The method of the preferred embodiments includes the steps of providing a base having a frame portion and a center portion; building a preliminary structure coupled to the base; removing a portion of the preliminary structure to define a series of devices and a plurality of bridges; removing the center portion of the base such that the frame portion defines an open region, wherein the plurality of bridges suspend the series of devices in the open region defined by the frame; and encapsulating the series of devices. The method is preferably designed for the manufacture of semiconductor devices, and more specifically for the manufacture of encapsulated implantable electrodes. The method, however, may be alternatively used in any suitable environment and for any suitable reason.
|
1. An implantable electrode system, comprising:
a) a base comprising a frame portion defining an open region;
b) at least one bridge extending from the frame portion into the open region;
c) an electrode structure comprising a conductive lead and at least one of a stimulation electrode site and a recording electrode site; and
d) a coating that encapsulates the electrode structure,
e) wherein the electrode structure is coupled to the at least one bridge, spaced from the frame portion, to thereby be suspended in the open region defined by the frame portion of the base by the bridge, and
f) wherein the electrode structure is removable from the at least one bridge such that upon removal, the electrode structure is encapsulated in a conformal coat of the coating.
19. A semiconductor device system, comprising:
a) a base comprising a frame portion defining an open region;
b) a plurality of bridges extending from the frame portion into the open region;
c) a semiconductor device formed from a preliminary electrode structure coupled to the base, the preliminary electrode structure comprising a plurality of layers comprising a conductive lead and at least one of a stimulation electrode site and a recording electrode site; and
d) a coating that encapsulates the electrode structure,
e) wherein the semiconductor device is coupled to at least one bridge, spaced from the frame portion of the base, to be thereby suspended in the open region of the frame portion of the base by the bridge, and
f) wherein the electrode structure is removable from the at least one bridge such that upon removal, the electrode structure is encapsulated in a conformal coat of the coating.
13. A semiconductor device system, comprising:
a) a wafer comprising a frame portion defining an open region;
b) at least one bridge extending from the frame portion into the open region;
c) a semiconductor device comprising a plurality of lavers comprising a conductive lead and a plurality of electrode sites, the plurality of electrode sites comprising at least one of a stimulation electrode site and a recording electrode site coupled to the conductive lead; and
d) a coating that encapsulates the semiconductor device,
e) wherein the semiconductor device is coupled to the at least one bridge, spaced from the frame portion, to thereby be suspended in the open region defined by the frame portion of the wafer by the bridge, and
f) wherein the electrode structure is removable from the at least one bridge such that upon removal, the electrode structure is encapsulated in a conformal coat of the coating.
2. The implantable electrode system of
3. The implantable electrode system of
7. The implantable electrode system of
8. The implantable electrode system of
9. The implantable electrode system of
10. The implantable electrode system of
11. The implantable electrode system of
12. The implantable electrode system of
14. The semiconductor device system of
15. The semiconductor device system of
16. The semiconductor device system of
17. The semiconductor device system of
18. The semiconductor device system of
|
This application is a divisional of U.S. patent application Ser. No. 12/130,828, filed 30 May 2008, now U.S. Pat. No. 8,214,950 to Pellinen et al., which claims the benefit of U.S. Provisional Application No. 60/980,662, filed 17 Oct. 2007 and entitled “Method to Manufacture an Implantable Electrode”, which is incorporated in its entirety by this reference.
This invention relates generally to the implantable electrodes field, and more specifically to an improved method to manufacture encapsulated implantable electrodes.
Conventional implantable electrodes are coated with dielectrics to provide increased protection from moisture absorption. The majority of encapsulation methods for microfabricated electrodes are completed at the device level, rather than the wafer level, and therefore are more labor intensive and preclude further batch processing of the electrodes. For example, when the devices are encapsulated at the device level, electrode sites must be exposed individually on each device, typically with laser ablation. Alternatively, while some methods do include coating the devices at the wafer level, they involve a layering or “sandwiching” technique that allows for potential fluid leakage between layers. Thus, there is a need for an improved method to manufacture an implantable electrode. This invention provides such an improved and useful method.
The following description of preferred embodiments of the invention is not intended to limit the invention to these embodiments, but rather to enable any person skilled in the art to make and use this invention.
As shown in
As shown in
Step S102, which recites providing a wafer, functions to provide a wafer 10 upon which to build the series of devices 16. The wafer 10 is preferably a standard wafer conventionally used in semiconductor device fabrication, but may alternatively be any suitable wafer. The wafer 10 is preferably made from silicon, but may alternatively be made from gallium arsenide, indium phosphide, or any other suitable material.
Step S104, which recites removing a portion of the wafer to define a frame, functions to remove a portion of the wafer 10, such that the wafer 10 defines a trench that separates the center wafer portion from the outer frame portion 12 of the wafer 10, as shown in
Step S106, which recites creating a mask on the wafer, functions to cover the center wafer portion, the trench, and the outer frame portion 12 in a mask, as shown in step S106 of
Step S108, which recites patterning the mask to expose the frame, functions to remove a portion of the mask to expose a portion of the wafer 10. As shown in step S108 of
Step S110, which recites modifying the frame and removing the remainder of the mask, functions to modify the portions of the wafer where the mask was removed (the masked portions of the wafer remain unmodified) and then to remove all remaining portions of the mask. The modification is preferably deep boron diffusion, but may alternatively be any suitable modification to the unmasked wafer portions. The modification preferably alters the wafer such that the modified portion will behave as an etch stop during later stages of the process. As shown in step S110 of
Step S112, which recites building a preliminary structure coupled to the base, functions to build the preliminary structure 14 on the wafer. As shown in step S112 of
In a first variation, as shown in
In a second variation, as shown in
Although the preliminary structure 14 is preferably one of these variations, the preliminary structure 14 may be any suitable device fabricated through any suitable method. The preliminary structure 14 may further be a microfluidic device, a MEMS sensor, a MEMS actuator, or any other suitable wafer level batch fabricated device.
Step S114, which recites removing a portion of the preliminary structure to define a series of devices and a plurality of bridges, functions to remove portions of the preliminary structure 14 such that the remaining portions of the preliminary structure define a series of devices 16 and a series of bridges 18. As shown in step S114 of
Step S116, which recites removing unmodified wafer material, functions to remove the unmodified center wafer portion 10′ beneath the series of devices 16, while the outer frame portion 12 that was modified in step S110 remains, as shown in step S116 of
Step S118, which recites encapsulating the electrodes, the bridges, and the frame, functions to encapsulate the remaining portions of the structure in a conformal coat. The coating material is preferably a polymer such as parylene, but may alternatively be any suitable material. In this step, the bridges 18 secure the devices 16 in place while the devices 16 are fully encapsulated in the polymer. As shown in step S118 of
Step S120, which recites removing material to expose sites on the electrodes, functions to remove the polymer coating from specific regions on the devices 16 such that the sites 20 are exposed, as shown in step S120 in
Step S122, which recites removing the series of electrodes from the bridges and the frame, functions to remove the completed devices 16 from the frames 12. The bridges 18 are preferably cut or removed in any suitable fashion such that each device 16 is a separate device, as shown in step S122 of
The elements of this process may be grouped into microscale elements and macroscale elements. The microscale elements are those that make up the preliminary structure 14 such as the sites 20 (the electrode sites and the bond pads) and the conductive leads. Macroscale elements are those that provide structural support to the device during the steps of the manufacturing method, specifically during the encapsulation and post-encapsulation steps. The macroscale elements include the outer frame portion 12, which allows for suspension of the devices 16 and the bridges 18 which hold the devices 16 within the frame 12 and to each other.
As shown in
Although omitted for conciseness, the preferred embodiments include every combination and permutation of the various steps, wafers 10, frames 12, preliminary structures 14, devices 16, bridges 18, sites 20, microscale elements and macroscale elements. Furthermore, any suitable number of preliminary structures and/or devices may be fabricated together. For example, the fabrication may be accomplished via batch processing, preferably on an automated probe station equipped with a laser, but may alternatively be completed with any other suitable equipment.
As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.
Hetke, Jamille Farraye, Kipke, Daryl R., Vetter, Rio J., Kong, Kc, Pellinen, David S., Gulari, Mayurachat
Patent | Priority | Assignee | Title |
10052097, | Jul 26 2012 | Nyxoah SA | Implant unit delivery tool |
10512782, | Jun 17 2013 | Nyxoah SA | Remote monitoring and updating of a medical device control unit |
10716560, | Jul 26 2012 | Nyxoah SA | Implant unit delivery tool |
10716940, | Oct 20 2009 | Nyxoah SA | Implant unit for modulation of small diameter nerves |
10751537, | Oct 20 2009 | Nyxoah SA | Arced implant unit for modulation of nerves |
10814137, | Jul 26 2012 | Nyxoah SA | Transcutaneous power conveyance device |
10898717, | Oct 20 2009 | Nyxoah SA | Device and method for snoring detection and control |
10918376, | Jul 26 2012 | Nyxoah SA | Therapy protocol activation triggered based on initial coupling |
11253712, | Jul 26 2012 | Nyxoah SA | Sleep disordered breathing treatment apparatus |
11273307, | Oct 20 2009 | Nyxoah SA | Method and device for treating sleep apnea |
11298549, | Jun 17 2013 | Nyxoah SA | Control housing for disposable patch |
11642534, | Jun 17 2013 | Nyxoah SA | Programmable external control unit |
11730469, | Jul 26 2012 | Nyxoah SA | Implant unit delivery tool |
11857791, | Oct 20 2009 | Nyxoah SA | Arced implant unit for modulation of nerves |
9643022, | Jun 17 2013 | Nyxoah SA | Flexible control housing for disposable patch |
9849289, | Oct 20 2009 | Nyxoah SA | Device and method for snoring detection and control |
9855032, | Jul 26 2012 | Nyxoah SA | Transcutaneous power conveyance device |
9943686, | Oct 20 2009 | Nyxoah SA | Method and device for treating sleep apnea based on tongue movement |
9950166, | Oct 20 2009 | Nyxoah SA | Acred implant unit for modulation of nerves |
Patent | Priority | Assignee | Title |
3847687, | |||
5506383, | Feb 01 1994 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD ; AVAGO TECHNOLOGIES GENERAL IP PTE LTD | Wafer scale multi-chip module |
5760472, | Jan 05 1995 | International Rectifier Corporation | Surface mount semiconductor package |
6114755, | May 24 1996 | Sony Corporation | Semiconductor package including chip housing, encapsulation and the manufacturing method |
6181569, | Jun 07 1999 | Low cost chip size package and method of fabricating the same | |
6600231, | May 11 2000 | Mitutoyo Corporation | Functional device unit and method of producing the same |
20010040262, | |||
20060192230, | |||
JP7335673, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 02 2012 | NeuroNexus Technologies, Inc. | (assignment on the face of the patent) | / | |||
Jul 18 2012 | HETKE, JAMILLE FARRAYE | NEURONEXUS TECHNOLOGIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028673 | /0922 | |
Jul 18 2012 | VETTER, RIO J | NEURONEXUS TECHNOLOGIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028673 | /0922 | |
Jul 18 2012 | PELLINEN, DAVID S | NEURONEXUS TECHNOLOGIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028673 | /0922 | |
Jul 20 2012 | GULARI, MAYURACHAT NING | NEURONEXUS TECHNOLOGIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028673 | /0922 | |
Jul 30 2012 | KIPKE, DARYL R | NEURONEXUS TECHNOLOGIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028673 | /0922 | |
Jul 30 2012 | KONG, KC | NEURONEXUS TECHNOLOGIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028673 | /0922 | |
Oct 01 2015 | NEURONEXUS TECHNOLOGIES, INC | Greatbatch Ltd | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036701 | /0156 | |
Oct 27 2015 | GREATBATCH, INC | MANUFACTURERS AND TRADERS TRUST COMPANY | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 036980 | /0482 | |
Oct 27 2015 | NEURONEXUS TECHNOLOGIES, INC | MANUFACTURERS AND TRADERS TRUST COMPANY | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 036980 | /0482 | |
Oct 27 2015 | ELECTROCHEM SOLUTIONS, INC | MANUFACTURERS AND TRADERS TRUST COMPANY | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 036980 | /0482 | |
Oct 27 2015 | MICRO POWER ELECTRONICS, INC | MANUFACTURERS AND TRADERS TRUST COMPANY | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 036980 | /0482 | |
Oct 27 2015 | PRECIMED INC | MANUFACTURERS AND TRADERS TRUST COMPANY | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 036980 | /0482 | |
Oct 27 2015 | GREATBATCH-GLOBE TOOL, INC | MANUFACTURERS AND TRADERS TRUST COMPANY | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 036980 | /0482 | |
Jan 08 2016 | Greatbatch Ltd | NEURONEXUS TECHNOLOGIES, INC | CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNORS NAME PREVIOUSLY RECORDED ON REEL 037435 FRAME 0512 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 037579 | /0177 | |
Jan 08 2016 | GREATBATCH, LTD | NEURONEXUS TECHNOLOGIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 037435 | /0512 | |
Apr 18 2016 | MANUFACTURERS AND TRADERS TRUST COMPANY | ELECTROCHEM SOLUTIONS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 039132 | /0773 | |
Apr 18 2016 | MANUFACTURERS AND TRADERS TRUST COMPANY | MICRO POWER ELECTRONICS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 039132 | /0773 | |
Apr 18 2016 | MANUFACTURERS AND TRADERS TRUST COMPANY | NEURONEXUS TECHNOLOGIES, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 039132 | /0773 | |
Apr 18 2016 | MANUFACTURERS AND TRADERS TRUST COMPANY | QIG GROUP LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 039132 | /0773 | |
Apr 18 2016 | MANUFACTURERS AND TRADERS TRUST COMPANY | Greatbatch Ltd | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 039132 | /0773 | |
Sep 03 2021 | MANUFACTURERS AND TRADERS TRUST COMPANY AS ADMINISTRATIVE AGENT | PRECIMED INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 061659 | /0858 | |
Sep 03 2021 | MANUFACTURERS AND TRADERS TRUST COMPANY AS ADMINISTRATIVE AGENT | GREATBATCH-GLOBE TOOL, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 061659 | /0858 | |
Sep 03 2021 | MANUFACTURERS AND TRADERS TRUST COMPANY AS ADMINISTRATIVE AGENT | NEURONEXUS TECHNOLOGIES, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 061659 | /0858 | |
Sep 03 2021 | MANUFACTURERS AND TRADERS TRUST COMPANY AS ADMINISTRATIVE AGENT | ELECTROCHEM SOLUTIONS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 061659 | /0858 | |
Sep 03 2021 | MANUFACTURERS AND TRADERS TRUST COMPANY AS ADMINISTRATIVE AGENT | GREATBATCH, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 061659 | /0858 | |
Sep 03 2021 | MANUFACTURERS AND TRADERS TRUST COMPANY AS ADMINISTRATIVE AGENT | MICRO POWER ELECTRONICS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 061659 | /0858 |
Date | Maintenance Fee Events |
Jul 13 2017 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Aug 24 2021 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 25 2017 | 4 years fee payment window open |
Aug 25 2017 | 6 months grace period start (w surcharge) |
Feb 25 2018 | patent expiry (for year 4) |
Feb 25 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 25 2021 | 8 years fee payment window open |
Aug 25 2021 | 6 months grace period start (w surcharge) |
Feb 25 2022 | patent expiry (for year 8) |
Feb 25 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 25 2025 | 12 years fee payment window open |
Aug 25 2025 | 6 months grace period start (w surcharge) |
Feb 25 2026 | patent expiry (for year 12) |
Feb 25 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |