmic lens with multiple phase plates |
7322695, | Mar 27 2006 | Johnson & Johnson Vision Care, Inc. | Multifocal contact lenses |
7350916, | Apr 05 2005 | Alcon Inc | Intraocular lens |
7441894, | Feb 09 2006 | Alcon Inc | Pseudo-accommodative IOL having diffractive zones with varying areas |
7481532, | Feb 09 2006 | Alcon Inc | Pseudo-accommodative IOL having multiple diffractive patterns |
7572007, | Aug 02 2006 | Alcon Inc | Apodized diffractive IOL with frustrated diffractive region |
7896916, | Nov 29 2002 | DWFRITZ AUTOMATION, LLC | Multifocal ophthalmic lens |
20030014107, | |||
20030065387, | |||
20040252274, | |||
20060066808, | |||
20060116764, | |||
20070171362, | |||
20090088840, | |||
20090187242, | |||
CA2602507, | |||
EP742462, | |||
EP2045648, | |||
WO2006023404, | |||
WO2006047698, | |||
WO2006060480, | |||
WO2010059764, | |||
WO2010144315, | |||
WO2010144317, | |||
WO9744689, | |||
WO9928769, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 22 2010 | Novartis AG | (assignment on the face of the patent) | / | |||
Nov 11 2010 | HONG, XIN | Alcon, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025430 | /0868 | |
Nov 16 2010 | ZHANG, XIAOXIAO | Alcon, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025430 | /0868 | |
Nov 29 2010 | KARAKELLE, MUTLU | Alcon, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025430 | /0868 | |
Apr 08 2011 | Alcon, Inc | Novartis AG | MERGER SEE DOCUMENT FOR DETAILS | 026376 | /0076 | |
Nov 11 2019 | Novartis AG | Alcon Inc | CONFIRMATORY DEED OF ASSIGNMENT EFFECTIVE APRIL 8, 2019 | 051454 | /0788 |
Date | Maintenance Fee Events |
Aug 03 2017 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Aug 04 2021 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 18 2017 | 4 years fee payment window open |
Aug 18 2017 | 6 months grace period start (w surcharge) |
Feb 18 2018 | patent expiry (for year 4) |
Feb 18 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 18 2021 | 8 years fee payment window open |
Aug 18 2021 | 6 months grace period start (w surcharge) |
Feb 18 2022 | patent expiry (for year 8) |
Feb 18 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 18 2025 | 12 years fee payment window open |
Aug 18 2025 | 6 months grace period start (w surcharge) |
Feb 18 2026 | patent expiry (for year 12) |
Feb 18 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |